
Automatic Patch-Based Exploit Generation is Possible:

Techniques and Implications

David Brumley, Pongsin Poosankam Dawn Song Jiang Zheng

{dbrumley,ppoosank}@cs.cmu.edu dawnsong@cs.berkeley.edu jzheng@cs.pitt.edu

Carnegie Mellon University UC Berkeley & CMU U. Pittsburgh

∗

Abstract

The automatic patch-based exploit generation prob-

lem is: given a program P and a patched version of the

program P ′, automatically generate an exploit for the

potentially unknown vulnerability present in P but fixed

in P ′. In this paper, we propose techniques for auto-

matic patch-based exploit generation, and show that our

techniques can automatically generate exploits for 5 Mi-

crosoft programs based upon patches provided via Win-

dows Update. Although our techniques may not work

in all cases, a fundamental tenant of security is to con-

servatively estimate the capabilities of attackers. Thus,

our results indicate that automatic patch-based exploit

generation should be considered practical. One impor-

tant security implication of our results is that current

patch distribution schemes which stagger patch distri-

bution over long time periods, such as Windows Update,

may allow attackers who receive the patch first to com-

promise the significant fraction of vulnerable hosts who

have not yet received the patch.

1 Introduction

At first glance, releasing a patch that addresses a vul-

nerability can only benefit security. We must, however,

consider the entire time line for patch distribution. A
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new patch reveals some information, and having early

access to a patch may confer advantages to an attacker.

From a security standpoint, we should consider a) what

information about a potentially unknown vulnerability is

revealed by a patch, b) how quickly that information can

be derived from the original and patched program, and

c) what advantage that information yields to attackers.

No previous work (such as fuzz testing as discussed in

Section 7) has addressed these questions.

The automatic patch-based exploit generation

(APEG) problem is: given a program P and a patched

version of the program P ′, automatically generate

an exploit for the potentially unknown vulnerability

present in P but fixed in P ′. Successful APEG would

demonstrate that attackers could use patches to create

exploits. To the best of our knowledge, APEG has not

been previously demonstrated in public literature. Thus,

the question of whether APEG is feasible for real-world

programs was unanswered.

In this paper, we show that automatic patch-based ex-

ploit generation is possible as demonstrated by our ex-

periments using 5 Windows programs that have recently

been patched. We do not claim our techniques work in

all cases or for all vulnerabilities. However, a fundamen-

tal tenant of security is to conservatively estimate the

capabilities of attackers. Under this assumption, APEG

should be considered practical, and those who have re-

ceived a patch should be considered armed with an ex-

ploit.

One important consequence of our result is that hav-

ing access to a patch confers a significant advantage over

those who do not have access to the patch. The secu-

rity advantage is important in light of current patch dis-

tribution practices. Current patch distribution practices

stagger patch distribution, usually over hours, days, or

longer. For example, Gkantsidis et al. show that for

Windows Update it takes about 24 hours for 80% of the

unique observed IPs to check for a new patch [18]. In
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Figure 1. An input validation vulnerability
occurs when the set of all inputs for P (in
white) is a superset of the set of safe in-
puts for P (in black). The set difference is
the set of exploits for P .

our experiments, we generate exploits from a patch in

only a few minutes. Modern threats such as the Slammer

worm have empirically demonstrated that once an ex-

ploit is available, most vulnerable hosts can be compro-

mised in minutes [27]. Our results therefore imply that

those who first receive a patch could potentially com-

promise most remaining vulnerable hosts before they re-

ceive a patch via current patch distribution architectures.

Thus, our work indicates that current patch distribution

schemes that stagger patch roll-out over large time peri-

ods requires rethinking.

Input Validation Vulnerabilities. We target input val-

idation vulnerabilities where the set of inputs accepted

by P is a superset of the safe inputs for P . Figure 1

shows this intuition graphically, where the set of safe

inputs is a subset of all inputs for P . The difference

between the safe and all inputs accepted by P is the

set of exploit inputs. A common approach for patching

such vulnerabilities is to add additional input sanitiza-

tion checks in P ′ so that only safe inputs are processed

without error. Many common types of vulnerabilities are

at core input validation vulnerabilities, such as buffer

overflows, integer overflows and underflows, and heap

overflows.

Figure 2 shows a typical integer overflow input vali-

dation vulnerability we use throughout this paper. This

example is motivated by a real-life vulnerability in In-

ternet Explorer (called DSA SetItem, for which we gen-

erate an exploit for in Section 4). All integers in this

example are 32-bits, and therefore all arithmetic is per-

formed mod 232. On line 1, the input integer vari-

able is checked to see if it is even: if so, a temporary vari-

able named s is assigned input+2 (mod 232), else if

odd, input+3 (mod 232). Line 6 calls realloc, a

manual memory management routine, which changes

the size of the passed in ptr to point to s allocated bytes

of memory. For example, if s is less than the size cur-

rently pointed to by ptr, then the resulting pointer will

point to a smaller area of memory.

In this example, we consider any input that causes

overflow on line 2 or 4 to be an exploit. Thus, the set of

P : i n p u t i s a u s e r i n p u t

1 . i f ( i n p u t %2 == 0) go to 2 e l s e go to 4 ;

2 . s := i n p u t +2 ;

3 . go to 5 ;

4 . s := i n p u t +3 ;

5 . <nop>

6 . p t r := r e a l l o c ( p t r , s ) ;

7 . . . u se of p t r . . . ;

P ′ : i n p u t i s a u s e r i n p u t

1 . i f ( i n p u t %2 == 0) go to 2 e l s e go to 4 ;

2 . s := i n p u t +2 ;

3 . go to 5 ;

4 . s := i n p u t +3 ;

5 . i f ( s > i n p u t ) go to 6 e l s e go to ERROR;

6 . p t r := r e a l l o c ( p t r , s ) ;

7 . . . . u se of p t r . . .

Figure 2. Our running example of an inte-
ger overflow input-validation vulnerability
in P (top) and the patch P ′ (below). An in-
teger overflow may happen on lines 2 or 4
of P . Line 5 of P ′ checks for overflow.

inputs which are exploits is 232−3 ≤ input ≤ 232−1.

At best, any exploit will cause a user of ptr after line

6 to cause a denial of service attack by crashing the pro-

gram, or at worst, allow an attacker to hijack control of

the program (as in the real-life vulnerability that moti-

vated this example). The patched program P ′ adds a

check for overflow on line 5. Any input which is an ex-

ploit for P will fail the inserted check in P ′.

Challenges. One challenge for APEG is that software

is often only available in binary (i.e., executable) form.

Thus, in our approach and implementation, we target the

case when P and P ′ are binary code. In our setting, P

and P ′ can be either an executable programs or library.

Addressing APEG for libraries is important since a) li-

brary vulnerabilities may often be exploited by multiple

programs which use the library, and b) on many OSs se-

curity updates are often to libraries. For example, we

conducted a survey of patches released from Microsoft

in 2006 and found 84% of the security-related updates

were changes in libraries. If P is a library, then the gen-

erated exploit x is a valid set of arguments to an exported

(e.g., callable) function in the library, while if P is a pro-

gram, x is an input to the program.

Another challenge is to isolate what changes have oc-

curred between P and P ′. To address this problem, se-

curity practitioners have developed tools, such as bin-

diff [33] and EBDS [13], which first disassemble both

P and P ′, and then identify which assembly instruc-

tions have changed. Security practitioners use these dif-

ferencing tools to help manually reverse engineer what



the unknown or unpublished vulnerability that a patch

addresses [13, 14, 31, 33], and in some cases, manually

create exploits [14].

However, it is insufficient to simply locate the in-

structions which have changed between P and P ′. In or-

der for APEG to be feasible, one has to solve the harder

problem of automatically constructing real inputs which

exploit the vulnerability in the original unpatched pro-

gram. Further, when feasible, it is important to know the

speed at which exploits can be generated from patches

in order to design adequate security defenses.

Approach Overview. Our approach to APEG is based

on the observation that input-validation bugs are usually

fixed by adding the missing sanitization checks. The

added checks in P ′ identify a) where the vulnerability

exists, and b) under what conditions an input may ex-

ploit the vulnerability. The intuition for our approach is

that an input which fails the added check in P ′ is likely

an exploit for P . Our goal is to 1) identify the checks

added in P ′, and 2) automatically generate inputs which

fail the added checks. In Figure 2, the goal would be

to first discover the check added on line 5, then gener-

ate a value for input such that P ′(input) that fails the

check and leads to the ERROR state.

We call execution paths that fail the new check (i.e.,

execute the ERROR state in our example) in P ′ ex-

ploitable paths since any input that would execute such

a path in P ′ is a likely exploit for P . There may be many

exploitable paths, e.g., there are 2 exploitable code paths

in our running example. However, the number of ex-

ploitable paths is typically only a fraction of all possible

execution paths.

We propose techniques which scale when there are

many different possible paths, but potentially only a few

are exploitable. We present three different approaches:

a dynamic analysis approach which considers a single

path at a time, a static approach which encompasses

multiple paths without enumerating them individually,

and a combined approach based upon a combination of

dynamic and static analysis. We show through eval-

uation that each technique is useful for automatically

generating exploits from patches for different real-world

vulnerabilities.

Results Overview. To evaluate the effectiveness of our

approach, we have conducted experiments using 5 pro-

grams from Microsoft. Each program initially had a se-

rious security vulnerability which was fixed by a patch.

In some cases, the vulnerability is widely exploited,

indicating the potential impact of future automatically

generated exploits. Our results also show that each of

the 3 approaches we propose have strengths for different

vulnerabilities. In each case we are able to generate an

exploit, usually within a few minutes. The fastest end-

to-end time we were able to generate a verifiable exploit

is under 30 seconds. We believe that with further work

on our research prototype this time could be reduced.

In our evaluation, for the cases when a public proof-

of-concept exploit is available, the exploits we gener-

ate are often different than those publicly described.

We also demonstrate that we can automatically generate

polymorphic exploit variants. Finally, we are able to au-

tomatically generate exploits for vulnerabilities which,

to the best of our knowledge, have no previously pub-

lished exploit.

Contributions. This paper shows that automatically

generating exploits from patches within minutes should

be considered practical. Current patch distribution ar-

chitectures are not designed with the threat of APEG in

mind. We argue that our results imply that we should im-

mediately begin rethinking the design of current patch

distribution architectures, and to this end, we propose

several research directions.

Although we target the case where APEG is used by

an attacker, APEG is also useful for security practition-

ers. For example, since APEG demonstrates a bug is

exploitable, it could be used by vendors to prioritize bug

fixes.

At the core of our approach for automatic patch-

based exploit generation is the ability to generate an in-

put that fails a check at a specified line of code. Gen-

erating inputs that execute a line of code is also studied

in automatic test case generation. However, existing au-

tomatic test case generation techniques did not work for

several vulnerabilities in our experiments. We propose a

new technique based upon a mix of dynamic and static

analysis to handle these cases. Thus, our techniques are

likely to be of independent interest.

2 Automatic Patch-Based Exploit Genera-

tion: Problem Definition and Approach

2.1 Background Definitions

Our techniques are based on methods from the program

verification community, thus we adopt their notation in

this paper (such as in [11]). A program defines a rela-

tionship between an initial state space and a final state

space. The state space of a program consists of all vari-

ables and memory. In our setting, memory is modeled

as an array mapping 32-bit integers signifying memory

addresses to 8-bit integers signifying memory values. In

our setting, all registers are modeled as variables, and

each memory cell can also be considered a separate vari-

able when convenient. In Figure 2, the state space con-

sists of memory and the variables s and input. When

desired, we can also distinguish variables by their up-



date site, e.g., the variable s on line 2 from s on line

5 (e.g., by transforming the program into static single

assignment form [28]).

A safety policy φ is a first-order logic Boolean predi-

cate from the programs state space to one of two values:

safe or unsafe. In our setting, we consider only safety

policies enforceable by an execution monitor [34]. At

a high level, such policies are allowed to evaluate a

boolean predicate on the program state space at each

step of the execution, as well as keep track of any previ-

ous states executed so far. Common execution monitor

enforceable safety policies include dynamic taint analy-

sis, checking return address integrity, and dynamic type

enforcement.

We denote executing P on input x as P (x), and the

execution of instruction i as Pi(x). We denote checking

the safety policy at execution step i as φ(Pi(x)). The

vulnerability point [5] for a vulnerable program is the

first instruction i such that φ(Pi(x)) = unsafe.

We use the term exploit to mean an input x for which

the safety policy returns unsafe. For example, if we use

a dynamic taint analysis policy, an exploit would be any

input that causes the analysis to raise a warning. One

reason we use this definition of an exploit is that it does

not presuppose a particular attack goal, e.g., informa-

tion disclosure vs. denial-of-service vs. hijack control

flow. This makes sense in our context since the vulnera-

bility itself determines whether such specific attacks are

even possible (e.g., information disclosure exploits are

orthogonal to control hijack exploits). Note that there

are potentially many different exploits, with each indi-

vidual exploit called a polymorphic variant.

Safety policies are powerful enough (since they are

first-order logic Boolean predicates over the entire pro-

gram state space, including all memory) to specify spe-

cific kinds of attack when desired. For example, it is

possible to specify a safety policy that is only violated

by control hijack attacks. For example, we can create a

safety policy which states the return address on the stack

should not be overwritten by user input. Such a safety

policy would only be violated by a typical control-hijack

buffer overflow.

A program control flow graph (CFG) G = (V, E) is a

graph where each vertex ∈ V is a single instruction, and

there is an edge (i1, i2) ∈ E if there is a possible transfer

of control from instruction i1 to i2. An execution path

is a sequence of vertices through the control flow graph

such that for each vertex there is an edge to the next

vertex in the CFG (note vertices may repeat in the path).

2.2 The Automatic Patch-Based Exploit Gen-

eration Problem

In the automatic patch-based exploit generation prob-

lem, we are given two versions of the same program P

and P ′ where P ′ fixes an unknown vulnerability in P .

The goal is to generate an exploit for P for the vulnera-

bility fixed in P ′. More formally, we are given a safety

policy φ, and the programs P and P ′. The purpose of

φ is to encode what constitutes an exploit. Our goal is

to generate an input x such that φ(P (x)) = unsafe, but

φ(P ′(x)) = safe.

2.3 Problem Scope and Approach

Vulnerabilities Addressed in this Paper. We focus on

input validation vulnerabilities where user input is not

sufficiently sanitized in P , but is sanitized via new

checks in P ′. Many common vulnerabilities are input

validation vulnerabilities which are fixed by adding in-

put sanitization logic. For example, if P is vulnerable

to an integer overflow attack, then P ′ may insert a check

for this overflow, and ultimately we will be using that in-

serted check to help derive an exploit. Another example

is when P contains a typical buffer overflow where an

input string may be too large, which is addressed in P ′

by inserting a check for overly-long inputs. However,

a fix in which P ′ increases the size of the destination

buffer to accommodate overly-long inputs currently falls

outside our problem setting. We plan on targeting other

types of vulnerabilities in future work.

Approach Overview. Our approach to APEG is based

on the observation that the new sanitization checks

added to P ′ often 1) identify the vulnerability point

where the vulnerability occurs, and 2) indicate the con-

ditions under which we can exploit P . Thus, an input

x that fails the added sanitization check at the vulnera-

bility point in P ′ is a candidate exploit for P . We call

x a candidate exploit because a new check may not cor-

respond to a real vulnerability. We verify a candidate

exploit by checking φ(P (x)), e.g., observing the execu-

tion of P (x) within an execution monitor. Our approach

therefore attempts to generate inputs which would fail

the new checks inserted at the vulnerability point.

We can use off-the-shelf tools to identify the vulner-

ability point and the added checks. In our implementa-

tion, we use EBDS [13], a tool that automatically com-

pares two executables and reports the differences. We

can also use off-the-shelf safety checkers for φ. For

example, dynamic taint analysis is a type of execution

monitor commonly used to detect a wide variety of ex-

ploits.

Thus, in this paper, we focus on the technical chal-

lenge of how to automatically generate candidate ex-



ploits which reach and fail the given new checks in the

patched version. To address this technical challenge, we

propose an approach which 1) generates the set of con-

straints on the input domain to reach and fail the new

check, and 2) finds a satisfying answer to the constraints,

which is a sample candidate exploit.

More formally, we compute the weakest precondi-

tion [11] on the input state space of the P ′ to execute

and fail the desired check. The weakest precondition is

a constraint formula F : I → {true, false} where I

is the input state space, and a satisfying answer is our

sample exploit. For example, the constraint formula

F(input)
.
= input%2 == 0 ∧ s = input + 2(mod232)

∧ ¬(s > input)

is satisfied by all inputs that execute the true branch of

P in Figure 2 and overflow. Finally, given the con-

straint formula, we query a solver to generate a satis-

fying answer to the formula (i.e., an input x such that

F(x) = true). If the solver returns a solution, the solu-

tion is a candidate exploit.

Thus, the steps to our approach are:
1. Identify the new sanitization checks added in P ′. The

remaining steps are performed for each new check in-

dividually (see Section 6 for a discussion on multiple

checks).

2. Generate a candidate exploit x which fails the new

check in P ′ by:

(a) Calculating the weakest precondition to fail the new

check in P ′. The result is the constraint formula F .

We present three approaches for generating the con-

straint formula target this problem in Section 3.2.1.

(b) Use a solver to find x such that F(x) = true. x is

the candidate exploit.

3. Verify a candidate exploit is a real exploit by running

φ(P (x)).
4. If desired, we can generate polymorphic variants. Let

x be a known exploit. Let F ′(X) = F(X)∧ (X <>

x). Then x′ such that F ′(x′) = true is a polymor-

phic variant exploit candidate. This process can be

repeated to enumerate polymorphic variants.

3 Automatic Patch-Based Exploit Genera-

tion

In this section, we describe our approach and steps for

automatic patch-based exploit generation.

3.1 Differencing Two Binaries Using an Off-

The-Shelf Tool

The first step of our patch-based exploit generation is to

difference P and P ′ to find new sanitization checks that

are added in P ′. Several tools exist for differencing bi-

naries which are reasonably accurate and can be used to

determine what new checks exist [12–14, 33]. We look

for new checks that introduce a new code path since that

indicates that P ′ is doing something different than P .

We use eEyE’s Binary Diffing Suite (EBDS) [13] in our

implementation since it is freely available.

Our approach does not assume the differencer only

outputs semantically meaningful differences (see Sec-

tion 7). In fact, the differencer (EBDS) we use is based

upon almost purely syntactic analysis of the disassem-

bled binary. As a result, the list of new checks based

on the syntactic analysis is a superset of the meaning-

ful checks. Our approach will (correctly) fail to produce

an exploit for semantically meaningless differences. For

example, if P has the check i > 10, and P ′ has the

check i − 1 > 9, the differencer may report the latter

is a new check. Semantically meaningless differences

such as these are weeded out by the verification step.

For example, i = 12 is an example input which may

satisfy the above difference, but would fail verification

since it behaves the same in the new and old version.

EBDS returns the list of differences; we filter them for

new checks. EBDS also indicates whether the true or

false branch of a new check corresponds to a new path.

We assume a new path corresponds to failing the check.

For example, in Figure 2 EBDS would report the false

branch of the new check on line 5 introduces a new path,

and we infer that s > input is the check that should fail.

Recall that the remaining steps in our process of

patch-based exploit generation are performed on each

identified new check. Of course our approach bene-

fits from better differencing tools which output fewer

and more semantically meaningful checks, as fewer it-

erations are needed. In our evaluation, we measure the

number of new checks reported by the tool, but assume

the attacker can process each new check in parallel. This

is realistic since attackers often have many (perhaps hun-

dreds or thousands of) compromised hosts they can use

for checking each reported difference.

If there is a need to prioritize which new checks are

tried first for APEG, we have found that one effective

scheme for prioritizing is to try new checks that appear

in procedures that have changed very little. The eEye

tool already provides a metric for how much a procedure

has changed between P and P ′.

3.2 Generating Constraint Formulas

In this section, we discuss techniques for automatically

generating the constraint formulas. First, we explore

the design space and provide intuition why we need

to consider several different approaches. We then pro-

vide background on generating formulas using dynamic



and static analysis (interested readers should consult the

cited papers for full details). We then show how to

adapt these ideas to the combined dynamic and static

approach.

3.2.1 Key Design Points

The most important design question for constructing the

constraint formula is to figure out what instructions to

include in the formula. We need to include all the in-

structions for an exploitable path for the solver to gen-

erate a candidate exploit. However, the number of ex-

ploitable paths is usually only a fraction of all paths to

the new check. Should the formula cover all such exe-

cution paths, some of them, or just one? We consider

three approaches to answering this question: a dynamic

approach which considers only a single path at a time,

a static approach which considers multiple paths in the

CFG without enumerating them, and a combined dy-

namic and static approach.

The Dynamic Approach: Generating a Constraint

Formula from a Sample Execution. In some cases, the

new check appears on a program path which is executed

by a known input, e.g., along a commonly executed path.

Such normal inputs can be found by examining logs of

normal inputs, fuzzing, or other techniques. Of course,

a normal input will likely satisfy the new check; other-

wise, it is already a candidate exploit.

For such a given input i where P ′(i) executes the new

check, we use techniques from dynamic analysis to gen-

erate the constraint formula representing the constraints

on input for any execution of that single path up to the

new check. Since the intuition behind our approach is

that exploits fail the new check, we add an additional

constraint that the input fails the new check.

The dynamic approach produces formulas that are

typically the smallest of the three approaches. Since

small formulas are generally the easiest to solve, the dy-

namic approach is usually the fastest for producing can-

didate exploits.

The ASPNet Filter vulnerability in our evaluation

(Section 4) is an example demonstrating real-world util-

ity of the dynamic approach. In ASPNet Filter, the vul-

nerability is in a webserver and the new check is added

along a common code path which is executed by most

URI requests. Thus, it is relatively easy to obtain at least

one benign input that reaches the point of the new check,

and hence it makes sense to start by analyzing that path

first and see if we can generate an exploit using that path.

The Static Approach: Generating a Constraint For-

mula from a Control Flow Graph. Another approach

is to create a formula over a CFG [6]. In particular, in the

static case we are concerned with the CFG that includes

all paths from the instruction where input is read to the

new check. We perform program chopping on the pro-

gram CFG in order to create a CFG that only includes

paths to the new check. Computing a formula over the

CFG is more efficient than computing a separate formula

for each path in the CFG separately [6].

The static approach will generate a candidate exploit

if any path in the CFG is exploitable. Since the static

formula potentially includes all instructions in the CFG

fragment, the formulas are typically larger and therefore

take longer to solve. The DSA SetItem vulnerability in

our evaluation is an example where a purely static ap-

proach works.

Creating Constraint Formulas Using Combined Dy-

namic and Static Approach. If the CFG fragment con-

tains a large number of instructions (because it covers a

large number of paths), the generated formula may be

too large for the solver. On the other hand, an exploit

may never take the same execution path as a known in-

put, thus a purely dynamic approach may not work ei-

ther.

We propose a third approach which mixes the dy-

namic and static approaches to generating constraints.

The intuition behind the combined approach is to com-

bine information about code paths we know how to ex-

ecute via known inputs, and additional code paths we

wish to explore using static analysis. For example, we

may know an input which does not reach the point of the

new check, but does get us half-way there. We can use

the dynamic analysis to the half-way point, then use the

static approach for all paths from the half-way point to

the new check.

The advantage of the combined approach is that it

provides a way of considering a subset of paths so that

the generated formula is (hopefully) small enough for

the solver to generate a candidate exploit. The IGMP

vulnerability in our evaluation is an example of this case

where neither the static nor dynamic approach worked

alone, but the combined approach generated a working

exploit.

3.2.2 Background: Generating a Constraint For-

mula from a Sample Execution

Here we provide a recap of the overall method for gen-

erating a constraint formula from an execution trace.

Due to space, interested readers should consult previous

work [4, 5, 7, 19, 30] for a more thorough treatment.

The dynamic approach for creating a formula takes

as input P ′, the new check, and a sample input i. We ex-

ecute P ′(i) and record each instruction executed up to

the sample check. We generate the constraint formula

over the instructions executed along this path. To be

efficient, we only record instructions (including all of

their explicit and implicit operands) dependent upon in-



wp(x := e, Q) ⊢ let x = e in Q
ASSIGN

wp(assert e, Q) ⊢ e ∧ Q
ASSERT

wp(s1, wp(s2, Q)) ⊢ Q1

wp(s1; s2, Q) ⊢ Q1

SEQ

wp(s1, Q) ⊢ Q1 wp(s2, Q) ⊢ Q2

wp(if e then s1 else s2, Q) ⊢ (e ⇒ Q1) ∧ (¬e ⇒ Q2)
CHOICE

Table 1. Rules for calculating the weakest
precondition.

puts since we only tackle vulnerabilities which can be

exploited via user input.

Modeling the Executed x86 Instructions. In order to

generate the constraint formula, we need to know the ef-

fects of each instruction executed. X86 is a complex in-

struction set. To accurately build the constraint formula,

we need to model the effects of an x86 instruction cor-

rectly, including all implicit side effects such as updates

to status registers. Thus, we raise the x86 instructions

to an assembly modeling language we designed called

Vine [2]. The ability to model the effects of each x86

instruction accurately is essential for automatically gen-

erating exploits.

We create a model of the trace by raising each instruc-

tion in the trace to Vine. We first lift each recorded in-

struction to Vine in a syntax-directed manner, e.g., if the

x86 instruction add eax, ebx is in the trace, we pro-

duce the model statement eax = eax + ebx. Next,

any operand which is not dependent upon input is re-

placed with its concrete value. Last, we assert that each

branch condition in the trace will evaluate the same way

as in the executed path.

Generating a Constraint Formula from the Modeled

Path. The resulting execution trace from P ′(i) defines a

single program path, which is also a valid model in Vine.

The constraint formula is calculated over the straight-

line model by calculating the weakest precondition [11].

We calculate the weakest precondition using the effi-

cient algorithm and implementation given in Brumley

et al. [6].

Table 1 shows the rules for calculating the weakest

precondition. Each rule is read as an implication: if

a program fragment matches the pattern shown below

the horizontal bar to the left of the turnstile (⊢), we per-

form the calculation shown on the top. The resulting

formula is to the right of the turnstile. The rules induc-

tively form an algorithm. The algorithm is initialized

with wp(P ′(i), Q), where Q is a predicate that states

the new check fails.

3.2.3 Background: Generating a Constraint For-

mula from a CFG

In the static approach, we raise all of P ′ to Vine as the

first step. Since we are only concerned with paths that

execute the new check, we remove Vine statements in

the model for other paths. We achieve this by comput-

ing the chop [5, 6], and then constructing the constraint

formula on the chop. Chopping is a technique which cre-

ates a smaller model that includes only those statements

relevant to executing a sync node from a given start node

in the CFG. In the static case, the start node is the input

instruction, and the sync node is the new check. The

exact algorithm we use for chopping is detailed in [5,6].

The formula we ultimately generate is over the CFG.

Thus, a smaller, more compact CFG will generally lead

to a smaller, easier-to-solve formula. In our experi-

ments, the time to solve formulas usually dominates

total exploit generation time, thus making formulas as

easy as possible for the decision procedure to solve is

important. Our experience has shown three common

reasons formulas may take longer to solve: 1) “dead”

code in the model where a value is computed but never

used, 2) algebraic simplifications that can be performed,

and 3) common sub-expressions that are recomputed.

We have implemented common compiler optimizations

on our modeling language to optimize the model: we re-

move dead code, perform as much algebraic simplifica-

tion as possible, and remove redundant sub-expressions.

In our evaluation, we show these optimizations can dou-

ble the speed at which formulas are solved. (Note that

these optimizations can also be applied in the dynamic

case.)

The weakest precondition calculation used for the dy-

namic case applies equally well to any acyclic CFG [6].

We create an acyclic CFG by unrolling loops and recur-

sive procedures a fixed number of times. Determining

how many times to unroll a loop is known to be unde-

cidable. In our evaluation, we unrolled loops only once.

The size of the generated formula is O(n2) in the

number n of vine statements in the acyclic CFG [6].

Note that enumerating each path and applying a dynamic

approach would result in a total formula O(2b) for b

branches. Therefore, even though the static approach

generates large formulas, it is more efficient than simply

iterating the dynamic approach.

3.2.4 Formula Generation by Combined Static and

Dynamic Analysis

Recall that the formula must cover all instructions for

an exploitable path in order for the solver to generate

a candidate exploit. The dynamic approach considers



Figure 3. A graphical depiction of building
a model of combined dynamic and static
information.

only a single program path to the new check, but gen-

erates compact formulas and requires we know an input

that executes the new check. The static approach covers

more paths, but may produce larger formulas. At a high

level, the only difference between the two is that the dy-

namic approach uses a trace to generate a straight-line

program, over which we generate a formula, while the

static approach uses the program to generate a branch-

ing acyclic program, over which we generate a formula.

Thus, it should be of no surprise that the two can be com-

bined where we alternatively combine the dynamic and

static approach to select paths for formula generation.

Although both the static and dynamic approach alone

have been used previously to generate formulas, we are

the first to propose the combined dynamic and static ap-

proach and demonstrate its feasibility in practice.

The high level intuition of a combined approach can

graphically be represented as lolly-pop shaped, as shown

in Figure 2. The combined approach offers a balance be-

tween the efficiency offered by single-path models pro-

duced by dynamic execution and the code coverage of-

fered by multiple-path static techniques.

Suppose we have a trace containing executed instruc-

tions 0..n. Let instruction 0 ≤ i ≤ n be a dynamic ex-

ecution, and let there be a path from i to the new check,

as shown in Figure 2. We build a combined model by

first truncating the execution trace at instruction i to cre-

ate the “stick” end. We create the lolly end by chopping

off the program using the successor of i as the chop start

and the new check as the chop sink. The two pieces

are put together by adding the edge from i in the dy-

namic model to its successor in the static model. The

resulting model considers only the straight-line program

path up to i, then any subsequent path from i to the new

check. We then compute the weakest precondition over

the combined model.

The intuition why this works is that if we lifted the

entire chop from instruction 0 to the new check, then the

particular path taken by dynamic analysis is a path in

the chop. Therefore, the path up to some step i in the

dynamic trace to the chop is also a path. In the worst

case, all paths from i to the new check are infeasible,

i.e., there is no input that takes the path 0..i and then the

successor i + 1 to the new check. Since the combined

approach takes in two models and sequentially combines

them, the result is a model.

For example, in our evaluation of the IGMP vulner-

ability, we combine an execution path that cannot be

turned into an exploit with a chop of the procedure that

contains the new check to create a combined model.

Generating a formula and solving this model produces

a working exploit for this example, but both the pure dy-

namic and static approaches do not.

Automatic Combined Execution. Automatic com-

bined execution requires automatically deciding the mix

point. In Figure 3, the question is which point should

we choose as i. Of course one pre-requisite is we should

choose an i such that there is a path in the static model

from i to the new check. However, there still may be

many such instructions in the trace.

One straight-forward approach is to take the i closest

(in terms of CFG distance) to the new check and gen-

erate the combined model. If the formula generated on

the combined model has no exploit, we pick instruction

i − 1, and iterate.

In our experiments, we found a good heuristic that

is quicker than the iterative approach is to choose i at

procedure boundaries. Procedures are intended to per-

form a specific task independent of the remaining code.

Therefore, by mixing at procedure points, the combined

model includes overall tasks, instead of specific code

paths. One implementation advantage of choosing pro-

cedure boundaries is that it is relatively straight-forward

to implement automatic mixing: we simply set up a call

to the static model of the procedure at the desired mix

point in the trace.

3.3 Generating a Candidate Exploit from the

Constraint Formula

We use STP [16], a decision procedure that supports bit-

level operations, as a solver to generate candidate ex-

ploits from the constraint formula. When STP returns a

satisfying solution for a given constraint formula, the so-

lution provides a candidate exploit. By construction, the

satisfying assignment will ensure that inputs taking on

such satisfying assignment will make the program exe-

cution reach the point of the new check and fail the new

check.

The need for bit-level support in the solver is neces-

sary since assembly code typically makes use of bit-level

operations such as ⊕ and logical shifts. For example,

zeroing out a register r is usually not handled by a mov

r, 0, but by the equivalent xor r, r.

If the solver returns that there does not exist a satis-

fying solution for a given constraint formula, this means



that it is not possible to have an input going down the

paths covered in the constraint formula and failing the

check. Thus, we need to build other constraint formulas

covering other paths.

In some cases the solver may take too long to re-

turn an answer. In this case, we set a timeout and

then move on to build other constraint formulas covering

other paths. For example, the mix point can be changed

so that fewer paths are included. In Section 4.4 we eval-

uate how the changing the mix point effects how long it

takes the solver to generate a candidate exploit.

3.4 Generating Polymorphic Exploits.

Our approach allows us to enumerate (candidate) poly-

morphic exploit variants of the paths covered byF . Sup-

pose x satisfies F . Let F ′(X) = F(X) ∧ (X <> x).
F ′ is satisfied by all inputs except x that fail the check

and execute a path in F . Therefore a satisfying answer

x′ such that F ′(x′) = true is a polymorphic (candidate)

exploit variant. This process can be repeated as desired.

3.5 Verifying a Candidate Exploit

We verify the candidate exploit x by checking if the

safety policy φ is violated when executing P (x). In our

implementation, we use an off-the-shelf dynamic-taint-

analysis-style exploit detector as a black box for φ for

memory safety vulnerabilities. Using other types of ex-

ploit detectors is also possible. The candidate exploit is

verified when the detector returns unsafe. If the veri-

fier returns safe, and all paths to the new check have not

been analyzed, then we iterate the above procedure on

different code paths until an exploit is generated or all

paths are exhausted.

3.6 Implementation

Our implementation of our three approaches for creating

the constraint formulas is written in a mixture of C++

and OCaml. About 16,500 lines of C++ code is respon-

sible for raising x86 to Vine. There are about 21,000

lines of OCaml. Most of the analysis, including chop-

ping, code optimizations, and interfacing with the deci-

sion procedure is written in OCaml.

4 Evaluation

In this section, we evaluate our approach on 5 differ-

ent vulnerable Microsoft programs which have patches

available. Our experiments highlight that each approach

for constraint formula generation — dynamic, com-

bined, and static — is valuable in different settings. We

show that we can generate exploits when no public ex-

ploit is available (to the best of our knowledge) for the

ASPNet Filter, IGMP, and PNG vulnerabilities. We also

show that we can generate polymorphic exploit variants.

We focus on reporting our results on generating ex-

ploits for the new check which is exploitable, as dis-

cussed in Section 3.1. We also report the order in which

the exploitable check would be found using the least-

changed heuristic from Section 3.1.

4.1 Vulnerability and Exploit Description

DSA SetItem Integer Overflow Vulnerability. The

DSA SetItem routine in comctl32.dll performs memory

management similar to realloc [35]. The procedure

takes in (essentially) a pointer p, a size for each object

s, and a total number of objects n. The procedure calls

realloc(p, s ∗ n). An overflow can occur in the

multiplication s∗n, resulting in a smaller-than-expected

returned pointer size. Subsequent use of the pointer

at best causes the application to crash, and at worst,

can be exploited to hijack control of the application.

DSA SetItem can be called directly, or indirectly by a

malicious webpage via the setSlice JScript method.

In practice, this vulnerability is widely exploited on the

web either by overtly malicious sites and legitimate but

hacked web sites [29].

The patched version adds logic to protect against in-

teger overflow. In particular, it adds a check that over-

flow never happens and the result is < 231 (i.e., always

positive).

EBDS took 371.9 seconds to perform the diff. 21

functions were found changed, and 5 new functions

were added. Given the least-changed heuristic, the ex-

ploitable check would be the 3rd check tried.

Exploit Generated: The exploits we generated caused

a denial of service attack, e.g., Internet Explorer crashed.

Any φ that can detect pointer misuse is suitable: we used

TEMU [2]. We also could specify specific memory lo-

cations to overwrite. Determining the specific address

for a successful control hijack requires predicting the

processes memory layout, which changes each time the

process is invoked. Attackers currently do this by essen-

tially repeatedly launching an attack until the memory

layout matches what the exploit expects. We similarly

repeatedly launch the attack until we achieve a success-

ful control hijack.

ASPNet Filter Information Disclosure Vulnerability

(MS06-033; Bugtraq ID#18920; CVE-2006-1300).

The ASPNet Filter DLL is responsible for filtering ASP

requests for the Microsoft .NET IIS Server, and is vul-

nerable to an information disclosure attack. The module

filters sensitive folder names from a URI request during

processing so that information contained in these folders

is not disclosed upon response. These folders are auto-

matically built using ASP.NET’s default template. For

example, App Data, App Code, and Bin are used to



store data files, dynamically compiled code, and com-

piled assemblies, respectively. An exploit for this vul-

nerability would allow the attacker to view files under

these folders. This is a serious vulnerability because

scripts in these directories often contain sensitive infor-

mation, such as passwords, database schemas, etc. To

the best of our knowledge, there are no public exploits

for this vulnerability.

The unpatched version performs proper filtering for

URI requests that use forward slashes (’/’), but not back-

slashes (’\’). The patched version fixes this vulnerabil-

ity by checking for ’\’ and flipping them to ’/’.

EBDS took 16.6 seconds to perform the diff. One

new function was added, along with 4 changes to exist-

ing procedures to call the new function. The exploitable

check using the least-changed heuristic would be the

first one tried.

Exploit Generated: The exploit we generated was

able to read files in the protected directories. Currently

we do not have implemented a φ that detects such at-

tacks, so we verified the generated candidate exploit

manually.

IGMP Denial of Service Vulnerability (MS06-007;

Bugtraq ID#16645; CVE-2006-0021). The IGMP (In-

ternet Group Management Protocol) protocol is used for

managing the membership of multi-cast groups. An ex-

ploit for this vulnerability is an IGMP query packet with

invalid IP options. The invalid options can cause the

IGMP processing logic to enter an infinite loop. Since

IGMP is a system-level network service, an exploit will

freeze the entire vulnerable system. The patch adds

checks in the IGMP processing routine for invalid IP op-

tions. To the best of our knowledge, there is no public

exploit for this vulnerability. 1

EBDS took 157.08 seconds to diff the patched and

unpatched tcpip.sys. The diff identified that one func-

tion was changed. Using the least-changed heuristic, the

exploitable check would be first.

The exploit we generated successfully caused the

denial-of-service. Currently we do not have imple-

mented a φ that detects deadlock due to an infinite loop,

thus we verified our candidate exploit manually.

GDI Integer Overflow Vulnerability (MS07-046;

Bugtraq ID#25302; CVE-2007-3034). The Windows

Graphic Device Interface (GDI) is the core engine for

displaying graphics on screen. The GDI routine respon-

sible for showing metafile graphics is vulnerable to an

integer overflow. The integer overflow can subsequently

lead to a heap overflow, which at best causes a system

1An EBDS [13] tutorial discusses this vulnerability. However, they

do not create an exploit.

crash, and at worst, can result in a successful control hi-

jack.

The patch addresses the integer overflow by adding

5 additional checks when loading a metafile. The un-

patched version is exploitable when any one of the 5

checks fails.

EBDS took 109 seconds to diff the patch and un-

patched version. The diff identified the 5 additional

checks. Since an exploit can fail any of the 5 checks,

an exploitable check would be tried immediately using

the least changed heuristic.

Exploit Generated: The exploit we initially gener-

ated caused a denial-of-service. This vulnerability is

similar to DSA SetItem: we can specify what to over-

write in the heap structure, but the location of the heap

structure depends upon the process layout. Thus, a suc-

cessful control hijack required repeatedly launching the

attack. Any φ that detects pointer misuse is appropriate:

we used TEMU [2].

PNG Buffer Overflow Vulnerability (MS05-025;

Bugtraq ID#13941; CAN-2005-1211). PNG (Portable

Network Graphics) is a file format for images utilized by

many programs such as Internet Explorer and Microsoft

Office programs. Each PNG image contains a series of

records which specify different properties of the image,

e.g., whether the image is indexed-color or gray-scale,

the alpha channel, etc. In the indexed-color mode, the

record format specifies an additional alpha channel byte

value for each indexed color. A heap-based buffer over-

flow occurs in early Microsoft implementations when

the number of alpha channel bytes exceeds the number

of pre-specified colors.

The patched version adds additional checks to vali-

date PNG record fields. To the best of our knowledge,

there are no public exploits for this vulnerability.

The total time to diff the two vulnerable versions was

27.05 seconds. Changes were only reported in the vul-

nerable procedure, with the exploitable check being the

first using the least changed heuristic.

Exploit Generated: The exploit we generated ini-

tially caused the program to crash, similar to GDI and

DSA SetItem. Again, we use TEMU [2] to confirm can-

didate exploits, but any φ that detects pointer misuse is

also possible. This attack is on the heap, and also re-

quired us to repeatedly launch the attack to achieve suc-

cessful control hijack.

4.2 Patch-Based Exploit Generation using Dy-

namic Analysis

We successfully generated exploits for the

DSA SetItem, ASPNet Filter, and GDI vulnerabil-

ities using dynamic analysis. For DSA SetItem, we

recorded the execution trace of IE 6 loading a valid



DSA SetItem ASPNet Filter GDI

Trace 4.99 4.50 9.92

Formula 0.52 0.14 0.41

Solver 0.17 6.93 0.01

Total 5.68 11.57 10.34

Table 2. Time to generate an exploit us-
ing the dynamic approach. All times are
in seconds.

webpage that calls the setSlice ActiveX control method,

which in turn calls DSA SetItem. For ASPNet Filter,

we recorded IIS processing an HTTP request from a log

file. For GDI, we created an image within a PowerPoint

presentation, then saved the image in the Windows

metafile format. We recorded the execution of a small

GDI application loading the saved file. All execution

traces were recorded using TEMU [2].

Table 2 shows an overview of our results. All times

in the table are in seconds. The “Trace” row shows the

amount of time it took to generate a trace using TEMU.

The “Formula” row shows the amount of time to lift the

trace to our modeling language and produce the con-

straint formula. The “Solver” row indicates how long

it took the solver to solve the formula.

The total time to generate an exploit after diffing

is under 12 seconds in all experiments. If we include

diffing time, then the total exploit generation time for

DSA SetItem is 377.58 seconds, ASPNet Filter is 28.17

seconds, and GDI is 119.34 seconds.

We were not able to generate exploits using the dy-

namic approach for the IGMP and PNG vulnerabilities.

For IGMP, we recorded the execution of Windows pro-

cessing the sample IGMP message from [10]. The iden-

tified new checks were executed. However, the con-

straint formula built was not satisfiable by any input that

failed the new check. The reason is that the particu-

lar execution path taken was already constrained so the

added check could never fail (i.e., was redundant along

that path). For PNG, we were not able to generate an

exploit for a sample execution trace for the same reason:

the path constraints prevented the new check from ever

failing. In particular, the execution of PNG involves the

calculation of a CRC-32 checksum. There were no other

inputs along the chosen path that satisfied the checksum

while failing the new check.

DSA SetItem GDI

no opt opt no opt opt

Model Gen 1.35 1.45 3.61 3.97

Formula 2.48 0.87 3.45 1.02

Solver 182.91 81.15 19.61 21.42

Total 186.74 83.47 26.67 26.41

Table 3. Time to generate exploit using the
static approach. All times are in seconds.

4.3 Patch-Based Exploit Generation using

Static Analysis

We were able to generate exploits for the DSA SetItem

and GDI vulnerabilities using a purely static approach.

For DSA SetItem, the static model included setSlice

and DSA SetItem. For GDI, the vulnerable proce-

dure GetEvent is reachable by the explored API

CopyMetaFileW. Thus, our static model consisted of

these two functions.

Table 3 shows an overview of our results. All times in

the table are in seconds. We include in this table the time

to generate a model of all static paths to the new check

under the “Model” row. For each vulnerability, we also

consider two cases: with and without the optimization

on the model discussed in Section 3.2.3.

Without optimization, we were able to generate ex-

ploits for DSA SetItem in 186.74 seconds. When we

enable optimizations, the time to generate the model in-

creases, but the subsequent steps are much faster. In par-

ticular, the optimizations for DSA SetItem reduce the

time to generate an exploit from the formula by about

55%. We believe further optimizations would likely fur-

ther reduce the solution time. For GDI, the optimiza-

tions had little effect, saving only .26 seconds overall.

We enumerated 3 different exploits for the

DSA SetItem vulnerability. In particular, we enu-

merated both the public exploit, and 2 new exploit

variants.

One way to compare the advantage of the static ap-

proach is to measure the number of paths to the new

check included in the formula. A similar formula us-

ing the dynamic approach alone would require enumer-

ating each path. There are 6 exploitable paths to the new

check for DSA SetItem in the static model we consider.

There are about 1408 total paths in the static model for

the GDI vulnerability.

We were not able to generate exploits statically for

the PNG, IGMP, and ASPNet Filter vulnerabilities. In

the ASPNet Filter vulnerability, there are system calls



DSA SetItem IGMP GDI PNG

Trace Gen 4.99 10.14 9.92 103.28

Model Gen 1.42 2.58 3.36 0.58

Formula 0.31 12.57 .027 0.28

Solver 4.79 3.78 0.26 0.14

Total 11.51 29.07 13.57 104.28

Table 4. Time to generate an exploit using
the combined approach. All times are in
seconds.

not currently supported by our constraint formula gener-

ator. The standard solution is to generate summaries of

the effects [6, 8]. A manual analysis indicates that sim-

ply omitting the various calls would likely still result in

a formula that generates exploits. We leave exploring

such extensions as future work. We could not generate

exploits for all paths statically for the PNG and IGMP

vulnerabilities because the solver ran out of memory try-

ing to solve the generated constraints.

4.4 Patch-Based Exploit Generation using

Combined Analysis

We successfully generated exploits using the combined

approach for DSA SetItem, IGMP, GDI, and PNG. In

our experiments, we use the heuristic to mix at proce-

dure boundaries.

Table 4 show our results when we mix using the dy-

namic trace from Section 4.2 up to the vulnerable pro-

cedure. The static approach generates a formula for the

vulnerable procedure. The two are then spliced together.

The mixed approach works for IGMP and PNG, but

the purely dynamic and purely static approaches do not.

In both cases the purely dynamic approach fails because

the executed path in the trace is not exploitable. In both

cases the static approach also fails because the solver

runs out of memory. The combined approach offers a

way to build a formula for a subset of potentially ex-

ploitable paths without enumerating them individually.

We also measured how mixing reduces the static for-

mula size for the IGMP vulnerability. The shortest call

path to the vulnerable function has length 5: IPRcv-

Packet → DeliverToUserEx → DeliverToUser → IGM-

PRcv → IGMPRcvQuery. We consider mixing at IGM-

PRcvQuery, IGMPRcv, and DeliverToUser, i.e., the for-

mula consists of all paths through 1, 2, and 3 procedures,

and the rest from the dynamic path.

Table 5 shows our results. This table shows that us-

ing the dynamic formula for IPRcvPacket → Deliver-

ToUserEx→ DeliverToUser and the static for IGMPRcv

Dyn:Static Formula Size Solver Time # Paths

4:1 309250 18.94 496

3:2 310414 22.77 496

2:3 6549513 Out of Mem 10416

Table 5. Results for changing the mix point
at different points in the call path to the
vulnerable procedure. The formula size is
the number of expressions in the formula.
Solver time is in seconds.

and IGMPRcvQuery is solvable, while adding all paths

for DeliverToUser creates a formula that is too difficult

to solve. It also shows a common behavior when solv-

ing formulas in our experience: they are either solvable

relatively fast, e.g., within a few minutes, or they are not

solvable within a reasonable amount of time.

5 Implications of Automatic Patch-Based

Exploit Generation

Our evaluation demonstrates APEG for several vulnera-

bilities. Since we must conservatively estimate the capa-

bilities of attackers, we conclude APEG should be con-

sidered a realistic attack model. The feasibility of auto-

matic exploit generation has important implications on

the security landscape. One of the most immediate prob-

lems is rethinking today’s patch distribution practices in

light of these results.

In today’s patch distribution practices, vulnerable

systems typically download patches at different times,

creating a time window from when the first vulnerable

system downloads a patch to the last. Staggered patch

distribution is attractive because it prevents huge traffic

spikes when a new patch is released. For example, re-

cently Gkantsidis et al. conducted a large scale study of

users of Microsoft Update. Their measurements show

that it takes about 24 hours for Windows Update to see

80% of the unique IPs of hosts checking for a patch

[18].These measurements confirm the intuition that not

everyone will receive a patch at the same time, with gaps

of hours if not longer before even the majority receive

the update.

In our results, we are typically able to create exploits

from the patch in a matter of minutes, and sometimes

seconds. Therefore, APEG could enable those who first

received a patch to generate an exploit and compromise

a significant fraction of systems before they even had a

chance to download the update. Note this is irrespective

of whether people actually apply the patch; but whether

they even have the opportunity to apply it.



There are many approaches to fix staggered patch dis-

tribution. We discuss three directions: 1) make it hard

to find new checks (through obfuscation), 2) make it so

everyone can download the update before anyone can

apply it (using encryption), and 3) make it so everyone

can download the patch at the same time (using P2P).

Patch Obfuscation. One approach is to hide what lines

of code changed between P and P ′. In particular, ven-

dors could obfuscate patches such that the difference be-

tween P and P ′ is very large. This approach would be

the easiest to break our particular implementation, since

the results of EBDS [13] would contain too many in-

structions to isolate which checks were added.

The advantage of this approach is obfuscation tech-

niques are widely available. However, there are many

challenges to the obfuscation approach. For example,

figuring out the level of obfuscation necessary to thwart

attackers may be tricky. Simple instruction replacement,

e.g., multiplications by 2 with left shifts, may thwart

EBDS but not a more sophisticated tool that focused

on semantic, not assembly-level syntactic differences.

Another problem is the effects of obfuscation should be

transparent to legitimate users, e.g., obfuscation that de-

grades performance is likely unacceptable.

Patch Encryption. We could initially encrypt patches

so that simply having the patch leaks no information.

Then, after a suitable time period, a short decryption

key (e.g., 128-bits) is broadcast. This scheme allows all

users who have the patch and receive the key to apply

it simultaneously. Others have independently arrived at

similar ideas [32].

Patch encryption allows vendors to use essentially the

same staggered patch distribution architecture while de-

fending against automatic patch-based exploit genera-

tion. Simultaneously (or near simultaneously) distribut-

ing the decryption key is possible since the key is very

small, e.g., 64-bits. Therefore, this scheme is potentially

fair in the security sense: everyone has the same op-

portunity to apply the patch before anyone could poten-

tially derive an exploit. However, one potential prob-

lem is how to handle off-line hosts. A second problem

is the actual fixes are delayed from the users perspec-

tive, which raises a number of policy issues. There are

security-related policy choices, e.g., should patches be

encrypted when a zero-day exploit is available to a few

attackers, but not all attackers. There are also human-

related choices, e.g., people may not like the idea of

having a patch that they cannot apply. Further research

is needed to answer such questions.

Fast Patch Distribution. It may be possible to change

patch distribution so everyone receives the patch at

about the same time. For example, Gkantsidis et al.

propose using a peer-to-peer network for patch distri-

bution in order to reduce the load on patch distribution

servers [18]. Such a peer-to-peer system could poten-

tially also distribute patches faster than the centralized

model. However, such as scheme would still need to ad-

dress off-line hosts. It is also unclear whether such a

scheme is fast enough to combat APEG.

6 Discussion

Generating Specific Exploits. The techniques we de-

scribe generate an exploit from the universe of all ex-

ploits for a patched vulnerability. At a high level, the

solver gets to pick any exploit that satisfies the generated

formula. We can make the formula specific to achieve a

particular attack purpose, e.g., a control hijack attack.

Note that since initially we do not know what vulner-

ability is patched, it does not make sense to try to create

a specific type of exploit a priori. For example, if the

unknown vulnerability is an information disclosure vul-

nerability, it makes no sense to try to create a control

hijack exploit.

However, once we know what vulnerability can be

exploited, we can extend our approach to generate spe-

cific kinds of attacks, as long as we can write the condi-

tions necessary in the modeling language. Vine allows

us to specify meta-properties we would like to hold on

the x86 program. Thus, we can state a meta-property

such as asserting a store instruction overwrites the re-

turn address. For example, the x86 call instruction is

modeled as first storing the return address on the stack,

then jumping to the designated program location. An

x86 return instruction can be modeled as loading a 32-

bit number from the stack, then jumping to the given

address in Vine. In the modeling language, we can add

checks about the x86 program such as the return is to the

same address stored by the call instruction. Overwriting

the stack pointer is just one example: we could monitor

the initial exploit to garner more information about what

sensitive data structures are possible to overwrite. We

leave exploring this as future work.

Dealing with Multiple Checks. The patch for a single

vulnerability may have many new checks in the patched

version. In some cases, our techniques will still work

as in the GDI vulnerability. In other cases, it is not so

clear. Recall that the model is generated with respect

to the patched program. Consider the case where an in-

put has to fail two new checks a and b in sequence to

exploit the unpatched version. Initial exploit generation

for a may generate an exploit, but verification will fail

since by assumption the program is not exploitable when

check a fails alone. We then consider b. Since we are

building a model over the patched program, the model



represents all potential paths through a and b, e.g., the

case where they fail together, but also the case where a

succeeds but b fails. By default the formula generated

by our techniques considers each check independently.

Since the set of inputs which fail b and a is a subset of

those that just fail b, we may get lucky and the deci-

sion procedure returns an input which fails both a and

b. From the security standpoint, it is usually prudent to

assume attackers are lucky. However, we may also get

back an answer where b fails but a does not, since that is

all the formula required. This can be solved by querying

for various combinations of new checks. Since consider-

ing each combination is undesirable, this problem would

benefit from further research.

Note an independent problem is if an update ad-

dresses multiple vulnerabilities. Since our current ap-

proach is considers each check individually, it would

simply be iterated over all checks irrespective of how

many vulnerabilities are patched.

Other Applications of Our Techniques. Our tech-

niques have applications in other areas. For example, au-

tomatic deviation detection is concerned with the prob-

lem of finding any input i for programs P1 and P2 such

that the behavior of P1(i) is different than P2(i). In our

scenario, P1 = P and P2 = P ′, and the deviation input

i = e such that P1 is exploited but P2 is not. Previ-

ous work focused on deviation detection from a single

dynamic trace [4]; we consider multiple paths.

We expect our techniques, especially combined dy-

namic and static formula generation, will be applicable

to many similar problems that require modeling multi-

ple program paths. Most previous work that requires

generating a formula to represent a program path only

focus on a single path for scalability reasons. Our work

shows for the first time that scaling up to multiple paths

is possible. In particular, applying the combined static

and dynamic approach to other settings is an interesting

avenue to explore.

7 Related Work

Fuzzing to find inputs which crash programs essen-

tially tries random or guided semi-random inputs on a

program [15, 20, 24–26]. Fuzzing tools have recently

become popular as a way of finding exploits for pro-

grams, e.g., fuzzing found numerous vulnerabilities in

the Month of Browser Bugs [1]. Recently, fuzzing tech-

niques have been augmented to produce particular kinds

of exploits, e.g., control-hijack exploits for buffer over-

flow vulnerabilities [24]. Unlike fuzzing, our approach

is goal-oriented: we find an input that reach a specific

line of code (the new check). Instead of searching for

vulnerabilities at random, we use the patch as a guide to

generate exploits. Fuzzing and similar techniques also

only consider P , thus do not address generating exploits

from patches.

We use an off-the-differencer to identify changes.

Research in finding semantic differences, such as Bin-

Hunt [17], would help winnow down the number of new

checks for which we try exploit generation.

Our techniques are closely related to automatic test

case generation, which has a long history (e.g., [3, 21–

23]). Our techniques are most closely related to goal-

based test generation (e.g., [21]) where inputs are auto-

matically generated that will execute a given goal state-

ment in the program. Test case generation does not ad-

dress the problem of creating exploits from patches, and

therefore does not address the security ramifications.

Similar techniques for generating formulas in the

static and dynamic approaches have previously been ap-

plied to signature generation [5,6,8,9]. We use the chop-

ping algorithm from our previous work [5], and generate

formulas using the efficient method from [6].

8 Conclusion

We have demonstrated that automatic patch-based ex-

ploit generation is possible in several real-world cases.

In our evaluation, we are able to automatically gener-

ate an exploit given just the unpatched and patched pro-

gram usually within a few minutes. In order to achieve

our results, we developed novel techniques for analyzing

potential exploitable paths to a new sanitization check.

Since best security practices dictate that we conserva-

tively estimate the power of an attacker, our results im-

ply that in security critical scenarios automatic patch-

based exploit generation should be considered practical.

One immediate consequence we suggest is that the cur-

rent patch distribution schemes are insecure, and should

be redesigned to more fully defend against automatic

patch-based exploit generation.
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