
Secure Auctions in a Publish/Subscribe System
�

Dawn Xiaodong Song
Carnegie Mellon University

skyxd@cs.cmu.edu

Jonathan K. Millen
SRI International

millen@csl.sri.com

Abstract

We present an approach to provide a fault-tolerant and secure ser-
vice for sealed-bid auctions. The solution is designed for a loosely
coupled publish/subscribe system. It employs multiple auction servers
and achieves validity and security properties through application of
secret-sharing methods and public-key encryption and signatures. It
can tolerate Byzantine failures of one third of the auction servers and
any number of bidders. A verification of the desired properties has
been machine-checked using PVS. This work also provides insight and
useful experience in techniques for specifying and verifying this type of
system.

1 Introduction

The transition from traditional financial procedures to novel electronic and dig-
ital procedures is taking place worldwide at a surprisingly high speed. Electronic
commerce systems, such as electronic trading, electronic banking, and electronic
exchanges are becoming critical systems for society. As is the case with the tradi-
tional forms of critical systems, electronic commerce systems often require safety
and reliability guarantees. They must be scalable and adaptable. They also require
security properties such as secrecy, anonymity, and non-repudiation.

It’s also commonly agreed that formal specification and verification are needed
to provide solutions of this kind [15] [8] [10]. Many hand-checked protocols are
found to be flawed via formal methods after they are proposed[5] [9] [6]. But there
is still a lack of instructive experience and a systematic way of combining system
building blocks and formal specification and verification techniques to provide a
real solution.

Motivated by these problems, we studied one of these electronic commerce sys-
tems, sealed-bid secure auction service. A sealed-bid auction is one in which secret
bids are issued for a certain item, and when the bidding is closed, the bids will be
opened and the winner will be chosen according to certain publicly known rules.

�

This work was supported by the U.S. Government under contract no. F30602-96-C-0291

2 Song, Millen

Sealed-bid auctions are used in auctioning of various contracts, and in the sale of
different types of goods, such as artwork and real estate [4][14].

Besides efficiency and scalability, sealed-bid auctions have strong security re-
quirements. The identity of the bidders and the contents of the bids should not be
revealed until the bidding is closed. After the bidding is closed, no more bids should
be accepted as valid bids. The auction service should be able to tolerate a certain
degree of corruption of the insiders in the auction house and the maliciousness of
some bidders. In an internet environment, it is necessary to provide the required
functional and security properties in the face of unreliable network communication
and random failures of important components such as auction servers.

Franklin and Reiter have given a solution in the context of monetary bids [4].
Their solution is focused on using a cryptographic technique to provide protections
to monetary bids, such as digital cash bids. It inherits certain properties from the
digital cash scheme used for the bids. In their solution, every bidding message and
auction server synchronization message requires atomic multicast [13] primitives,
which can be a bottleneck in a large system.

In this paper we present a new approach which is built on a loosely coupled archi-
tecture and does not require atomic multicast. Loosely coupled publish/subscribe
architectures have been widely used for scalable, adaptable distributed systems
[11]. Their flexibility makes them a desirable infrastructure for many applications,
but they generally lack fault tolerance and security support in malicious environ-
ments. Our challenge is to integrate fault tolerance and security in a loosely coupled
publish/subscribe architecture in a systematic way and use formal specification and
verification to increase the assurance of the design correctness[17].

Our solution is based on the the direct application of secret sharing and public key
encryption. It can tolerate Byzantine failures of one third of the auction servers and
any number of bidders. It provides a bid receipt service, which is often desirable
in financial activities, and can be used by the bidder to prove that a bid was entered
before the bidding was closed. We use PVS for formal specification and verifica-
tion of the system and the properties [12]. A resulting prototype is in process to
demonstrate the efficiency and scalability of the system.

The rest of the paper is organized as follows: the desired properties of the auction
are summarized in the next section. In Section 3, we present the basic building
blocks of the system and the cryptographic primitives needed in the design. In
Section 4, we give an informal description of the protocol in detail. In Section 5,
we give an overview of the formal specification of the system and some abstraction
techniques. In Section 6, we list the desired system properties as specified in PVS
and explain how we used PVS to prove these properties. Some issues are discussed
in Section 7.

2 Auction Properties

The auction scheme is designed for any number of bidders and auction servers
(also called auctioneers). Some of the auction servers and bidders may be faulty

Secure Auction in a Publish/Subscribe System 3

by either intentionally or incompetently failing to follow the specification of the
protocol. The failure model and other environmental assumptions are discussed in
detail later.

The desired properties of the auction are as follows:

1. The bidding period starts only if at least one good auction server decides that
it should.

2. A good auction server stops accepting bids only after at least one other good
auction server decides that the bidding period should be closed.

3. The identity of the bidders and the content of their bids are not revealed until
the bidding is closed.

4. After the bidding period is closed, no more bids are accepted as valid.

5. Bidders are provided with evidence to prove that their bids are accepted be-
fore the bidding is closed.

6. Winning bid will be determined according to certain publicly known rules.

At the end of the auction, a winning bid is selected. Guarantees regarding the
authenticity, nonrepudiation, and collectability of the bids are not provided by the
protocol itself, but those issues can be addressed separately through construction of
the bid contents.

3 Building Blocks

The three architectural components of the system are:

� a loosely coupled publish/subscribe system,

� a set of cryptographic primitives, and

� an auction protocol.

The first two of these are summarized below. The principal contribution of this
paper is the design and verification of the auction protocol, as described in subse-
quent sections.

3.1 System Characteristics

3.1.1 Loosely Coupled Systems Loosely coupled systems have been developed to
meet the need for large-scale survivable distributed systems [11]. The distinction
between a loosely coupled system and a tightly coupled one lies in the way they
handle process groups [1]. In a tightly coupled system there is a strong notion of
group, sharing a common view of the group membership and the state of the system.
A tightly coupled system often requires reliable multicast and atomic multicast [13].

4 Song, Millen

The group membership protocol and reliable and atomic multicast primitives are
complex and expensive to implement and can be a bottleneck of a system.

Loosely coupled systems, by contrast, do not need a strong notion of group mem-
bership. Instead of atomic multicast, they often use a publish/subscribe infrastruc-
ture where components acting in the role of publishers or subscribers communicate
through a virtual bus (often called an “infobus”). Their great flexibility, adaptabil-
ity and efficiency have made such systems suitable for very large and wide-area
networks.

3.1.2 Publish/Subscribe Architecture In a publish/subscribe system, messages have
a subject and a content field. Publishers publish messages under certain subjects.
Subscribers subscribe to subjects of interest and receive the messages that are pub-
lished under those subjects. Publish/subscribe systems are flexible because the
subjects and contents of messages are minimally constrained by the core com-
munication architecture. Subjects may have hierarchically organized, application-
defined modifiers or subtopics, and the format of the message content can be defined
freely according to the needs of the applications. Publish/subscribe also provides
anonymity of publishers and subscribers.

For the auction scheme, there will be an auction subject, with modifiers identify-
ing a particular auction and indicating whether the message is intended for auction
servers or bidders. Auction Servers and bidders both publish and subscribe to ap-
propriate message subjects as defined by the protocol. For each particular auction,
there is a fixed set of auction servers of known size.

The subject field and subscription mechanism cannot be depended upon to sup-
port security objectives such as authenticating authorized publishers or restricting
distribution of particular types of messages. For these and other security functions,
we make use of additional cryptographic services.

3.1.3 Failure Model The failure model has two aspects: the reliability of message
delivery in the network and the correctness of infobus clients, either auction servers
or bidders.

The network is not assumed to be totally reliable. Messages can be delayed or
lost or received out of order. However, the protocol is not designed for arbitrary
network failure or indefinite denial of message delivery. It would not make sense to
assume that an attacker can intercept any and all messages, since then the attacker
can simply intercept all bidding messages from other bidders and only let its own
bid go through.

It is assumed that published messages will be delivered to a sufficiently large
portion of the network within a bounded time. That is, any routing failures or
denial of service attacks, whether they are permanent or intermittent, can affect
only relatively small segments of the network. By “relatively small,” we refer to
the proportion of auction servers that may be affected. Since nothing is said about
order of delivery, this assumption does not fall precisely into previously defined

Secure Auction in a Publish/Subscribe System 5

categories of “unreliable” or “reliable” communication in sources such as [4] and
[11].

The second aspect of the failure model is the possible dishonesty of auction
servers, possibly in collusion with bidders. We adopt a Byzantine failure model in
which faulty auction servers may depart from the auction server protocol, withhold
messages expected from it, subscribe to all auction-related messages, and publish
all kinds of auction-related messages. A bidder may also be faulty and misbehave
by submitting improper bids or publishing them at improper times.

A “good” auction server is one that is not faulty and lies in a segment of the
network where messages published to other good auction servers will be received
by all good auction servers in a bounded time. In practice, it may be necessary to
send messages repeatedly to ensure delivery, and this can be a normal function of
the basic publish/subscribe transmission protocol. The bounded-time assumption is
discussed further in the Issues section at the end.

We assume that at most a specified number
�

of the � auction servers are not
good, and that ����� ���	� . Any number of bidders may be faulty or isolated in parts
of the network behind unreliable routers. Some bids may be lost for this reason.

3.2 Security Support

3.2.1 Public Key Infrastructure The protocol will make use of a public-key cryp-
tosystem that must be used by auction servers and bidders for encrypting and sign-
ing messages, as called for in the protocol. We assume that there is a certification
authority that can provide public key certificates prior to the auction. Implementing
a practical public-key certification infrastructure is nontrivial, but this task is sep-
arable from the conduct of the auction. In fact, there may be many services other
than an auction service that would make use of common key management facilities.

One auction-service-specific function is required of the certificate authority: the
certificate for an auction server’s public key should indicate that its role as an auc-
tion server is authorized.

3.2.2 Secret Sharing We also need a threshold secret sharing scheme. An
���
���� -
threshold scheme permits a message to be projected onto � shares such that any �
of them can be combined to reconstruct the original message, but less than � of
them cannot. Several algorithms for this are given in Section 23.2 of [19].

4 Protocol Description

We assume that there are a set of � auction servers, denoted by ��� ,..., ��� . The
number � is fixed for a given auction. We assume that ����� ����� . For brevity,
we refer to auction servers as “servers,” though technically they are “clients” on
the infobus. ��� has server ID s � . There may be any number of bidders ��� , with
identifiers b� . The auction has a unique auction ID, denoted as aid.

6 Song, Millen

All messages relating to this auction are published under an “auction” subject
qualified by the auction ID. Some messages are intended solely for auction servers
or bidders, and for efficiency that fact may be indicated as a subject modification as
well. From an abstract or security point of view, it does not matter whether a field
is part of the subject or part of the content of a message, and we assume that hostile
parties can eavesdrop on all messages.

For simplicity of the representation, we introduce some shorthand denotations.
For any message � ,

� ��� � is the encryption of � by server � � ’s public key. It is
assumed that any auction participant can look up and use � � ’s public key given s � .

For any message � ,
� ��� � is � signed by server ��� ’s private key. We assume that �

is recoverable from
� ��� � , and that the signature can be checked by any participant

given s � .
All server messages in the protocol are signed, so that other servers will know

they are authentic. This is important to determine subsequent server actions and
to justify inferences about the state of good servers. Authentication of bids is not
indicated in the protocol because it affects only the internal structure of bids, and
it matters only for bid evaluation, which occurs after the protocol as specified has
concluded.

We use a
 ��� �
�� � -threshold sharing scheme, where
�

is the maximum tolerable
number of faulty servers. SSF �
�� � is the � th share of a secret � .

A server’s state transitions are depicted in Figure 1. A bidder’s state transitions
are depicted in Figure 2.

starting

bidding

closing

opening

reconstructing

prestart

Figure 1: Server State Transitions

prebid bidding commit

Figure 2: Bidder State Transitions

S.1 Starting the bidding When server ��� decides that the bidding should be started, it
publishes a start message: aid
 s �
 � aid
 start � � . When � � has received start messages
from at least

� � �
different other servers, it considers the bidding started and starts

to accept bidding messages from bidders.

Secure Auction in a Publish/Subscribe System 7

B.1 Submitting bids Suppose a bidder ��� decides to submit a bid � � . The format of� � will be discussed later.
� � breaks � � into shares � � ��� SSF �
�� � �
 for ��� �
����	�
�� . Then � � generates the

bid message:

��� aid
 b�
 � � � � � �
����	�
 � � � � � � �

This message is published to all servers.

S.2 During bidding When server ��� receives a bid

� from a bidder � � during the

bidding, it publishes a receipt:

aid
 b�
 s �
 � hash
 aid

� � � �

where hash may be any standard one-way hashing function.

B.2 Committing the bids When ��� receives a receipt from � � , it checks the validity
of the receipt by checking the signature on the hash value. After � � receives valid
receipts from at least � � � � different servers, it enters its commit phase. Until then,
it will either wait or periodically retry submitting the bid. We assume, essentially as
part of the definition of a “good” server, that all good servers will eventually receive
and acknowledge a correctly formatted bid.

S.3 Closing the bidding When ��� decides that the bidding should be closed, it pub-
lishes a signed close message:

aid
 s �
 � aid
 close � ���
When � � has received close messages from at least

� � �
different other servers, it

considers the bidding closed and stops accepting any more bidding messages from
the bidders.

Suppose ��� received
 � bids in total. Let � � be the set of indices of the bidders
whose bids were received by � � . Thus, � � is of size
 � . For each ����� � , � � decrypts
its share of ��� ’s bid, namely � ��� .

It then publishes a fingerprint of the set of bids that it has received:

aid
 s �
 � hash
 aid
��
 b �
�� ���

� ������� �"! � � �
.

The fingerprint contains a signed hash of a list of triples, one for each received
bid; each triple has the bidder ID, ��� ’s bid share, and the complete bid message.
(Faulty servers may or may not send out a fingerprint message, but if they do, it is
received by all good servers.)

8 Song, Millen

S.4 Opening the bids After a bounded time, all the good servers should have stopped
receiving bids, and have published their fingerprints. Since there are at most

�
faulty

servers, there are at least ��� � fingerprints published.
After a bounded additional time, each good server � � will have received fin-

gerprint messages from all other good servers. They republish all the fingerprint
messages that they have received. The inconsistent messages will be considered as
from faulty servers and will be discarded. So all good servers will have the same
set of fingerprint messages. Then it publishes its bid-set message, containing the
information that was hashed to compute the fingerprint. The bid-set message is:

aid
 s �
 � �
 b �
�� ���

� � ��� ��� ! � ���
S.5 Reconstructing the bids After another bounded additional interval, each good
server � � will have received all bid-set messages sent by all other good servers.

When � � receives a bid-set message from � � , it first checks whether it matches the
fingerprint from � � by computing the hash value. If they don’t match, it means ��� is
faulty and that bid-set message is discarded by � � (and all other) good servers.They
republish all the bid-set messages that they have received. The inconsistent mes-
sages will be considered as from faulty servers and will be discarded. So all good
servers will have the same set of bid-set messages.
� � reconstructs the bid from � � as follows. Let

� ��� be the set of indices of servers
� � from whom a bid-set message with

� has been received by � � .

For each index � � � ��� , ��� can extract � � ’s share of ��� ’s bid � � , namely � � � , from
the � th bid-set message, compute

� � � � � � , and compare this with the value from the
bid message

� . If they match, the share � � � is valid and can be used to reconstruct

the bid � � .
If
� ��� contains at least

� � �
elements, then ��� combines those

��� �
shares to

construct a value ���� that should be equal to the bid � � .
If there exists any � such that

�
SSF �
����� � � ���� � � � � � � , where

� � � � � � is taken from
the bid message

� , then ��� discards the bid from � � .

In this way, ��� reconstructs a set of bids and selects a winner according to the
publicly-known rule for the auction.

All the good servers will reconstruct exactly the same set of bids, because each
of them received the same set of bid-set messages. The majority of the servers will
agree on a selection, since good servers are in the majority, and that selection is
declared the winner of the auction. Issues such as authentication and enforcement
of the bids will be discussed in a later section.

5 Formal Specification of the System

The secure auction service system is a distributed system composed of asyn-
chronous processes, namely, the auction servers and bidders. Systems and most
programming language structures can be modeled as state machines[18]. A state

Secure Auction in a Publish/Subscribe System 9

machine consists of some encoding of the system state, and the next-state transition
relationship.

Compositional reasoning and verification are often necessary and desired to sim-
plify the complexity of a verification[3]. The state of a distributed system can be
viewed as the composition of the local states of its component processes. The state
transition relation, as well, can be decomposed into local state transitions per com-
ponent.

Abstraction of the system structure, including communication and cryptographic
primitives, is necessary for protocol level specification and verification. In this
section, we describe how we use composition and abstraction techniques for the
system specification.

For the secure auction service system, the global state is the composition of the
local states of the components representing auction servers and bidders. Each of
these components operates asynchronously according to a local state transition re-
lation. There are two local transition relations, one for auction servers and one for
bidders.

All auction servers have the same state structure, and so do all of the bidders.
These structures are described in the next subsection.

The infobus is modeled using local state variables that record the sets of messages
that have been published by each participant. The state of the infobus is the union
of all of these locally-defined sets.

The global state structure is summarized schematically in Figure 3. The figure
shows how the auction server state and the bidder state are decomposed into state
variables. The infobus state also has components, each of which is derived as the
union of corresponding local state components.

5.1 Abstraction of the Auction Server

An auction server is a local state machine with the state variables shown in Fig-
ure 3. The phase variable has one of the values prestart, starting, bidding, closing,
opening, reconstructing. wantStart and wantClose are boolean variables that indi-
cates when the auction server decides that it’s time to start or close, respectively.

start buffer, close buffer, bids buffer, fingerprint buffer and bidset buffer are sets
of IDs identifying servers and bidders from whom messages of these kinds have
been received.

openBid is the set of IDs identifying bidders whose bid shares have been opened
by this auction server, i.e., those that are included in its bid-set message.

holdShare buffer is the set of all the shares that the auction server can decrypt
from its bids buffer. holdBid buffer is the set of all the bids that the auction server
reconstructs at the end.

sendStart and sendClose are boolean variables that indicate when the auction
server has already sent out start or close messages. receipt buffer is the set of all
the IDs of bidders whose bid it has acknowledged by a receipt.

10 Song, Millen

GState

AState BState BusState

phase
wantStart
wantClose
start_buffer
close_buffer
bids_buffer

fingerprint_buffer
bidset_buffer

openBid
holdShare_buffer
holdBid_buffer

sentStart
sentClose

receipt_buffer

good
phase

wantBid
receipt_buffer

start_buffer
close_buffer
bids_buffer

receipt_buffer
fingerprint_buffer

shares_buffer

Figure 3: Global State Structure

Secure Auction in a Publish/Subscribe System 11

5.2 Abstraction of the Bidder

A bidder is a local state machine with the local state variables shown in Figure 3.
good is a boolean flag that indicates whether the bidder is “good,” that is, if it
follows the protocol specification. The phase variable has one of the values prebid,
bidding, commit. wantBid is a boolean variable that indicates that when the bidder
decides that it’s time to submit its bid. receipt buffer is the set of IDs of servers
from whom the bidder has received a receipt.

5.3 Abstraction of the Publish/Subscribe Communication

The bus has a state with six components. Each component is a set of IDs of
servers or bidders who have published messages of each type: start buffer, close buf-
fer, bids buffer, receipt buffer, fingerprint buffer and shares buffer. These sets are
computed from corresponding state variables in the local states of the servers and
bidders.

In any state transition in which a message is published, that fact is recorded in the
local state of the publisher, and appears also by definition in the state of the bus. A
message can be received (as indicated in a local state variable) only if the message
has previously been published, as recorded in the current bus state. This is a fact
about the construction of the next-state transition relation. Also, by construction,
each buffer set is nondecreasing.

While some state variables contain sets of messages, such messages are formal-
ized as elements of a primitive type, so that the actual contents and formats of
protocol messages are not explicitly represented in the specification. Instead, their
essential properties are axiomatized.

6 Formal Specification and Verification of Security Properties in PVS

This section describes how the auction protocol was specified and verified using
the PVS environment.

6.1 PVS Overview

PVS is a integrated environment for specification and automated verification de-
veloped at SRI [12]. PVS specification language is based on higher-order logic
with a richly expressive type system. It supports standard theories of integers, sets,
functions, and relations, as well as the ability to construct new abstract data types.
The PVS theorem prover consists of a powerful collection of inference steps aug-
mented with a library of decision procedures and the ability to add user-defined
proof strategies.

A PVS specification is divided into theories, each defining a related set of data
types and stating axioms and theorems about them. Data type declarations resemble
those in a strongly-typed programming language. The bulk of the auction service

12 Song, Millen

specification is in a single theory that introduces types for the state data structures
summarized above.

The subsections below show how the essential property of the shared secret func-
tion is axiomatized and how the auction service properties are stated. A few remarks
about PVS notation should be sufficient to read these formulas.

The new data types include ID, GID, BID, and trace. The ID type consists of
all auction server IDs, with a subtype GID of good server IDs. The BID type is
for bidder IDs. A trace is, by definition, a sequence of global states beginning with
an initial state and such that each consecutive pair of states is consistent with the
transition relation.

Components of a structure are accessed by using the component names as func-
tions. Local states are obtained from a global state by indexing on the ID, so that,
for example, the holdBid component of server � in the global state � is
holdBid(astate(g)(i)).

In PVS, a set can be represented by a boolean function. Thus, the formula � ��������
�� ��� would appear in the specification as G(x), and the set itself is written
(G).

The shared-secret function invocation SSF �
 � � is written SSF(i)(j), and card
is the cardinality function.

6.2 Axiomatization of the Shared Secret Function

The mathematical properties of the threshold sharing scheme are captured by the
following axiom, stating that at least

��� �
shares of a bid must be held by a server

� � , as indicated in its holdShare state variable, in order for that server to hold the
reconstructed bid, as indicated in its holdBid state variable. This is stated as true for
every global state in a trace. The contents of holdBid are not affected or constrained
by any other part of the specification.

holdBid_true: AXIOM
FORALL (trace1:trace,j:nat,i:ID,b:BID):

holdBid(astate(trace1(j))(i))(myBids(b)) AND
good(bstate(trace1(j))(b)) <=>
(EXISTS (y:finite_set[below[N]]):
(FORALL(a:(y)):
holdShare(astate(trace1(j))(i))(SSF(myBids(b))(a))) AND
card(y)>t)

6.3 Invariants

The desired properties of the system are invariants; they are true of every reach-
able state, i.e., every state in a trace. They are proved inductively by showing that
they are true in an initial state and preserved by all state transitions.

Secure Auction in a Publish/Subscribe System 13

� Safe1: THEOREM
FORALL (trace1: trace, j:nat, gid:GID):

phase(astate(trace1(j))(gid))=bidding =>
EXISTS (i:GID): (wantStart(astate(trace1(j))(i))

The bidding period starts only after a good auction server decides that it
should start.

� Safe2: THEOREM
FORALL (trace1: trace, j:nat, gid:GID):

phase(astate(trace1(j))(gid))=opening =>
EXISTS (i:GID): (wantClose(astate(trace1(j))(i)))

A good auction server stops accepting bids only after some good auction
server decides that the bidding period should be closed.

� pss: THEOREM
FORALL (trace1:trace,j:nat,i:ID,b:BID):
holdBid(astate(trace1(j))(i))(myBids(b)) AND
good(bstate(trace1(j))(b)) =>
CLOSE_bid(trace1(j))

Before the bidding is closed, the identity of the bidder and the bids of the
bidder are not revealed. CLOSE bid(�) is defined as true if all good servers
in global state � have reached at least the opening phase.

� Uniform: THEOREM
FORALL (trace1:trace,j:nat,i1:GID,i2:GID,b:BID):
(holdBid(astate(trace1(j))(i1))(myBids(b)) AND i1/=i2
AND Open_bid(trace1(j))
AND good(bstate(trace1(j))(b))) =>
holdBid(astate(trace1(j))(i2))(myBids(b))

After the bids are reconstructed, all the good servers reconstruct the same set
of bids.

� Close1: THEOREM
FORALL (trace1:trace,j:nat,i:GID,b:BID):
(holdBid(astate(trace1(j))(i))(myBids(b)) AND
good(bstate(trace1(j))(b))) =>
validBid(trace1(j))(b)

After the bidding period is closed, no more bids can be accepted as valid bids.
validBid(�)(�) is defined as true in a global state � if the bid from � has been
accepted by at least one good server.

� commit: THEOREM
FORALL (trace1:trace,i:GID,b:BID,j:nat):

phase(bstate(trace1(j))(b))=commit

14 Song, Millen

AND good(bstate(trace1(j))(b))
AND Open_bid(trace1(j))
=> holdBid(astate(trace1(j))(i))

If a good bidder commits, its bid is guaranteed to be reconstructed and taken
into final consideration as a in-time bid.

7 Design and Modeling Issues

This section discusses some issues regarding assumptions and design choices that
were made in the present protocol design.

7.1 Other properties of the Auction

At the conclusion of the protocol as presented, all good servers have opened the
same set of bids and agreed on a winner. The identity of the bidder supplying
that bid is not guaranteed by the protocol. Any authentication or nonrepudiation if
needed can be provided by some other cryptographic primitives and the format of
the bids which is application-specific.

7.2 Delivery of electronic goods

If the object of the auction is in electronic form, such as software or a postscript
file, our original approach can be extended to secure delivery as follows. Every
bidder will include a public key in its bid. Then the goods can be transmitted
confidentially to the winner by using the public key provided in the winner’s bid.
This public key need not be certified, because it is in the interests of the winner to
provide the correct key, and the good servers will agree on its value.

We might also ask where the file to be awarded was held prior to delivery to the
winner. Rather than trust any one server to hold it, it can be split using a
 � ���
�� �
secret-sharing scheme among all servers. Each server will publish its own share
encrypted by the winner’s public key so that the winning bidder will receive enough
shares to reconstruct the item, and a collusion of faulty servers will not be able to
reconstruct it.

7.3 Externally Triggered Transitions

Certain state transitions occur as a result of the passage of time, based on as-
sumptions about the reliability of good servers and network message delivery. Good
servers decide to start the bidding and close the bidding according to a predefined
date/time schedule for the auction or some external event. They consult a local
system clock or receive some other events to trigger those state changes. The trig-
gering events may be out of synchronization, but the protocol compensates for this
by forcing good servers to undergo the phase change when it has received signal
messages from

��� �
other servers. The number

��� �
means that at least one good

server has sent out its signal.

Secure Auction in a Publish/Subscribe System 15

Event-triggered state changes are indicated with boolean state variables. In the
specification, they are set nondeterministically.

7.4 Time Bounds

A good server opens bids only when it knows that all good servers have stopped
accepting bids and published their fingerprints. This knowledge comes not from
having received any particular number of close or fingerprint messages, but rather
from the time bound on actions of good servers and delivery of their messages.
The transition to opening bids is triggered in the specification by a predicate on
the global state testing whether all good servers have published their fingerprint
messages.

The assumption that good servers can send messages to one another within a
known time bound is a strong but reasonable assumption. The protocol will fail if
some global outage (internet worms, satellite failure, etc.) affects a large portion
of the network for an excessive time. We are investigating whether we can weaken
the delivery assumption by making use of failure detectors or by assuming instead
partial synchrony, where a time bound exists but is not known [2]. Alternatively,
it may be adequate to recognize, when a known time bound passes, that an insuffi-
cient number of good servers has responded, and declare the auction invalid without
compromising the bids. In the present protocol, if too many servers go out of com-
munication, it is a liveness rather than a safety or security problem, since the bids
will remain secret.

8 Conclusions

The motivation for this work was to understand whether it is possible to integrate
fault-tolerance and security into loosely coupled publish/subscribe systems and to
combine the system building blocks with formal techniques to provide possible
solutions for electronic commerce systems, particularly a secure auction service.

We have accomplished these goals, and gained assurance in the correctness of the
design through the use of an established specification and verification facility. One
of the beneficial consequences of the verification activity was a better understand-
ing of what assumptions to make about message delivery, leading us to a different
category of “reliable” transmission that is reasonable for a publish/subscribe sys-
tem.

We are in the process of implementing a prototype system demonstrating the
design, using the Java Infobus application program interface.

Acknowledgements

Thanks to John Rushby for helpful discussions and advice. Thanks to Sergey
Berezin and others at SRI for help with PVS.

16 Song, Millen

References

[1] K. P. Birman. The process group approach to reliable distributed computing.
Comm. ACM, 1993.

[2] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-
ence of partial synchrony. Journal of the ACM, 1988.

[3] E.Clarke, D.Long, and K.McMillan. Compositional model checking. In Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Science,
pages 353–362, 1989.

[4] M. K. Franklin and M. K. Reiter. The design and implementation of a secure
auction service. In IEEE Security and Privacy Symposium, pages 2–14. IEEE
Computer Society, 1995.

[5] G.Lowe. Breaking and fixing the needham-schroeder public-key protocol us-
ing FDR. In Proceedings of TACAS, Lecture Notes in Computer Science,
volume 1055, 1996.

[6] Li Gong, R.Needham, and R.Yahalom. Reasoning about belief in crypto-
graphic protocols. In Proceedings of 1990 IEEE Symposium on Research in
Security and Privacy, 1990.

[7] L.Lamport and M.Pease. The byzantine generals problem. ACM TOPLAS,
1982.

[8] L.Paulson. Proving properties of security protocols by induction. In 10th
IEEE Computer Security Foundations Workshop, 1997.

[9] M.Burrows, M.Abadi, and R.Needham. A logic of authentication. In Pro-
ceedings of the Royal Society, volume 426 of A, pages 233–271, 1989.

[10] Catherine Meadows. The NRL protocol analyzer: an overview. Journal of
Logic Programming, 1996.

[11] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus - an archi-
tecture for extensible distributed systems. ACM Operating Systems Review,
27(5):58–68, 1993.

[12] S. Owre, J. M. Rushby, N. Shankar, and F. von Henke. Formal verification for
fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Trans.
on Software Engineering, 21(2):107–125, February 1995.

[13] Michael Reiter. Secure agreement protocols: Reliable and atomic group mul-
ticast in rampart. In 2nd ACM Conference on Computer and Communications
Security, November 1994.

Secure Auction in a Publish/Subscribe System 17

[14] R.McAfee and J.McMillan. Auctions and bidding. Journal of Economic Lit-
erature, 1987.

[15] John Rushby. Formal methods and their role in the certification of critical
systems. Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI
International, Menlo Park, CA, March 1995.

[16] John Rushby. Systematic formal verification for fault-tolerant time-triggered
algorithms. In Mario Dal Cin, Catherine Meadows, and William H. Sanders,
editors, Dependable Computing for Critical Applications—6, volume 11
of Dependable Computing and Fault Tolerant Systems, pages 203–222,
Garmisch-Partenkirchen, Germany, March 1997. IEEE Computer Society.

[17] John Rushby and Friedrich von Henke. Formal verification of algorithms for
critical systems. IEEE Transactions on Software Engineering, 19(1):13–23,
1993.

[18] Fred Schneider. Implementing fault-tolerant services using state machine ap-
proach: a tutorial. ACM Computing Serveys, 1990.

[19] B. Schneier. Applied Cryptography. Wiley, 1996.

