WebBlaze: New Security Technologies for the Web

Dawn Song

Computer Science Dept.
UC Berkeley

Web: Increasing Complexity

Ensuring Security on the Web Is Complex & Tricky

Does the browser correctly enforce desired security policy?
Is third-party content such as malicious ads securely sandboxed?

Do browsers & servers have consistent interpretations/views to
enforce security properties?

Do web applications have security vulnerabilities?

Do different web protocols interact securely?

WebBlaze: New Security Technologies
for the Web

Does the browser correctly enforce desired security policy?
Cross-origin capability leaks: attacks & defense [USENIX 09]

|s third-party content such as malicious ads securely sandboxed?
Preventing Capability Leaks in Secure JavaScript Subsets [NDSS10]

Do browsers & servers have consistent interpretations/views to enforce
security properties?

Document Structure Integrity: A Robust Basis for Cross-site Scripting
Defense [NDSS09]

Content sniffing XSS: attacks & defense [I[EEE S&P 09]

Do applications have security vulnerabilities?

Symbolic Execution Framework for JavaScript [[EEE S&P10]
Do different web protocols interact securely?

Model checking web protocols (Joint with Stanford)

QOutline

WebBlaze Overview
Content sniffing XSS attacks & defense

New class of vulnerabilities: Client-side Validation (CSV)
Vulnerability

Kudzu: JavaScript Symbolic Execution Framework for in-depth
crawling & vulnerability scanning of rich web applications

Conclusions

Is this a paper or a web page?

%!PS-Adobe-2.0
%%Creator: <script> ... </script>

What happens if IE decides it is HTML?

Content Sniffing Algorithm (CSA)

>

HTTP/1.1 200.Qk
Content-T <

8jf9w8nf99uf9...

<

Content Sniffing XSS Attack

<! DOCTYPE html PUBLIC
zhtml>
<l.. created X03-12-12 -->

<hezl=
stitlessamples/ htles
</ head>

<hody=
<p=¥oluptatem accusantium
totam rem aperiam. </p>
f bedy=
</ html=

GET /patagonia.gif HTTP/1.1

<

>

T g

HTTP/1.1 200 OK

| Content-Type: image/qgif

A}y‘,’(@

>\

4‘

(

KIPFDIA
Free Encyclopedia

Automatically ldentifying
Content Sniffing XSS Attacks

Website content filter modeled as Boolean predicate on the input
(accepted/rejected)

Browser CSA modeled as multi-class classifier

One per output MIME type (e.g., text/html or not)

Query a solver for inputs that are:

. Accepted by the website’s content filter
. Interpreted as HTML by the browser’'s CSA

Challenge: Extracting CSA from Close-sourced
Browsers

|E7, Safari 3.1

Need automatic techniques to extract model from program
binaries

10

BitBlaze Binary Analysis Infrastructure

The first infrastructure:
Novel fusion of static, dynamic, formal analysis methods

* Loop extended symbolic execution
« Grammar-aware symbolic execution

Identify & cater common needs for security applications
Whole system analysis (including OS kernel)

Analyzing packed/encrypted/obfuscated code

Vine: TEMU: Rudder:
Static Analysis Dynamic Analysis Mixed Execution
Component Component Component

BitBlaze Binary Analysis Infrastructure

ze: Security Solutions via Program Binary Ang
Unified platform to accurately analyze security
properties of binaries
Security evaluation & audit of third-party

code

Jleienseagain%mkgjg thlggatst_
' : : issecting
Vu?ngegr%a%: Etg%%eper Ehenysis of mplware

ik M =

_

——

BitBlaze Binary Analysis Infrastructure

12

Extracting CSA from Close-sourced Browsers

IE7, Safari 3.1

String-enhanced symbolic execution on binary programs
Build on top of BitBlaze

Model extractions via program execution space exploration
Model string operations and constraints explicitly

Solve string constraints

|dentify real-world vulnerabilities

13

Symbolic Execution: Path Predicate

GET /
AT TP/ g
Intermediate Path
Executed instructions Representation (IR) predicate
mov (%$esi), %al AL = INPUT][O] A
mov $0x47, %bl BL = ‘G’
cmp %al, %bl ZF = (AL == BL) A
jnz FAIL JMP (FAIL)
mov 1 (%esi), %al AL = INPUT[1]
mov $0x45, %bl BL = ‘E’
cmp %al, %bl ZFF = (AL == BL)

jnz FAIL JMP (FAIL)

14

Model Extraction on Binary Programs

Symbolic execution for execution space exploration
Obtain path predicate using symbolic input
Reverse condition in path predicate

Generate input that traverses new path

lterate

String-enhanced syrgbohc executlon

Mhtml=AvBv

text/ht text/ht text/ht "

IE7/HotCRP Postscript Attack

HotCRP Postcript signature
strncasecmp(DATA, "%!PS-", 5) ==

|IE 7 signatures
application/postscript: strncmp(DATA, "%!", 2) ==
text/html: strcasestr(DATA,"<SCRIPT") 1= 0

Attack
%IPS-Adobe-2.0

%%Creator: <script> ... </script>

16

|IE7/Wikipedia GIF Attack

Wikipedia GIF signature
strncasecmp(DATA,“GIF8”,4) == 0)
|IE 7 signatures

image/gif: (strncasecmp(DATA,“GIF87”,5) == 0) ||
(strncasecmp(DATA,“GIF89”,5) == 0)

text/html: strcasestr(DATA,"<SCRIPT") 1= 0
Fast path: check GIF signature first
Attack

GIF88<script> ... </script>

17

Results: Models & Attacks

Safari 3.1 1558 12.4% 222.6 16.8 sec /166
IE 7 7 948 8.6% 135.4 26.6 sec 64721 212.1
Filter = Unix File tool / PHP _.-
application/postscript 0 »
Flnd InpUtS audio/x-aiff n n
Accepted by filter image/gif : :
Interpreted as text/html _ _
image/tiff = =
Attacks on 7 MIME types .
image/png "
text/xml -

video/mpeg . "

Defenses

. Don’t sniff
Breaks ~1% of HT TP responses
Works in |E + fails in Firefox = Firefox’s problem

. Secure sniffing

.. Avoid privilege escalation

> Prevent Content-Types from obtaining higher
privilege

. Use prefix-disjoint signatures
« No common prefix with text/html

L7

®
°)

(
©

19

Adoption

Full adoption by Google Chrome

Shipped to millions of users in production
Partial adoption by Internet Explorer 8
Partially avoid privilege escalation

Doesn’t upgrade image/* to text/html
Standardized

HTML 5 working group adopts our principles

20

QOutline

WebBlaze Overview
Content sniffing XSS attacks & defense

New class of vulnerabilities: Client-side Validation (CSV)
Vulnerability

Kudzu: JavaScript Symbolic Execution Framework for in-depth
crawling & vulnerability scanning of rich web applications

Conclusions

21

Large, complex Ajax applications
Rich cross-domain interaction

Rich Web Applications

GM ail Gmgle maps Google docs

(G w:tu'fh,

C\WN.com Live v

T o | 0 i ﬂ-.rt.!n-u-
E‘mml o Skgn Uy for Facebook to m
facebook discuss this histork inauguration i

o s Ptk b bk el v bl o e il
niwﬂunﬂm'wcﬂ-h..mmuuﬂ'-ﬂm -

[/ P ————— m
e s
n O o p— n
e

I i Wit ling

Sl Anforin Salgado i i by B sxtitsment
n TS
Pl et | sl com

’ | Aaron By § wichirg hivkry hippn

[N Jiini K i i Bssers gl 10 B shiaring
i moren] =1 R Oourdy Bl e i el

b — q & Py
The Presidential inauguration
Barick (R i) o e g 4t prwsient of P Linied Slles This b & sample of what everyene watchisg 5 Lo

i= Friend |

Search

design
Alexandr
Chad Littl

Drew Han

Julie Zhu
Kate Aro
Man Gao

Soleio

Jabber List

¥ design

@ Alexandre Roche
@ Chad Little

@ Drew Hamlin

& Julie Zhuo 1dle

@ Kate Aronowitz Icle
o Man Gao 1dle

™ Soleio 1dle

22

Client-side Validation(CSV) Vulnerabilities

* Most previous security analysis focuses on server side
* A new class of input validation vulnerabilities

* Analogous to server-side bugs

— Unsafe data usage in the client-side JS code

— Different forms of data flow

— Purely client-side, data never sent to server

— Returned from server, then used in client-side code

23

Vulnerabllity Example (I):
Code Injection

Code/data mixing Receiver
Dynamic code evaluation
eval

DOM methods

Eval also deserializes objects
JSON

Data: “alert(‘Owned’);”

24

Vulnerability Example (l1):

Application Command Injection
Application-specific commands

Example: Chat application

<7

“..=nba&cmd=addbuddy&user=e‘iI”

injected Command

Y

http://chat.20m?cmd=joinroom&room=nba

&cmd=addbuddy&user=evil

>

http://chat.com?cmd:joinroom&roo ‘

Application
Server

R)

Vulnerability Example (l11):
Origin Misattribution

Cross-domain Communication
Example: HTML 5 postMessage

Sender Receiver

facebook.com chn.com

postMessage
<

Origin: www.facebook.com

4—‘:E Data: “Chatuser: Joe, Msg: Hi”

Origih: www.evil.com
Data: “Chatuser: Joe, Msg: onlinepharmacy.com”

26

http://www.facebook.com/
file:///home/noah/Desktop/jj

Vulnerability Example (IV):
Cookie Sink Vulnerabilities

Cookies
Store session ids, user’s history and preferences

Have their own control format, using attributes
Can be read/written in JavaScript

Attacks

Session fixation

History and preference data manipulation
Cookie attribute manipulation, changes

27

QOutline

WebBlaze Overview
Content sniffing XSS attacks & defense

New class of vulnerabilities: Client-side Validation (CSV)
Vulnerability

Kudzu: JavaScript Symbolic Execution Framework for in-depth
crawling & vulnerability scanning of rich web applications

Conclusions

28

Motivation

AJAX applications

Increasingly complex, large execution space

Lots of bugs, few techniques for systematic discovery

Current web vulnerability scanners cannot handle rich web apps

Need tools for automatic in-depth exploration of rich web apps

Lots of potential applications
Testing, Vulnerability Diagnosis, Input Validation Sufficiency Checking

29

The Approach

JavaScript Execution Space Exploration
Challenges
Large input space (User, HT TP, Cross-window input)
String-heavy
« (Custom Parsing and validation checks, inter-mixed

« (Contrast to PHP code, say, which has pre-parsed input
GUI exploration

Application: Finding DOM-based XSS
DOM XSS: Untrusted data evaluated as code(eval, doc.write,..)
Challenge #1: Explore execution space

Challenge #2: Determine if data sufficiently sanitized/validated
30

Kudzu: Overview

Program input space (web apps) has 2 parts

Event Space

Value Space

GUI exploration for event space

Dynamic symbolic execution of JavaScript for value space

Mark inputs symbolic, symbolically execute JS
Extract path constraints, as a formula F
Revert certain branch constraints in F

Solve Constraints

Feed the new input back

31

Kudzu: Path Exploration System

<

New Input
Feedback

Event Recorder

Value Recorder

WEB BROWSER

Values

NEW IN

INPUT POOL

(PUT

X = INPUT[4]

Y = SubStr(X,0,4)
Z = (Y=="http”)

PC = IF (2) THEN

(T) ELSE (NEXT)
JASIL
JASIL EXECUTION
CONVERTER TRACE

SYMBOLIC
EXECUTION
UNIT

STRING
SOLVER

PATH CONS
EXTRACTOR

32

Kaluza: New String Constraint

Solver
charAt charCodeAt concat indexOf lastindexOf ~ match replace split
substr toString test length Enc/decodeURI escape parselnt search

JAVASCRIPT STRING FUNCTIONS

Symbolic Execution + GUI Exploration:

New Code Executed

12

10

Symbolic Execution + GUI
Exploration: New Code

CAnmnilad/Die~rnviaran

12

10

35

Symbolic Execution + GUI

Exploration

~ Nlaw Die~rnviarad Rranrhoe
12

10

11 Vulnerabillities found out of 18 apps

!l]
Academia

AJAXim

Facebook

Plaxo

ParseURI
AskAWord
BlockNotes
Birthday Reminder
Calorie Watcher

Listy

NotesLP
SimpleCalculator
Progress Bar
ToDo

TVGuide
WordMonkey

1
1
0
1
’
1
’
0
0
Expenses Manager 0
1
0
1
0
’
’
’
ZipCodeGas 0

Conclusion

WebBlaze: new technologies for web security
Does the browser correctly enforce desired security policy?

Is third-party content such as malicious ads securely
sandboxed?

Do browsers & servers have consistent interpretations/views
to enforce security properties?

Do applications have security vulnerabilities?

Do different web protocols interact securely?

38

bitblaze.cs.berkeley.edu
webblaze.cs.berkeley.edu

dawnsong@cs.berkeley.edu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

