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Abstract

We propose an efficient automatic checking algorithm,
Athena, for analyzing security protocols. Athena incorpo-
rates a logic that can express security properties includ-
ing authentication, secrecy and properties related to elec-
tronic commerce. We have developed an automatic proce-
dure for evaluating well-formed formulae in this logic. For
a well-formed formula, if the evaluation procedure termi-
nates, it will generate a counterexample if the formula is
false, or provide a proof if the formula is true. Even when
the procedure does not terminate when we allow any arbi-
trary configurations of the protocol execution, (for example,
any number of initiators and responders), termination could
be forced by bounding the number of concurrent protocol
runs and the length of messages, as is done in most existing
model checkers.

Athena also exploits several state space reduction tech-
niques. It is based on an extension of the recently proposed
Strand Space Model [25] which captures exact causal rela-
tion information. Together with backward search and other
techniques, Athena naturally avoids the state space explo-
sion problem commonly caused by asynchronous composi-
tion and symmetry redundancy. Athena also has the ad-
vantage that it can easily incorporate results from theorem
proving through unreachability theorems. By using the un-
reachability theorems, it can prune the state space at an
early stage, hence, reduce the state space explored and in-
crease the likely-hood of termination. As shown in our ex-
periments, these techniques dramatically reduce the state
space that needs to be explored.
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1. Introduction

A security protocol is a communication protocol that
uses cryptography to achieve goals such as authentication
and key distribution. Because of the subtlety of security
protocols, experience has shown that the protocols can be
flawed even when designed carefully. Thus, it is necessary
to develop rigorous ways to analyze these protocols.

Many researchers have worked on applying formal tech-
niques to the analysis of security protocols. They have
developed logics of knowledge and belief such as BAN
logic [2] and GNY logic [7]; semi-automatic and fully au-
tomatic tools such as the NRL Analyzer [14], the Interroga-
tor Model [16], FDR [12], Mur � [17], Brutus [5], and Re-
vere [9]; and theorem provers such as Isabelle [19]. Au-
tomatic checkers have the practical advantage that they are
easy to use and do not need the assistance of experienced
users. Unfortunately, current automatic checkers suffer
from the state space explosion problem, mainly due to asyn-
chronous composition and symmetry redundancy. Most au-
tomatic checkers are also limited to checking the properties
of a security protocol under certain configurations of the
protocol execution, e.g. with two initiators and two respon-
ders.

Thayer, Herzog and Guttman recently proposed the
Strand Space Model (SSM) and demonstrated how to use
SSM to prove certain security properties manually, for ex-
ample authentication and secrecy [25]. SSM has the advan-
tage that it contains the exact causal relation information
which makes proofs concise. Inspired by their work, we
have developed a new algorithm, Athena, for analyzing se-
curity protocols automatically.

We have designed a logic based on SSM that can ex-
press formally various security properties including authen-
tication, secrecy and properties related to electronic com-
merce. We have also developed an automatic procedure for
evaluating well-formed formulae in this logic. We provide



a way of formally reduce the infinite-state-space problem
into a finite-state-space problem which can be verified us-
ing model checking. Hence, for a well-formed formula, if
the evaluation procedure terminates, then it will generate a
counterexample if the formula is false, or provide a proof
if the formula is true. Although the evaluation procedure is
not guaranteed to terminate, experience shows that it does
terminate for many useful protocols. In those cases when
the procedure does not terminate for arbitrary configura-
tions of the protocol execution, termination can always be
forced by bounding the number of concurrent protocol runs
and the length of messages. This is similar to the bounds in
current model checkers such as FDR, Mur � and Brutus.

Athena also exploits several state space reduction tech-
niques. First, the state transition is not asynchronously
composed of independent process transitions, hence, avoid
the state space explosion caused by asynchronous composi-
tion. Second, the state structures and state transitions cap-
ture exact causal relations, hence, achieve compact and ef-
ficient state representations. Third, Athena takes advantage
of symbolic state transitions instead of explicit state search,
by allowing a state to contain free variables. A state � ������
with free term variables,

�� , represents a class of variable-
free states, �	� �
�� ��� � �������� , where

�
 is a substitution of term
values. A state transition between two states which contain
free variables represents a set of state transitions between
two variable-free states. Thus, Athena can represent states
and state transitions much more efficiently. As a special
case of this, it naturally avoids the symmetry redundancy
problem. Finally, Athena uses backward search instead of
forward search. With forward search, all the participating
principals have to be pre-stated. Our approach starts with
a simple initial strand and then add new strands only when
necessary according to exact causal relations. As demon-
strated in our experiments, these techniques greatly reduce
the state space that needs to be explored comparing with
other current approaches.

Athena also has the advantage that it can easily incor-
porate results from theorem proving through unreachability
theorems. By using the unreachability theorems, we can
prune the state space at an early stage, hence, reduce the
state space explored even further and increase the likely-
hood of termination.

The paper is organized as follows. We first review some
basic notions and properties of strand spaces (section 2).
We then introduce a logic to reason about strand spaces and
show how to use this logic to specify security properties
(section 3), and explain the automatic evaluation procedure
(section 4). Next, we discuss the advantages of our ap-
proach and compare it with other approaches (section 5).
Finally, we conclude in section 6. Proof sketches of most
propositions in this paper are omitted and can be found
in [23].

2. Background

This section is a review of concepts developed by
Thayer, Herzog and Guttman [25]. First, we explain the no-
tion of terms that are used to represent the messages in the
protocols. Then, we explain the notion of strands, strand
spaces and bundles, and show how to represent protocols
using strands. Finally, we give the formal description of the
penetrator model.

2.1. Message Terms

The set of atomic terms is the union of a set of “Text”
terms T and a set of “Key” terms K, where
� Text terms T contain several different types of terms,

such as Principal-names, Nonces, or Bank-account-
number.

� Key terms K contains a set of keys disjoint from T. In
asymmetric crypto systems, ����� represents K’s oppo-
site member in a public-private key pair. In a symmet-
ric key system, ��������� .

The set of terms
��� � is defined inductively as follows:

� If m is a Text term or a Key term, then m is a term.

� If m is a term, k is a Key term, then ��� ��� is a term.
(This represents encryption.)

� If � � and �! are terms, then � �#" �! is a term. (This
represents concatenation.)

We use the free encryption assumption, where

��� ��� �$�%�'& �(�%)+* �,���-&	.0/1��/�&32
Thayer, Herzog and Guttman defined the subterm rela-

tion 4 : a term 5 � is a subterm of term 56 if 5 � appears in 5� ;
We define the interm relation 7 , such that 5 � is a interm of
5� if 5 � can be extracted from 56 without the application of
the decryption operation. The formal definition of the two
relations are as follows.

� subterm relation 4
– 5-498 for 8;:=< iff 51�>8 ;
– 5-4?/ for /-:@� iff 5A�B/ ;

– 5-4��DC ��� iff 5-4>CFE=51�G�DC ��� ;
– 5-49C "�H iff 5-49CFE05-4 H EI51�JC "�H .

� interm relation 7
– 5-798 for 8;:=< iff 51�>8 ;
– 5-7?/ for /-:@� iff 5A�B/ ;

– 5-7��DC � � iff 51�K�LC � � ;
– 5-79C "�H iff 5-79CFE05-7 H .
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2.2. SSM : Strands, Strand spaces and Bundles

The notions in this subsection are mainly from the pa-
per [25]. We extend them slightly to make them applicable
to electronic commerce protocols.

Actions. The set of actions Act that principals can take
during an execution of a protocol include extermal actions
such as send and receive, and user-defined internal actions
such as debit, credit, etc.. In the rest of the paper, we will
only use send and receive for simplicity.

Events. An event is a pair � action, argu � , where action
is in Act, and argu is in

� � � and is the argument of the ac-
tion. For simplicity, we denote � send, a � and � receive, a �
respectively as signed terms ��� 5�� and ��� 5�� . We represent
the set of finite sequences of signed terms as

��� � �
	 .
Strands and Strand Spaces. A protocol defines the se-

quence of events for each role of the participant. A strand
represents a sequence of actions of an instance of a role.

A strand space is a set � with a trace mapping tr: ����� � ��	 .
1. A node is a pair � ������� , with �>:�� and i an integer

satisfying ������� length(tr(s)). We say �J���3���
���
belongs to the strand s, denoted as � :,� . Clearly,
every node belongs to a unique strand. The set of nodes
is denoted by � .

2. If �=���3���
���;:�� , then index
� � � � � and strand

� � � �
� . If

� 8�! � � � �#" �$� 
 5�� , where 
 is one of the symbols
�%�&� , then term

� � � �G5 .
3. If � � �
�  :'� , then � � �(�  means that term

� � � � �� 5 and term
� �  � �)� 5 . This represents that � � sends

a message a and �  receives the message.

4. If � � ���  :�� , then � �+* �  means that � � �
�  occur
in the same strand with index

� �� � � index
� � � � ��� .

This represents an event � � followed immediately by
�  in the same strand.

5. A term t originates from a node � :,� iff sign(n) � � ;
t 4 term(n); and whenever � & precedes n on the same
strand, t -4 term( � & ).

6. A term t uniquely-originates from node n iff t origi-
nates on a unique �G:.� . Nonces and other freshly
generated terms are usually uniquely-originated.

We will also use � to refer to the directed graph
� ���
/ �

whose vertices are nodes and / � � �10 * � is the set of
edges that combines both types of relations � � �2�  and
� � * �  .

Bundles. A bundle represents the protocol execution un-
der some configuration.

A bundle 3$� � �546��/ � is a subgraph of � , where /87� �90 * � is the set of the edges and �:487�� is the set

of nodes incident with the edges in / , and the following
properties hold:

� C is non-empty and finite;

� If � � :;3 and sign
� � � � �)� , then there is a unique �  

such that �  �<� � :;3 ;

� If � � :,3 and �  * � � , then �  * � � :,3 ;

� C is acyclic.

We say a strand � :;3 if for every node � : � , �0:,3 .
Causal Precedence. Let S be a strand space, nodes

� � , �  : S. Define � �>=>? �  iff there is a sequence of zero
or more edges of type � and * leading from � � to �  in S.
The relation =>? expresses a causal precedence.

Lemma 2.1. Suppose C is a bundle, then = 4 is a partial
order, i.e. a reflexive, antisymmetric, transitive relation. Ev-
ery non-empty subset of the nodes in 3 has = 4 -minimal
members.

The proof of this lemma can be found in [25].

2.3. Protocol specification using strands

A protocol usually contains several roles, such as initia-
tors, responders and servers. The sequence of actions of
each role is predefined by the protocol with a list of pa-
rameters, such as principal names and nonces. This can be
specified as a trace type, denoted as role[parameter list]. A
binding of the role and the parameter list gives an instance-
trace of the role. A legal execution of a protocol forms a
bundle, in which the strands of the legitimate principals are
restricted to the predefined trace types, role[parameter list].
The strands of the legitimate principals are referred to as
regular strands. The bundle also contains strands which are
mapped to penetrator traces. These strands are referred to as
penetrator strands. We explain them in more details in the
next subsection. We now give an example of the Needham-
Schroeder protocol [18] with the fix given by Gavin Lowe
in [12]. We will refer to this protocol as NSL in the rest
of the paper. Using the standard notation, the protocol is
defined as follows:

1.
� �<@8A��B�5C "

� �EDGF
2. @� � A��B� C " ��H " @ � DGI
3.
� �<@8A��B��H � D F

There are two roles in this protocol: initiator and respon-
der. The strands of the two roles are the following :
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��������� 	�
��
�����
������ �������� 	�
��
�����
������
����� "! ���$#%	�&('*)�+ �"���-,�! ���$#.	�&/'0)�+1112

111234���-,�! �5�$#6�5�7#%��&/'089+ 35��� "! ���$#(���:#(�5&('*89+1112
1112;���� "! � � & ' )�+ ;����-,�! � � & ' )�+

where the parameter list contains A and B as principal
names, � C and ��H as nonces. � C uniquely-originates on
the first node of the initiator’s strand <�� � 8(� � ��@ ��� C �
��H  .
��H uniquely-originates on the second node of the respon-
der’s strand =?>��A@�� � �
@ �
� C ��� H  . A responder’s strand with
the binding of � �CB �
@ B ��� C B �
��H B  is the following :

���6�D�E� 	"F/
��$F(
��5��F/
�����FA�
� "! �5��FG#%	HF%&('*)DI%+1112�-,�! ���AFG#%����FJ#%�JF%&/' 8 I +1112� "! � ��F & ' )DIK+

2.4. The Penetrator Model

We use the same penetrator model as the one in [25].
The penetrator P has a set of initial knowledge init-info(P)
which usually contains the principal names and the keys that
are known initially to the penetrator, denoted as �ML . ��L
usually contains all the public keys, all the private keys of
the penetrator, and all the symmetric keys � L/N , � N.L ini-
tially shared between the penetrator and principals playing
by the protocol rules. It can also contain some keys to model
known-key attacks.

A penetrator can intercept messages, generate messages
that are computable from its initial knowledge and the mes-
sages it intercepts. These actions are modeled by a set of
penetrator strands.

A penetrator strand is one of the following, where g and
h are terms:

� M[t]. Atomic message: � +t � where t : init-info(P) and
t : T.

� F[g]. Flushing: ���;C � .
� T[g]. Tee: ���;C �
� C �
��C � .
� C[g,h]. Concatenation: ���#C �&� H ��� C "�H � .
� R[g,h]. Separation into components: ���;C " H �
� C �
� H � .

� K[k]. Key: ��� / � where /!:@�CL .

� E[k,h]. Encryption: ��� / �&� H ��� � H � � � .
� D[k,h]. Decryption: ��� / ���B� �F� H ��� �
� H � .
The different types of the penetrator traces are called

penetrator roles, which ranges over � M,F,T,C,S,K,E,D � .
It is also possible to extend the set of penetrator traces to
model some special ability of the penetrator if needed.

3. The Logic

We first introduce a logic to reason about strand spaces
and bundles. Then we show how to use this logic for formal
specification of various security properties.

3.1. Syntax

The syntax of the terms consists of node constants
( � �
� � ��2(2�2 ), strand constants ( ����� � �(2�2�2 ), bundle constant
( OB��O � �(2�2(2 ), and bundle variable ( 35�
3 � ��2(2�2 ).

Propositional formulas are defined as follows:

� � : � , � :PO , � :83 , �>:QO , �>: 3 are (atomic)
propositional formulas;

�SRJT � and T � . T  are propositional formulas if T � andT  are propositional formulas.

Finally, well-formed formulas (wffs) are:

�ST , RJU � , U � . U  ;
�WV 3 2 T , where T is a propositional formula, which

doesn’t contain any other free variable than 3 ;

where T is a propositional formula, U � and U  are wffs, and
3 is a bundle variable.

Notice, that in a wff V 3 2 T , T needs to be a propositional
formula and cannot contain any other variables than 3 . We
also use the obvious abbreviations:

T � E T  YX R � RJT � . RJT  � T � * T  ZX R$T � E T  T � *[T  YX T �+* T  . T  * T �
\ 3 2 T X R�V 3 2 RJT

3.2. Semantics

Let the set of nodes be ] . For a given protocol, the
set of the regular strands and the penetrator strands is ^ L ;
the execution traces of a protocol p form a set of bundles,
denoted as _5L . Thus, for a given protocol p, the model M is
a pair ( �%] , ^`L , _4L � , a ), where a is the interpretation. The
semantics of the logic is given as follows :

� a � � � �ba � � � �-a � O � are a node, a strand and a bundle in
] �A^`L �c_�L respectively.
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����� � � :�� iff a � � � : a � � � . We can similarly define��� � �0: OB� ��� � � : O as well.

� If f is a propositional formula or a wff, then ��� � RJT
iff � -� � T .

� If T � and T  are propositional formulas or wffs, then��� � T � . T  iff ��� � T � and ��� � T  .
����� � V 3 2 T iff ��� � � 3 � O B �T for any bundle O B in the

model.

3.3. Specifying security properties in the logic

Our logic can specify a variety of security properties in-
cluding electronic commerce properties. However, here we
mainly focus on the authentication and secrecy properties.
The properties are presented in a similar way as in the pa-
per [25] except that we formalize the properties into the wffs
in our logic.

Authentication

Gavin Lowe [13] proposed agreement properties for authen-
tication protocols. A protocol guarantees a participant B
(say, as the responder) agreement for certain binding

�� if
each time a principal B completes a run of the protocol as a
responder using

�� , supposedly with A, then there is a unique
run of the protocol with the principal A as initiator using

�� ,
supposedly with B.

A weaker non-injective agreement does not ensure
uniqueness, but requires only each time a principal B com-
pletes a run of the protocol as responder using

�� , suppos-
edly with A, then there exists a run of the protocol with the
principal A as initiator using

�� , supposedly with B.
The non-injective agreement property can be specified

using the logic as:

V 3 2��
	��� ����+� :,3$� *��������
������ :,35�

where �
	��� ������ and �������
������ are the responder and the initia-

tor strand with binding
�� . For example, in the NSL protocol,

the non-injective agreement property can be specified as

V 3 2��
	��� � � �
@ ��� C ����H  :,3G� *�������� �
� �
@ ��� C ����H  :,3 .

Because of the freshness of the nonces generated in the pro-
tocol run, usually the agreement property can be proved af-
ter the non-injective agreement property is proved, with the
argument that there can’t be two strands �������

������ :,3 since
the nonces in �������

������ are uniquely originated from only one
strand, i.e. in NSL protocol, �:C is uniquely-originated in
the strand ������� �

� �
@ �
� C��
� H  .

Secrecy

A value v is secret in a strand space S if, for every bundle C
that contains S, there does not exist a node �@:,3 such that
term

� � � ��� . For example, when S is a responder strand,
we can specify the secrecy property as :

R \ 3 2 � �
	��� ������ :;3J. ����� 	
� � � � :,3 �

4. The Model Checking Algorithm

This section introduces a model checking algorithm for
wffs. We focus on the most interesting case: how to evaluate
a wff of the form V 3 2 T .

Lemma 4.1. If ! is an algorithm that decides the validity
of any wff of the form V 3 2 T �5* T  in a model M in finite
steps, where T � is a conjunction and T  is a disjunction of
the atomic propositions, then there exists an algorithm to
evaluate any formula of the form V 3 2 U in the model M in
finite steps, for any propositional formula U .

The proof sketch of this lemma can be found in the ap-
pendix.

Hence, it is sufficient to just explain the procedure ! .
Due to the space limit, we only show the procedure ! for
two cases:

" � � V 3 2 � � :;3 * �� :,3 , and"  �� \ 3 2 � � :�35�
where � � is a strand constant, �  is a regular strand constant.
These cases can be used for evaluating agreement properties
and secrecy properties as mentioned in section 3. The other
cases are simple extensions from them.

In the following subsections, we first introduce the no-
tions and state structures used in the model checking algo-
rithm. We then explain formally how we can reduce a prob-
lem in an infinite space to a problem of model checking
which is restricted to a finite state space. We then describe
in more details the model checking algorithm, in particu-
lar the next state transition function. We will also point out
various techniques we exploit for state space reduction. Fi-
nally, we explain how we can use unreachability theorems
to further reduce state space explored.

4.1. Goals and Goal-bindings

Intuition: We start with a strand space graph which only
contains � � , and then try all possibilities of adding nodes
and strands to complete a bundle (an exhaustive search). To
complete a bundle, the graph needs to be backward closed
under * and � , and acyclic. To make the graph backward
closed under � , it means that any term that is received by
a node must have been sent by another node in the same

5



graph. Thus, we introduce a notion of a goal to represent
the received terms, and a notion of a goal-binding to repre-
sent that a goal term is first sent by a node. We apply uni-
fication to search for all possible goal-bindings. When all
goals are bound, all received terms are connected to their
first senders. Hence, the graph will be backward closed un-
der � . For any node in the graph, we add all the nodes,
that precede it in the same strand, to the graph. Thus, the
graph is backward closed under * . Simple cycle-detection
can check whether a graph is acyclic.

Goals. A goal is a pair
� 8E�
� � , where � ��� �

� � � �8� , 8 7� 	���� � � � and 8 is not a concatenation of other two terms.
The goal-set of a bundle 3 is the set of all the goals in 3 ,
denoted as � � 3 � .

Goal Binding. Suppose that 3 is a bundle, then a goal� 8E�
� � is bound to node � & if � & is a = 4 -minimal member of
the set
� �$�%� :,3 � 8;7 � 	����

� � � , � ��� �
� � � � � , and � = � � 2

We say that
� � 8E�
� � �
� & � is the goal binding for

� 8E�
� � and

denote it as � &
	
 � . The node � & is called a binder of (t,n).

We will also write � & 
 � to denote � &
	
 � for some 8 , or,

formally, 
 ��� 	���
	
 2

Proposition 4.2. Let C be a bundle. For any goal
� 8E��� � :

� � 3 � , there exists a node � & : 3 where the goal
� 8E�
� � is

bound.

Proof sketch. Since sign(n) � � , and �$:3 , there must
exist a node � & & , where � & & �)��� � 	���� � � � � and � & & :�3 . So
8#7 � 	���� � � & & � . Therefore, the set

�
is not empty, where

� �$�%�,:�3 � 8;7 � 	���� � � � and � ��� �
� � � � � and � = � � 2

As shown in Lemma 2.1,
�

has at least a = 4 -minimal mem-
ber � & . Hence,

� 8E��� � can be bound to � & .
A bundle contains the information about the sequence of

actions of each principal (“ * ”) and the information about
who sends messages to whom (“ � ”). Because the pene-
trator can always intercept a message from a principal and
forward it to another principal, the information about who
sends messages to whom (“ � ”) is not important any more.
Given a received term, it is not important who sends it but
rather who sends it first. Therefore, only the goal-binding
information (“ 
 ”) is necessary. This is the intuition why
we introduce the relation “ 
 ”. In the state structure, we do
not keep the information about the relation “ � ” but only
the goal-binding relation “ 
 ”.

4.2. State Structures

Semi-bundles. A semi-bundle H �
� ��� ��/�� � is a sub-

graph of � , where / � 7 * is the set of edges, � � is the

set of nodes incident to the edges in / � , and the following
properties hold:

� � � is non-empty and finite;

� If � � :,� � and �  * � � , then �  * � � :,/ � ;

� H is acyclic.

Notice that the notion of a semi-bundle differs from the
notion of a bundle in the aspect that a semi-bundle is back-
ward closed under * , and not necessarily backward closed
under � .

States. A state is a tuple ��� ��� � 
 ����� , where

� � is a semi-bundle containing strands of the principals;

� � is the set of unbound goals of � ;

� 
 is the relation for the goal-bindings;

� �G� � 
 0 * ��	 — a reflexive and transitive closure
of 
 and * together.

In other words, � � � �  iff there exists a sequence of
nodes �B� &" � �"�� � , such that � � �8� & � , �  1� � &� , and for
any �;: � ����/ � �  , � &" * � &"�� � or � &" 
 � &"�� � . Hence,
the relation � is a partial order on the nodes in � .

Mathematically, � and � can be computed from � and 
 ,
but we keep them in the state structure for efficiency rea-
sons.

If �F������������� � 
 � ����� � is a state and O is a bundle, we
say � : O iff � � : O .
Proposition 4.3. If � is empty in a state ��� ��� � 
 ����� , then
there exists a bundle 3 such that � : 3 , and � and 3
contain the same strands except that 3 might contain some
more penetrator strands of type = or < than � .

4.3. The Model Checking Algorithm

Bundle Sets. We define the bundle set of a state l to be
the set of bundles that contain l, denoted as ! � � � � � O A"$#
���&% 	 � � : O � .
Next State Transition. If l is a state, the next state tran-

sition, '�A � �)( � 	>� a set of states, is a function which maps
l to the set of its next states, denoted as * & �+' � � � .

We say ' is complete-inclusive if for any state � it satis-
fies the following properties :

1. * & is finite.

2. ! � * & � ��! � � � , where ! � * & � ��� � ) -, ) ! � � & � .
Unreachable states. If ' � � � is empty for a state � , we

say that � is unreachable. This means that there is not any
bundle containing � , usually because � contains unsolvable
goals.
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As was mentioned earlier, we focus on explaining the
algorithm for evaluating two simple wffs:

" � � V 3 2 � � :�3 * �� :�3 , and
"  � \ 3 2 � � :�3 �

where � � is a strand constant, �  is a regular strand constant.
The initial step of the model checking algorithm is to com-
pute the initial state � B ���� B ��� B � 
 B ��� B � , where � B is the
semi-bundle which only contains � � , �

B
is the goal set of

� B , the relation 
 B
is empty, and � B is the corresponding

partial order on � B . From the definition of ! � � B � , we can
derive:

V 3 2 � � :;3 * �  :,3 * V O : ! � � B � 2 �  : O%2 (4.1)\ 3 2 � � :,3 *
\ O%2 O : ! � � B � 2 (4.2)

The main procedure is a reachability analysis with a given
next state transition ' . We will explain the next state tran-
sition ' in the next subsection. searchI is the procedure for
evaluating the formula " � , and searchII for "  . We give the
pseudo code for searchI as follows. searchII is similar to
searchI, and the pseudo code can be found in [23].

proc searchI(initialState)
!

L =
!
initialState

&
;

while
��� ���G�E��� ���
	�	

do
!

����������/��� ����	
;�  ��� �

;�
� �� � � 	
;

if
� ��� �E��� ��� � 	

then
!

for each
� �  ��� � 
�� � 
�� � 
�� � +� ��� !

if !�"$# �� �
then

!
if
��� �E��� � � �%	

then return false;
else

� �&('(' � � � 
 �
	
;&

&&
&
return true;&

choose(L) is a function which returns an element in the
set L. We always pick a state which contains the least num-
ber of strands in the set L first.

We now give some intuition how we can reduce an
infinite-state-space problem to a problem in a finite state
space. First, from the Equation 4.1, we transform " � into
the equivalent formula, V O : ! � � B � 2 �� : O%2 , where ! � � B � is
the set of bundles which contain � B , as defined before. Then" � is true, if we can find a set of states * , which satisfies the
following property:

�WV � : *�2 �( : � ;
� ! � � B � � ! � * � .

Thus, we reduce the problem in the infinite state space
! � � B � into a finite state space L. The reachability analysis
is a way of searching for L. Once the search procedure ter-
minates, the non-empty leaves of the search tree comprise
the set L. We formalize these arguments into the correctness
theorem below.

Theorem 4.4. Let � B be an initial state, and ' be
a complete-inclusive next state transition function. If
searchI( � B ) terminates and returns true, then the formula" � is true; if it returns false, then " � is false. The same
holds for searchII and "  .
Proof sketch. We only give the proof for searchI on " � . The
proof for searchII on "  can be derived similarly.

1. If searchI( � B ) returns false, then there exists a state
��� ��� � � � 
 � ��� such that G is empty and �  -: � . Ac-
cording to the Proposition 4.3, we can obtain at least
a bundle which contains S and has the same regular
strands as S. Therefore we find the counterexample C,
� � :,3 and �  -:;3 . Hence, " � is false.

2. When searchI( � B ) returns true, the reachability analy-
sis explores a state search tree < . An example of the
state tree is in Figure 1. The root is the initial state
� B . The children of a tree node n is the next states
' � � � . Let * be the set of non-empty leaves of T. If
L is empty, then there is no bundle which contains � � ,
so " � is true. If L is not empty, from the pseudo code
we can see that for any �I: * , �� >: � . So for any
� : ! � * � ���� : � . According to the complete-inclusive
property of the next state transition ' , ! � � B � � ! � * � .
So V �;: ! � � B � 2 �� : � . Finally, according to the Equa-
tion 4.1, we can see that " � is true.

leaf nodes

empty emptyleafleaf

initial

A solid arrow represents the next state transition relation, whereas
the dashed arrow stands for a sequence of next state transition re-
lations.

Figure 1. State Search Tree.
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4.4. The next state transition algorithms

We first give the intuition of the next state function ' .
For a state ������ � � � 
 ��� � , we pick a goal CA� � 8E��� � : �
from the unbound goal set. We then find all possible ways of
binding C to a node. For each way of binding, we construct
a new next state. The value of ' � � � is the set of all such
next states. If there is no possible way of binding C , then
the state � is unreachable and ' � � � returns an empty set.

Now we give a more detailed description of ' . To find
all possible ways of binding a goal C , we use a unification
procedure U. For a goal term t, � � 8 � returns all possible
positions that can bind 8 , and the corresponding most gen-
eral substitutions, denoted as � � � !B�
�  ����� ��� "�� ��� . � !B�
�  denotes
a position, which represents the node of index i in a strand
of role r. Role r can be any regular role or penetrator role.
Each position � !B�
�  can be bound to a strand � & , either an ex-
isting strand in S or a new strand, with the substitution �	� �
� "�� .
Hence, a node � & �)� � & ����� will bind the goal g. For each of
such � & , we construct a new next state � & �)��� & ��� & � 
 & � � & � ,
where 
 & is the same as 
 with the added binding �

	
 � & .
If � & is already in � , then � & is the same as � with the added
� & and its preceding nodes in strand � & , if they are not al-
ready in � & yet. If � & is a new strand, then � & is the same as
� with the added strand � & , which contains all the nodes up
to � & . Then � & and � & can be updated appropriately. If there
is a conflict in updating � & and � & , e.g. there is a cycle in
� & , then � & is an unreachable state and will not be returned
as a next state. The value of ' � � � is the set of all such next
states � & .

Because we only add (and never delete) nodes and
strands in the next state transition, and since the next state
transition covers all possibilities of binding a goal, we can
see that ' is complete-inclusive. The proof sketch can be
found in [23].

Notice that due to the most general substitution in a
goal-binding, the nodes and strands in a state can contain
free variables. A semi-bundle � ������ in a state � with free
variables,

�� , represents a set of variable-free semi-bundles,
�	� �
�� ��� � �������� , where

�
 is a substitution of values. Thus, the
state � ���� � represents a set of variable-free states. Hence,
we can represent states and state transitions much more ef-
ficiently Also, notice that we only add nodes and strands
when necessary due to the exact causal relation, which re-
duces the state space even further.

4.5. Unreachability Analysis

In order to reduce the search space even further, we can
use unreachability theorems to prove early that a state is
unreachable. Recall that a state is unreachable if there is no
bundle containing it. For practical purposes, we need to be
able to express such theorems as computable predicates � ,

that is, if � � � � is true, then the state � is unreachable. Thus,
we can simply eliminate � from the set of states immedi-
ately.

The unreachability theorems can be specific to a partic-
ular protocol, or can be general theorems that are not re-
stricted to any concrete example. The latter can be proven
once and for all and included in the core of the tool. This
let the model checker easily incorporate results from theo-
rem proving techniques and greatly reduce the state space
explored. We give two examples of the unreachability the-
orems as follows.

Proposition 4.5. Let C be a bundle, let k :��� � L . If k
never originates in a regular node, then k -4 term(p) for any
penetrator node @!:�3 .

The proof of this proposition is in [25].
If a protocol is well-typed, in other words, all messages

specified in a protocol have fixed types, we can always com-
pute a number which is the maximum number of nested en-
cryption operations in a message that can be generated by
a legitimate principal, denoted as /�� . Then the following
proposition holds.

Proposition 4.6. If a state � contains the following nodes
as shown in the figure:
� � is the binder of a term 8 � , � � is on a penetrator strand
� � ���0� / � � H �  , 8 � 7 H � ;8 � contains a number of nested encryptions which is greater
than or equal to / � .
Then � is unreachable, which means there is no any bundle
which will contain � .

This proposition is used to eliminate an infinite expand-
ing of type D strand.

!�� ��� � � � 
�� � �� � � +1112� "! � � &����6+1112� �� + � ! � ���-, � � +

5. Discussion

Our approach has a number of advantages over previous
techniques for automatic analysis of security protocols.

First, unlike most model checkers, our approach can rea-
son about problems of infinite state space. When the eval-
uation procedure terminates, it will have found a mapping
from the infinite state space to a finite state space while pre-
serving the validity of well-formed formulae. The mapping
is from the set of bundles to the non-empty leaf states of the
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search tree as described in section 4.3. Thus, by analyzing
the finite state space, Athena can derive a proof that a secu-
rity property holds under any configuration of the protocol
execution.

Second, the state transition in Athena is not asyn-
chronously composed of independent process transitions,
but based on goal-bindings. Therefore, we avoid the
state space explosion caused by asynchronous composi-
tion, while others suffer severely from this problem. Most
other approaches are based on a trace-based model, where
the global state is a list of independent local processes
of the principals, and the global state transition is the
asynchronous composition of the local process transitions.
Hence, concurrent events are modeled by allowing all
possible interleaving, and the state space grows exponen-
tially with the number of principals in the protocol execu-
tion [20, 21]. In practice, these approaches have difficulties
handling protocol executions with more than two initiators
and responders. Although some researchers have explored
observations that reduce the number of states and paths to
be checked [22], and others are pursuing partial order reduc-
tion techniques, these techniques will still require a large
number of states and paths to be checked unnecessarily.

Third, our states and state transitions, especially the
goals and goal-bindings, capture the exact causal relations.
By eliminating unnecessary information in state structures,
our state representation is more compact and efficient than
most other approaches. Each state in our model actually
represents a set of traces in a trace-based model by lineariz-
ing the paths in the graph of the state.

Forth, unlike most other approaches, Athena takes ad-
vantage of symbolic state transitions instead of explicit state
search. In explicit state search, state transitions have to be
made from one explicit state to another. With security pro-
tocols, however, explicit states can be naturally grouped.
A group of states can transit to the next group of states,
similar to symbolic state transitions. In our approach, we
allow a state to contain free variables. A state � ������ with
free term variables,

�� , represents a class of variable-free
states, �	� �
 � ��  � �������� , where

�
 is a substitution of term val-
ues. A state transition between two states which contain free
variables represents a set of state transitions between two
variable-free states. Thus, Athena can represent states and
state transitions much more efficiently. As a special case
of this, we naturally avoid the symmetry redundancy prob-
lem [3], while others suffer from it. For example, in most
approaches, the model is composed of a number of repli-
cated components, i.e. two initiators and two responders. A
state can be identical to a second state up to a substitution of
names and variable values. Thus, it is enough to just analyze
one of the states because the analysis will produce the same
outcome for both. Although some researchers are pursuing
symmetry reduction techniques for explicit state search, it

#init. #resp. Mur � Brutus
(Red
off)

Brutus
(Red
on)

Athena

1 1 1,706 1,208 146 19
2 2 514,550 *** 186,340 19

Brutus (Red on) means Brutus with partial order and symmetry
reduction.
Brutus (Red off) means Brutus without partial order and symmetry
reduction.

Table 1. Number of states explored in analyz-
ing NSL protocol.

is still difficult to do aggressive symmetry reduction.
Fifth, Athena uses backward search instead of forward

search. With forward search, all the participating principals
have to be pre-stated. Our approach starts with a simple
initial strand and then add new strands only when necessary
according to the exact causal relation. Hence, we reduce the
state space explored by avoiding the exploration of many
unnecessary states and paths.

Sixth, our approach can use unreachability theorems to
prove early that a state is unreachable, hence, prune the state
space. The unreachability theorems can be specific to a par-
ticular protocol, or can be general theorems that are not re-
stricted to any concrete example. The latter can be proven
once and for all and included in the core of the tool. This let
the model checker incorporate results from theorem proving
techniques easily and systematically.

Our experimental results demonstrate the advantages of
using Athena. For the NSL protocol, Athena explored 19
states and proved the agreement property of the protocol
under any configuration. The sketch of the analysis can be
found in the appendix. As shown in table 1, the number of
states explored by Mur � and Brutus grows rapidly as the
number of initiators and responders increase. For example,
with two initiators and responders, Mur � and Brutus ex-
plore over 10,000 times as many states as Athena. We have
also used Athena to find the known attacks in the Needham-
Schroeder protocol [18] and the TMN protocol [24]. We
have also used Athena to prove certain properties of the 1KP
protocol [1] and the Kerberos protocol [10, 11]. Detailed re-
sults about these experiments can be found in [23].

6. Conclusions

We propose an efficient automatic checking algorithm,
Athena, for analyzing security protocols. Athena incorpo-
rates a logic that can express security properties includ-
ing authentication, secrecy and properties related to elec-
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tronic commerce. We have developed an automatic proce-
dure for evaluating well-formed formulae in this logic. For
a well-formed formula, if the evaluation procedure termi-
nates, it will generate a counterexample if the formula is
false, or provide a proof if the formula is true. Athena also
exploits several state space reduction techniques. It natu-
rally avoids the state space explosion problem commonly
caused by asynchronous composition and symmetry redun-
dancy. It also has the advantage that it can easily incor-
porate results from theorem proving through unreachability
theorems to further reduce the state space explored and in-
crease the likely-hood of termination. As shown in our ex-
periments, we successfully rediscover known flaws or pro-
vide proofs of properties for protocols with exploring only
tens of states.
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Appendix A : Proofs of the Propositions

Lemma 4.1. If ! is an algorithm that decides the va-
lidity of any wff of the form V 3 2 T �>* T  in a model M in
finite steps, where T � is a conjunction and T  is a disjunction
of the atomic propositions, then there exists an algorithm to
evaluate any formula of the form V 3 2 U in the model M in
finite steps, for any propositional formula U .

Proof sketch. Since F is a propositional formula, it can
always be transformed into a Conjunctive Normal Form:U � T � . T  .'2(2�2 . T�� , where T " ��� ������2�2(2 �
� , are disjunc-
tions of the atomic propositions and their negations. Be-
cause universal quantifiers distribute over conjunctions,

V 3 2 U X � V 3 2 T � � .
� V 3 2 T  � . "("�" .

� V 3 2 T � � 2
For each �0: � ���(2�2(2 �
� � , T " can be written as

� E ����� � E� E � R�� � � , where � � and � � are atomic propositions. This is
equivalent to

� . � � � � *
� E � � � � . So T " can be evaluated in

finite steps by ! . Hence, it is easy to see that we can decide
F in finite steps.

Appendix B : The NSL Example

We show a sketch how to prove the agreement property
of the NSL protocol using Athena. Due to the space re-
striction, we omit some steps. The formula that needs to be
checked is

V 3 2��
	��� � ��B �
@ B ��� C B ��� H B  :,3G� *
������� �

�?B �
@ B �
� C B �
��H B  :,3 .

The initial state � B is as

���6�D�E� 	"F/
��$F(
��5��F/
�����FA�
! � ��� "! � �AF #�	 F & ' )DIK+1112! " � �-,�! �5��FG#(�5�DFG#%�$F6&/' 8 I +1112!�� � � "! �5�DF�&('*)DI(+

To bind the goal
� �����&��� � ��H B � D )�I � � , there are three pos-

sibilities as follows.
1.

� � :��������� 	"FK
��JF9
��5��F/
�����F� �������b� 	
	 
c�$F/
�����	�
��5�DFA�
� "! �5��FG#�	HF6&/'0)�I(+ �-,�! �5��	"#�	
	�&('*)DI%+1112

1112�-,�! ���AFG#%����FG#6�$F(&/' 8 I + � "! ����	�#%����FG#6�$F(&/'08 � +1112
1112� "! � �DF & ' )DIK+ � �-,�! � �DF & ' )DIK+

2.
� " :

���6�D�E� 	 F 
�� F 
�� �AF 
c� �DF � 5��� �DF 
�� ��F �
� "! � �AF #.	 F & ' )DI%+ � � ��F +1112�-,�! � �AF #%� ��F #%� F & ' 8 I + � � ��F +1112

1112!�� � � "! �5�DF%&/'0)DI%+ � �-,�! ����F%&('*)DI%+
3.

���
:
�������7� 	HF(
��$F/
c�5�AF(
��5�DFA� � � ����
 � � #6�5�DFG# � " �
� "! �5�AFG#%	"F%&/'0)DI%+ � ����+1112�-,�! ���AFG#%����FG#(�JF%&/' 8 I + � "!�� � # ! ����F%&('*)DI$# � " &('��(+1112

1112� "! ����F6&/'0)�I%+ � �-, � � # ! ����F%&('*)DI$# � " +
where
� � 
 � " are free term variables.

Later steps will show that � � lead to the correct
execution of the protocol which contains the strand
<�� � 8(� � B ��@ B ��� C B �
� H B  . According to proposition 4.6, we
can see that there is no bundle that can contain ��� since in
this protocol / � �$� . We now compute the next states of
�  .

���
:

��� � � �"!$#�%'& )�I�%(! �*)
+�,�- .'� I I � F I �"& 8 I �"&�)DI ) /�� � )�I �0& )�I ) 1$23� � 4
1$2�5 & 8 I % I I�6 � )�I 4 1$2�� )DI 4 798�: 1$2�5 !$#�%'& )�I�%'! � 6 � � 4;;;<

;;;<1�=�5 & 8 I %'& )�I % F I�6 � 8 I 4 1$2 & )DI 4 > 1�= !$#?%@& )DI %@! � 4;;;<
;;;<1$2�5 & )DI 6 � )DI 4 > 1A=B5 & )DI 6 � )DI 4

where 8�� � 8(C are free term variables. Later steps will show
that �$C is unreachable. Finally, we finish the proof after
exploring 19 states with the conclusion that NSL protocol
preserves the non-injective agreement property. Hence, the
agreement property holds as well, as mentioned in section
3. The more detailed analysis of this example can be found
in [23].
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