
Binary Analysis for Botnet
Reverse Engineering &

Defense
Dawn Song

UC Berkeley

Plans

Building on BitBlaze to develop new
techniques

Automatic Reverse Engineering of C&C
protocols of botnets

Automatic rewriting of botnet traffic to
facilitate botnet infiltration

Vulnerability discovery of botnet

Preliminary Work

Dispatcher: Enabling Active Botnet
Infiltration using Automatic Protocol
Reverse-Engineering

Binary code extraction and interface
identification for botnet traffic rewriting

Botnet analysis for vulnerability discovery

Dispatcher: Enabling
Active Botnet Infiltration
using Automatic Protocol

Reverse-Engineering
Juan Caballero

Pongsin Poosankam

Christian Kreibich

Dawn Song

Automatic Protocol Reverse-
Engineering

Process of extracting the application-level
protocol used by a program, without the
specification

Automatic process

Many undocumented protocols (C&C, Skype, Yahoo)

Encompasses extracting:

1. the Protocol Grammar

2. the Protocol State Machine

Message format extraction is prerequisite

Challenges for Active Botnet
Infiltration

2. Access to one side of dialog
only

1. Understand both sides of C&C protocol
– Message structure
– Field semantics

3. Handle encryption/obfuscation

• Goal: Rewrite C&C messages on either
dialog side

Technical Contributions

1. Buffer deconstruction, a technique
to extract the format of sent
messages

Ø Earlier work only handles received messages

2. Field semantics inference
techniques, for messages sent and
received

3. Designing and developing
Dispatcher

4. Extending a technique to handle
encryption

5. Rewriting a botnet dialog using
information extracted by Dispatcher

Message Format Extraction

Extract format of a single message

Required by Grammar and State
Machine extractionGET /

HTTP/1.1

HTTP/1.1 200
OK

[Polygl
ot]

[Dispatc
her]

Message Field Tree

Field Range: [3:3]
Field Boundary: Fixed
Field Semantics:
Delimiter
Field Keywords:
<none>
Target: Version

HTTP/1.1 200
OK\r\n\r\n

MSG
[0:18]

Status Line[0:16]

Version
[0:7]

Delimiter
[8:8]

StatusCode
[9:11] Delimiter

[12:12]
Reason
[13:14]

Delimiter
[15:16]

Delimiter[17:18]

Message format extraction has 2
steps:

1. Extract tree structure
2. Extract field attributes

Sent vs. Received

Both protocol directions from single
binary

Different problems

Taint information harder to leverage

Focus on how message is constructed,
not processed

Different techniques needed:

Tree structure Buffer Deconstruction
Field attributes New heuristics

Outline

Introduction

Problem

Techniques
Buffer Deconstruction

Evaluation

Field Semantics Inference

Handling encryption

Buffer Deconstruction

Intuition

Programs keep fields in separate
memory buffers

Combine those buffers to construct
sent message

Output buffer

Holds message when “send” function
invoked

Or holds unencrypted message before
encryption

Recursive process

Decompose a buffer into buffers used
to fill it

Starts with output buffer

Stops when there’s nothing to recurse

Buffer Deconstruction

Message field tree = inverse of output buffer
structure

Output is structure of message field tree

No field attributes, except range

Output Buffer (19)

A(17)

G(2
)

D(1
)

E(
3)

F(1
)C(8) H(2

)
[0:18]

[0:16
] [17:18]

[0:7
]

[8:8
]

[9:11
]

[12:12
]

[13:14
]

[15:16
]

MSG

Delimit
er

Status Line

Reaso
n

Statu
s

Code

Delimit
er

Versio
n

B(2)

Delimit
er

Delimit
er

HTTP/1.1 200
OK\r\n\r\n

Field Attributes Inference

Attributes capture extra information

E.g., inter-field relationships

Attribute Value

Field Range [StartOffset : EndOffset]

Field
Boundary

Fixed, Length, Delimiter

Field
Semantics

IP address, Timestamp,
…

Field
Keywords

<list of keyworkds in
field>

• Techniques
identify

– Keywords
– Length fields
– Delimiters
– Variable-length

field
– Arrays

Field Semantics

Field Semantics
Cookies Keyboard input

Error codes Keywords

File data Length

File information Padding

Filenames Ports

Hash /
Checksum

Registry data

Hostnames Sleep timers

Host information Stored data

IP addresses Timestamps

A field attribute in the message field
tree

Captures the type of data in the field• Programs contain much
semantic info
leverage it!

• Semantics in well-
defined functions and
instructions
– Prototype

• Similar to type
inference

• Differs for received and
sent messages

Field Semantic Inference

GET /index.html
HTTP/1.1

struct stat {
 …
 off_t st_size; /* total size in
bytes */
 …
}

int stat(const char*path, struct
stat *buf);

OU
T

OU
T

IN

HTTP/1.1 200 OK
Content-Length: 25

<html>Hello world!
</html>

File
path

File
length

stat(“index.html”,
&file_info);

Detecting Encoding
Functions

Encoding functions = (de)compression,
(de)(en)cryption, (de)obfuscation…

High ratio of arithmetic & bitwise
instructions

Use read/write set to identify buffers

Work-in-progress on extracting and
reusing encoding functions

MegaD C&C protocol

type
MegaD_Messa
ge = record {

 msg_len :
uint16;

encrypted_pay
load:

 bytestring
&length =
8*msg_len;

} &byteorder =
bigendian;

type
encrypted_pay
load = record
{

 version :
uint16;

 mtype :
uint16;

 data :
MegaD_data
(mtype);

};

type
MegaD_data
(msg_type:
uint16) =

 case msg_type
of {

 0x00 ->
m00 : msg_0;

 […]
 default ->

unknown :
bytestring
&restofdata;

};

• C&C on tcp/443
using proprietary
encryption

• Use Dispatcher’s
output to generate
grammar
– 15 different

messages seen (7
recv, 8 sent)

– 11 field semantics

C&C Server

Cmd?EHL
O

MegaD Dialog

Test

SMT
P

Failed

SMTP Test
Server

Template ServerC&C Server

EHL
OCmd?Failed

MegaD Rewriting

Test

SMT
P

Get

Tem
plate

Tem
plate

?

Gramma

r

Succe
ss

SMTP Test
Server

Summary

Buffer deconstruction, a technique to
extract the format of sent messages

Field semantics inference techniques,
for messages sent and received

Designed and developed Dispatcher

Extended technique to handle
encryption

Rewrote MegaD dialog using
information extracted by Dispatcher

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

