
BinHunt: Automatically Finding
Semantic Differences in Binary Programs

Debin Gao1, Michael K. Reiter2, and Dawn Song3

1 Singapore Management University
dbgao@smu.edu.sg

2 University of North Carolina at Chapel Hill
reiter@cs.unc.edu

3 University of California, Berkeley
dawnsong@cs.berkeley.edu

Abstract. We introduce BinHunt, a novel technique for finding seman-
tic differences in binary programs. Semantic differences between two bi-
nary files contrast with syntactic differences in that semantic differences
correspond to changes in the program functionality. Semantic differences
are difficult to find because of the noise from syntactic differences caused
by, e.g., different register allocation and basic block re-ordering. BinHunt
bases its analysis on the control flow of the programs using a new graph
isomorphism technique, symbolic execution, and theorem proving. We
implement a system based on BinHunt and demonstrate the applica-
tion of the system with three case studies in which BinHunt manages to
identify the semantic differences between an executable and its patched
version, revealing the vulnerability that the patch eliminates.

1 Introduction

Many software vendors make the source code of their programs unavailable.
When a program needs to be updated (for patching vulnerabilities and errors),
they release a new version in binary format but refuse to disclose details of the
changes made. However, it is of great interest for consumers of the software
to understand the differences in two versions of the program. Binary difference
analysis is one of the most useful techniques in finding these differences.

There are many reasons why consumers want to know the differences between
the two binary files. For example, when an update of a program is available, the
consumers need to make a decision whether to apply the update. Such a decision
may require security analysis of the updated version, which is usually an expen-
sive and time-consuming process. Binary difference analysis can simplify and
speed up this process because one can reuse the security properties of the earlier
version and focus the analysis on the difference between the two versions. A
similar application of binary difference analysis is profile reuse in application de-
velopment [15]. A large program, with millions of lines of code, may be used in a
large variety of ways by different users on different machines. To characterize the
program behavior, extensive collection of profile data is required. For example,

L. Chen, M.D. Ryan, and G. Wang (Eds.): ICICS 2008, LNCS 5308, pp. 238–255, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

BinHunt: Automatically Finding Semantic Differences in Binary Programs 239

BMAT is a tool that matches two versions of a binary program to propagate
profile information from an older, extensively profiled build to a newer build.
Another reason why binary difference analysis is useful is that in many cases
the differences in two versions of a program correspond to vulnerabilities in the
earlier version that the later version patches. One may be able to find vulnera-
bilities in a program using binary difference analysis, and subsequently exploit
those vulnerabilities and attack consumers who have not applied the update.

Although such binary difference analysis is very useful, it is different from
the binary difference tools that we use to produce and apply patches (bsdiff,
bspatch, xdelta, jdiff, jpatch, and etc.), because many syntactic differences may
not correspond to semantic changes in the program. In the next section, we
will carefully define what syntactic and semantic differences are, but intuitively
semantic differences correspond to changes in the program functionality, and are
what we seek to identify in this paper.

Finding the semantic differences between two binary files is challenging for
many reasons. For example, a small change in the source code may cause the
compiler to use a different register allocation in other parts of the program in
which the corresponding source code remains the same. Similarly, a small change
in the source code may change the size of a small number of basic blocks, which
further triggers the compiler to re-order many other basic blocks in the binary
file. For these and other reasons, a small change in source code may lead to
many changes throughout the binary file. For example, in one of the case studies
we report, the patch of the gzip program consists of only 5 additional lines
of code in one function, but all the 75 non-empty functions in the resulting
binary file are changed (see Sect. 6). To find semantic differences between such
binaries, we must match semantically identical basic blocks that are nevertheless
syntactically different and located differently, and similarly match semantically
identical functions. In this paper, we use “match” and “matched pair” to denote
a pair of basic blocks (or a pair of functions), one from each binary file, and use
“matching” to refer to a set of matched pairs of basic blocks (or functions) in
which any basic block (respectively, function) from the first file is matched to at
most one from the second file, and vice versa.

We propose a novel technique, called BinHunt, to find the semantic differ-
ences between two binary files by analyzing the control flow of the program.
The control flow reflects the functionality and seldom changes because of, e.g.,
different register allocations or basic block re-ordering, making it an attractive
feature for finding the semantic differences. BinHunt first constructs a control
flow graph (CFG) for each function and a callgraph (CG) for the entire binary
file. After that, a customized graph isomorphism algorithm is used to find the
best (partial) matchings between functions and between basic blocks. Our graph
isomorphism algorithm is more accurate than previous techniques used in bi-
nary difference analysis, because its backtracking will replace erroneous matches
by better ones, whereas previous approaches are greedy and erroneous matches
will propagate through the isomorphism process. The output of this algorithm
is a (partial) matching between functions in the two binary files, and a (partial)

240 D. Gao, M.K. Reiter, and D. Song

matching between basic blocks in two matched functions. It also outputs a match-
ing strength for each match of functions or basic blocks, which tells how similar
the two functions or basic blocks are. The matchings together with the matching
strengths tell us where the semantic differences are.

A component of BinHunt is a method to accurately compare two basic blocks
using symbolic execution and theorem proving. This novel technique helps de-
termine if two basic blocks are functionally equivalent. It provides a guarantee
that if two basic blocks are found to be different by BinHunt, then they must
not be functionally equivalent. To the best of our knowledge, this is the first
paper introducing such a technique for binary difference analysis. Being able to
accurately compare two basic blocks not only improves the accuracy of the graph
isomorphism computation, but helps in finding its solution faster.

We have implemented a system based on BinHunt and report on three case
studies where we have used it to locate the semantic differences between bina-
ries, which in these cases correspond to vulnerabilities in one version of a binary
that was patched in the subsequent version. Note that when used to find soft-
ware vulnerabilities, BinHunt is not meant to replace existing tools to generate
exploits from syntactic binary differences [2], but instead to augment such tools.
For example, in one of our case studies, all of the 75 non-empty functions in the
binary change syntactically as the result of a very small change to one of the
functions in the source code. Rather than applying an exploit-generation tool
of Brumley et al. [2] to each of such a large number of syntactic differences to
find the one that can be exploited, BinHunt can help identify the one semantic
difference so that subsequent analysis can focus on that.

2 Problem Definition and Overview of Our Approach

Given are two binary files, which are usually two versions of the same program,
possibly compiled with optimizations for increased performance. We assume that
source code of these binary files is not available. We also assume that function
names extracted from these binary files are unreliable for the purpose of binary
difference analysis, since they can be changed easily.1

The outputs of the system are a (partial) matching between functions from
the two binary files, a (partial) matching between basic blocks from two matched
functions, and a matching strength for each pair of matched functions or basic
blocks. The matching strength tells how similar the matched functions or basic
blocks are. Unmatched functions and unmatched basic blocks, as well as matched
functions and matched basic blocks with low matching strengths, constitute the
semantic differences found between the two binary files.

The difference between two functions or between two basic blocks could be
syntactic and semantic. Syntactic differences refer to differences in the instruc-
tions, whereas semantic differences refer to differences in functionality (i.e.,
input-output behavior). It is possible that a syntactic difference is not semantic.
1 This is especially important when BinHunt is used to analyze malware, where at-

tackers intentionally make static analysis of the software difficult.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 241

As mentioned in Sect. 1, basic blocks could use different register allocations to
perform the same task, which means that the two basic blocks with different
instructions may have the same functionality. Similarly, basic block re-ordering
may make two functions look very different, but the two functions could provide
exactly the same functionality. Here we are concerned with finding semantic dif-
ferences, and so the output matchings and matching strengths from BinHunt
should eliminate functionally identical functions and identical blocks from con-
sideration, by matching them to one another with high matching strengths.

BinHunt uses a graph isomorphism technique, applied to the control flow and
call graphs of the two binary files, to find the partial matchings between func-
tions and between basic blocks. In order to compute isomorphisms on graphs,
BinHunt first needs to find the control flow of the programs. This is achieved
by first disassembling the binary files and locating the code segments. The x86
instructions are then converted into an intermediate representation for construct-
ing the control flow graphs and callgraphs. The graph isomorphism computation
in BinHunt uses a novel technique to compare the functionality of basic blocks.
This is achieved by symbolically executing the two basic blocks and using a the-
orem prover to test whether the effects of the basic blocks are always the same.
With this novel technique for comparing the basic blocks, BinHunt is able to
filter out most syntactic differences that do not correspond to semantic changes
in the binary files.

3 System Architecture

Figure 1 shows the overall system architecture. The binary files are first passed
to a front-end disassembler, which outputs a sequence of x86 instructions. Next,
the x86 instructions are converted into an intermediate representation (IR) for
easier and more accurate analysis. The IR is then used for control flow analysis,
where the output is a set of control flow graphs (CFGs), one for each function,
and a callgraph (CG) for the binary. In the last step, the CFGs and CG of the
two binary files are passed to our graph isomorphism engine to find a matching
between functions, a matching between basic blocks in matched functions, and
matching strengths for each pair of matched functions and basic blocks.

Fig. 1. Overall architecture of BinHunt

3.1 Disassembler

The disassembler parses each binary file and locates the code segments, which
are disassembled into a sequence of x86 instructions. We implement a plug-in to

242 D. Gao, M.K. Reiter, and D. Song

IDA Pro [6], a commercial disassembler, to do this, though other disassemblers
could be used as well.

3.2 Intermediate Representation

The x86 computer family has a CISC (Complex Instruction Set Computer) in-
struction set, and is widely regarded as a very complicated set of instructions. For
example, it consists of about 300 instructions; instructions are of variable length;
and arithmetic instructions may set status bits, making them have side effects.
It has undergone numerous changes over time, most of which were to add new
functionality while maintaining backward compatibility. The complex nature of
the x86 instruction set makes its static analysis difficult. In fact, some research
even takes advantage of this complexity to obfuscate binary executables to im-
prove their resistance to static analysis [10]. Because of this, some researchers
choose to perform the analysis on an intermediate representation (IR), instead
(e.g., [1]). In this project, we will take a similar approach, converting the x86
instructions into IR first, and then analyzing the IR.

The IR language we use is far simpler. It consists of roughly a dozen differ-
ent statements, which are type-checked and free of side effects. In some cases,
this simplicity does result in a loss of precision, and so our subsequent analysis
might conclude that two basic blocks are functionally identical when they are
not. However, we have not found examples where this loss of precision hides a
semantic change in which we are interested. There are two major benefits of this
simplicity. First, it makes the basic block comparison easier and more reliable.
It is easier because our symbolic execution and theorem proving are applied on
a much simpler set of instructions (see Sect. 4). It is also more reliable because
the instruction simplification reduces the language variation in performing the
same functionality. For example, two functionally equivalent basic blocks that
are syntactically very different in their x86 instructions may look quite similar in
their IR, because of the instruction simplification. Second, it makes our control
flow analysis much simpler and more scalable (see Sect. 3.3).

3.3 Constructing Control Flow Graphs and Callgraphs

There are many ways of analyzing the IR of two binary files to find their differ-
ences. The IR of a program is just a sequence of instructions. Many traditional
sequence comparison techniques can be used to find the differences between the
two sequences, e.g., dynamic programming [14,12]. However, these techniques
are not suitable in this paper, because our objective is not to find all syntactic
differences in the instruction level, but to find semantic ones that correspond to
changes in the program functionality.

What makes this problem unique is that there could be many changes in the
instructions that do not correspond to changes in functionality, as described in
Sect. 1. As a result, we propose analyzing the control flow of the programs to
find the differences. The control flow of a program is much more resistant to “su-
perficial” changes like different register allocations and basic block re-ordering,
and therefore is a more attractive feature for finding semantic differences.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 243

We represent the control flow of a program by a set of control flow graphs
and a callgraph. A control flow graph (CFG) consists of a set of nodes each
representing a basic block and a set of directed edges representing the control
flow among the basic blocks. We construct a CFG for each function found in the
binary file. We also construct a callgraph (CG) for each binary file, with the set
of nodes corresponding to the functions in the file and the set of directed edges
representing calls among the functions.

Note that although we base our binary difference analysis on the control flow
of the program, the CFGs and the CG may not contain all necessary information
for identifying the differences. For example, two programs may have isomorphic
CFGs and CGs, but the nodes in them may be functionally different. Therefore,
we still need to compare two corresponding basic blocks to find out if they provide
the same functionality. Basic block comparison also helps in graph isomorphism
(see Sect. 3.4), and we will detail our novel technique for basic block comparison
in Sect. 4.

3.4 Comparing the CGs and the CFGs

A critical part of BinHunt is to compare the CFGs and CGs to find the matchings
between corresponding functions and basic blocks. We do this by introducing a
new graph isomorphism algorithm based on the backtracking technique.

Suppose we have obtained the CFGs of two functions by disassembling the
code segments, converting x86 instructions into IR and analyzing the control
flow. The next step is to compare the two CFGs to find nodes that match to
each other. This can be conceptualized as the maximum common subgraph iso-
morphism problem.2 Intuitively, the maximum common subgraph isomorphism
problem is to find the largest common subgraph of two given graphs. Once the
maximum common subgraph is found, nodes in the subgraph will correspond
to matched basic blocks, and nodes outside of the subgraph will correspond to
unmatched ones. Similarly, when given two CGs, we try to find the maximum
common subgraph in which the nodes correspond to matched functions, and
nodes outside of the subgraph correspond to unmatched functions.

We will detail our algorithm for finding the maximum common subgraph and
how to interpret the output of the algorithm in Sect. 5. Note that two matched
functions may not be exactly the same. There could be differences within the two
functions and therefore we need to find the maximum common subgraph for the
two matched functions as well in order to identify the binary differences. Since
maximum common subgraph isomorphism is NP-complete, we need to propose
an efficient algorithm which works practically for real problems. The efficiency of
such an algorithm highly depends on the sequence in which nodes are examined
for possible matches. In order to try the most likely matches first, we need to be
able to tell whether the basic blocks represented by the nodes are similar. To do

2 More precisely, we solve the maximum common induced subgraph isomorphism prob-
lem, which is defined in Sect. 5.1. However, we typically refer to this as simply the
“subgraph isomorphism” problem or a similar variant, for simplicity.

244 D. Gao, M.K. Reiter, and D. Song

this, we propose a novel technique using symbolic execution of the basic blocks
and theorem proving. This technique is detailed in Sect. 4.

4 Basic Block Comparison

Basic block comparison is important for two reasons. First, it improves the ef-
ficiency of graph isomorphism. As mentioned in Sect. 3.4, the algorithm has
better efficiency if the best matches are tried first, which is possible only if there
is a way to measure the similarity of two basic blocks accurately. Second, ba-
sic block comparison helps identify any semantic differences between matched
functions. As noted in Sect. 3.4, two matched functions or basic blocks may not
be the same. Accurate basic block comparison can help identify the semantic
differences with low false-positive and false-negative rates.

4.1 Symbolic Execution and Theorem Proving

Symbolic execution [7] is a well-known program analysis technique to represent
values of program variables with symbolic values instead of concrete (initialized)
data and to manipulate expressions involving symbolic values. For each basic
block, we first find all the input and output registers and variables. We then
use symbolic execution to represent the final values of the output registers and
variables. That is, the output values computed by the basic blocks are expressed
using the program input symbols. This process is fast since we are dealing with
basic blocks, in which instructions are executed sequentially.

To test if two basic blocks are functionally equivalent, we apply a theorem
prover to test if the output registers and variables of the basic blocks are the
same. The theorem prover we employ is STP [5]. STP is a decision procedure for
the satisfiability of quantifier-free formulas in the theory of bit-vectors and arrays
that has been optimized for large problems encountered in software analysis
applications. We pick the symbolic representation of one register/variable from
each basic block and use STP to test if they are equivalent, assuming that the
inputs to the basic blocks share the same values.

Symbolic execution with theorem proving helps us determine whether two
registers or variables contain the same value after the executions of two basic
blocks. However, in general we do not know which registers or variables to pick
for testing because the two basic blocks could use different registers or variables
to provide the same functionality. We try all pair-wise comparisons and check if
there exists a permutation of the registers and variables between the two basic
block such that all matched registers and variables contain the same value. If
such a permutation exists, we conclude that the two basic blocks are functionally
equivalent. With this, our technique ensures that if two basic blocks are found to
be different by our technique of symbolic execution and theorem proving, then
they must not be functionally equivalent.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 245

Note that this property holds even if the two binary files are compiled using
different compilers or compiler options. However, it only holds for basic block
comparison and not for function comparison. That is, even if our symbolic ex-
ecution and theorem proving show that the basic blocks in two functions are
different, the two functions may, in fact, be functionally equivalent.

We could perform the same analysis for functions, i.e., we could use symbolic
execution to represent outputs of two functions and test if these outputs are
equivalent. However, performance becomes an issue as both symbolic execution
and theorem proving take a long time to process functions of even moderate size.

4.2 Matching Strength

We define matching strength of two basic blocks to denote how similar they are
in their functionality. Matching strength is a function of the two basic blocks
only, and does not depend on the context in which they execute. Matching
strength of two basic blocks that are deemed functionally equivalent (Sect. 4.1)
is assigned 1.0 if they use the same registers or 0.9 if they use different ones.
If two basic blocks are deemed not functionally equivalent, smaller matching
strengths are assigned. The reason why we assign a matching strength of 0.9 for
basic blocks using different registers is that our technique evaluates the basic
blocks independently. Even if the two basic blocks are functionally equivalent,
they may be used in different contexts. This is slightly more likely when the
basic blocks use different registers, and therefore we assign a slightly smaller
matching strength.

5 Maximum Common Induced Subgraph Isomorphism

Graphs are sets of nodes with edges connecting pairs of nodes. Similarity mea-
surement between graphs can be achieved by graph matching, which is a proce-
dure to identify common subgraphs. The measure of similarity is then given by
the size of the maximum common subgraph. This technique has its application
to many problems.

Graph matching is known to be a computationally expensive procedure. A
number of graph-matching algorithms, both optimal and approximate, have been
proposed over the last three decades [11]. Most optimal algorithms for common
subgraph isomorphism are based on maximal clique detection in the association
graph [9]. However, it is widely accepted that the problem of exact subgraph
isomorphism, which is a special case of common subgraph isomorphism with the
requirement that the resulting common subgraph coincides with one of the input
graphs, is much more efficiently solved by the backtracking algorithm [8,13].

In our problem of binary difference analysis, especially in applications in which
the two binary files under analysis are two versions of the same program, the
maximum common subgraph is very likely the same or very close to one of the
two input graphs. Therefore, we choose an algorithm based on the backtracking
technique [8]. Below, we first define the common subgraph problem we are trying

246 D. Gao, M.K. Reiter, and D. Song

to solve. We then describe the basic idea of the backtracking algorithm, and
our customizations to it to make it efficient and suitable for binary difference
analysis.

5.1 Definitions

Given a graph G = [V, E], graph H = [W, F] is an induced subgraph of G if and
only if W ⊆ V and F = E ∩(W ×W). Given two graphs G and H , we define the
maximum common induced subgraph isomorphism problem as finding the largest
induced subgraph of G that is isomorphic to an induced subgraph of H . We call
this largest induced subgraph the maximum common induced subgraph of G and
H . Here “largest” means that the subgraph is largest according to some subgraph
measurement, which is not necessarily as simple as counting the number of nodes
in the subgraph. We define this subgraph measurement in Sect. 5.3.

5.2 Backtracking Algorithm

The backtracking algorithm offers a simple solution to the maximum common
induced subgraph isomorphism problem. The algorithm essentially enumerates
all possible matches of the nodes from the two input graphs. A property of this
algorithm is that an erroneous match added to the result will be replaced by a
better match subsequently.

Isomorphism (D, M)
1: if Extendable(D, M) then
2: v ← PickAny(D)
3: Z ← GetPossibleMatching(v, D)
4: for all w ∈ Z do
5: M ′ ← M + [v, w]
6: D′ ← Refine(v, w, D)
7: Isomorphism(D′, M ′)
8: end for
9: D′ ← Refine(v, null, D)

10: Isomorphism(D′, M)
11: end if

Fig. 2. Isomorphism function

Figure 2 shows the pseudo-code of
a recursive version of the backtrack-
ing algorithm. If G = (V, E) and H =
(W, F) are the input graphs, then D
contains all possible pairs of nodes
that might still be matched (initially
V × W), and M contains matched
node pairs (initially empty). We as-
sume that G and H are global vari-
ables in Figure 2; all other variables
are local and are passed by value.
On each entry to Isomorphism(), M
records the matched node pairs of
the partial common induced subgraph
found. It first checks whether the so-
lution is extendable. If it is extendable
(Line 1), it picks an unmatched node

v (Line 2) and assigns Z all possible matches for v (Line 3). For each node w in
Z (Line 4), the algorithm extends the solution by adding the match [v, w] to M
(Line 5), refining D (Line 6), and recursively calling Isomorphism() (Line 7). In
the end, the search is complemented by exploring extensions of M that do not
include the chosen node v (Line 9 and 10). This last step is necessary because a
subgraph not containing v (considered in the last step) may be larger than any
subgraphs containing v (considered in earlier steps). With this, Isomorphism()
completes trying all possible matches of the nodes.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 247

5.3 Customizations to the Backtracking Algorithm

Matching strength and subgraph measurement. In traditional backtrack-
ing algorithms [13,8], nodes are labeled (colored) and a possible match is one
that consists of nodes with the same label (color). We do not introduce such
labels for nodes in our CFGs and CGs, because any nodes in a graph may
be matched with any nodes in the other graph in our problem. Instead, we
utilize matching strength to guide us which two nodes are more likely to be
matched.

The matching strength for two basic blocks was detailed in Sect. 4.2. This
is the matching strength used when computing the maximum common induced
subgraph of the CFGs of two functions. We define the matching strength of
two functions—which is used when computing the maximum common induced
subgraph of the CGs of two binaries—to be 1.0 if the instructions (x86 or IR)
of the two functions are the same. Otherwise, their matching strength is the
subgraph measurement divided by the number of nodes in the CFG that has fewer
nodes, where subgraph measurement is defined as the summation of matching
strengths of matched nodes (basic blocks). Subgraph measurement is used not
only in defining the matching strength of two functions, but in the definition of
maximum common induced subgraph (see Sect. 5.1).

Customizations to improve efficiency. As the backtracking algorithm enu-
merates all possible matches, it could be very inefficient for large graphs. The
functions Extendable(), PickAny() and Refine() in Figure 2 are important in
making the algorithm efficient for practical problems.

Function Extendable() first makes a prediction on the maximum common in-
duced subgraph assuming all unmatched nodes can be matched perfectly, which
is the best possible output given the current matching. If this best possible
output is not better than the best subgraph found previously, then further enu-
meration is not necessary and Extendable() simply returns false.

Extendable() can improve the efficiency only if good matches are tried first.
The earlier the good matches are tried, the more times when Extendable()
returns false, and therefore the more efficient the algorithm is. So we want
to make function PickAny() return the best matching candidate first. In Bin-
Hunt, PickAny() returns the node that has the largest matching strength with
nodes in the other graph. PickAny() also considers the connectivity (number
of predecessors and successors) of the node; i.e., nodes with larger connectivity
will be returned if there are multiple nodes with the same maximum matching
strength.

Refine() updates the set of possible future matches by removing 1) [v, w]
(the new match); and 2) other matches that would not conform to the defi-
nition of common induced subgraph were they added to M in the future. For
example, assume that v has a predecessor v′ in G ((v′, v) ∈ E), and w′ is not a
predecessor of w in H ((w′, w) /∈ F). [v′, w′] has to be removed from D because if

248 D. Gao, M.K. Reiter, and D. Song

[v′, w′] is added to M , then the subgraph of G will contain edge (v′, v) while
the subgraph of H will not contain edge (w′, w), making the two subgraphs not
isomorphic.

Timeout and output of the backtracking algorithm. With the help of
the three functions Extendable(), PickAny() and Refine(), the backtracking
algorithm is able to try the best match early and therefore becomes more efficient
by quickly terminating the processing of other possible matches that will not
result in large subgraphs. However, in some cases where the CFGs are very big,
the algorithm may still take too much time to converge.

To have a good balance between efficiency and accuracy, we introduce a time-
out on some invocations to Isomorphism(). Specifically, when BinHunt tries to
find the matching strength for every pair of functions from the two binary files
for the input to CG isomorphism, timeouts are enabled. If a timeout is reached,
we simply assign a default value to the matching strength. In CG isomorphism,
however, the timeout is disabled. Lastly, after the function matching is found,
the maximum common induced subgraph is recalculated (with timeout disabled)
for matched function pairs that resulted in a timeout in the first step.

The output of BinHunt consists of the (partial) matching between func-
tions from the two binary files, the (partial) matching between basic blocks for
matched functions, and the matching strengths for the matched functions and
basic blocks. Note that semantic differences correspond to unmatched functions
and basic blocks, as well as matched ones with low matching strengths.

6 Case Studies

We implemented a system for binary difference analysis with the above compo-
nents and techniques. In this section, we will show the results of using this system
in three case studies to discover vulnerabilities in gzip, tar and ASP.NET. We
specifically choose these three cases to show how BinHunt performs in complex
cases where a small change in one function in the source code leads to substantial
syntactic changes in many other functions (the case of gzip), when the semantic
changes result in change of control flow in the program (the case of tar), and
when only the binary files are available (the case of ASP.NET). For the first two
case studies, we obtained the source code of the patched and unpatched versions
and compiled them independently to obtain the binary executables for analysis.
Once the binary executables were obtained, we made no further use of the source
code. For ASP.NET, we downloaded the patched and unpatched binaries directly
from the software vendor.

Note that in all of our case studies, the only differences between the two
versions correspond to patching vulnerabilities. In other cases, the differences
may correspond to new features added to the program, which would complicate
the discovery of vulnerabilities.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 249

6.1 Buffer Overflow in gzip

A release of gzip has a vulnerability that causes a buffer overflow with a file name
of 1028 bytes or greater. (See http://www.securityfocus.com/bid/3712 for
more details.) This overflow could overwrite stack variables and return addresses,
possibly resulting in arbitrary code execution. A patch exists for fixing the prob-
lem, and is shown in Fig. 3.

#ifdef NO_MULTIPLE_DOTS
char *dot; /* pointer to ifname extension, or NULL */

#endif
+ int max_suffix_len = (z_len > 3 ? z_len : 3);
+ /* Leave enough room in ifname or ofname for suffix: */
+ if (strlen(iname) >= sizeof(ifname) - max_suffix_len) {
+ strncpy(ifname, iname, sizeof(ifname) - 1);
+ /* last byte of ifname is already zero and never overwritten */
+ error("file name too long");
+ }

strcpy(ifname, iname);
/* If input file exists, return OK. */

Fig. 3. The patch for gzip

Without going
into too much de-
tail, we can see
that the patch
checks the length
of the variable
iname and out-
puts an error mes-
sage when it is
too long. The
patch adds a few
statements in a
small function get_istat(), which corresponds to only 7 additional lines (in-
cluding two comment lines). The original source of gzip.c contains 1,744 lines,
which means that the change accounts for roughly a 0.4% change in the source
code (when not considering other dependencies). Although it is a very small
change in the source code, we find that none of the 75 non-empty functions in
the patched binary (which contains more than 8, 500 instructions) is syntacti-
cally the same as any functions in the unpatched binary. Further analysis shows
that this is mainly due to basic block re-ordering.

0 0.2 0.4 0.6 0.8 1
Matching Strength

0

20

40

60

80

N
um

be
r

of
 f

un
ct

io
ns

Fig. 4. Matching strengths of func-
tions in gzip (CDF)

Although all non-empty functions are
changed syntactically, BinHunt was able to
find the correct matching for all non-empty
functions. Figure 4 shows the number of
non-empty functions that had matching
strengths less or equal to the value on the
x-axis. Despite the fact that all non-empty
functions contain syntactic changes, Bin-
Hunt managed to find more than 10 func-
tion matches that have matching strengths
of 1.0, which means that these matched func-
tions contain basic blocks that are func-
tionally equivalent and that use the same
register allocation. There is also a large num-
ber of function matchings that have matching strengths between 0.9 and 1.0,
which means that these matched functions contain basic blocks that are func-
tionally equivalent, although some of these basic blocks use different register
allocations. (See definitions of matching strength in Sect. 4.2 and Sect. 5.3.)

http://www.securityfocus.com/bid/3712

250 D. Gao, M.K. Reiter, and D. Song

Among the matched functions with a matching strength less than 0.8, there
was only one pair that differed substantially (by 26) in the number of unmatched
basic blocks, which was function treat_file(). The rest of the matched func-
tions had zero or a very small number of unmatched basic blocks. However,
treat_file() is not the function get_istat() where changes were made in the
source code, but rather its parent function, because function inlining was applied
during compilation in both patched and unpatched versions. The parent function
is a very large function with more than 900 basic blocks. BinHunt was able to
find common subgraphs of a size almost the same as the unpatched function (all
basic blocks were matched correctly except the two nodes between which new
basic blocks are added), and therefore identified a few additional basic blocks
that exist only in the CFG of the patched binary (see Fig. 5 for the additional
basic blocks in the dotted rectangle).

Fig. 5. Difference found in the parent function of get istat()

mov %esi, %edi
cld
mov $0xfffffff, %ecx
mov $0x0, %eax
repnz scas %es:(%edi), %al

Fig. 6. Assembly code for
differences found in gzip

Looking at the first few basic blocks within the
dotted rectangle in Fig. 5, we found the assembly
code as shown in Fig. 6. The repnz instruction re-
peats doing something as long as a byte is non-zero,
which, in most cases, is used to find the terminating
byte in a string. In this case study, it is used for the
same purpose to find the length of the string at edi.
By tracing the register edi we easily found that the
string is actually the input parameter representing
the file name.

In this case study, BinHunt identified a few basic blocks that correspond to
changes in the source code of gzip. It took about an hour to finish the analy-
sis on a desktop computer with a 2.1GHz CPU. The reason why it takes relatively

BinHunt: Automatically Finding Semantic Differences in Binary Programs 251

long is because all functions in the patched version are syntactically different
from functions in the unpatched version. In this case, we configured BinHunt
to perform graph isomorphism on all permutations of the 75 functions in each
binaries. This also means that the analysis time would not increase substantially
if there were more semantic differences between the two binaries.

6.2 “Dot dot” Vulnerability in tar

The patch for the buffer overflow vulnerability in gzip inserts additional instruc-
tions into a function, which result in a few additional basic blocks in a CFG.
However, these additional basic blocks do not alter the control flow of the original
program. BinHunt is very powerful in identifying this type of change in source
code because our binary difference analysis is based on analysis of the control
flow of the program. Although many patches share the same characteristics of
the one for gzip, there are patches which change the control flow of the program.
In this subsection, we describe an application of BinHunt to a program in which
the patch changes the control flow of the original program.

bool contains_dot_dot (char const *name) {
char const *p = name +

FILE_SYSTEM_PREFIX_LEN (name);
for (;; p++) {

if (p[0]==’.’ && p[1]==’.’ &&
(ISSLASH(p[2]) || !p[2]))
return 1;

do { if (! *p++) return 0; }
while (! ISSLASH (*p));

}
}

bool contains_dot_dot (char const *name) {
char const *p = name +

FILE_SYSTEM_PREFIX_LEN (name);
for (;; p++) {

if (p[0]==’.’ && p[1]==’.’ &&
(ISSLASH(p[2]) || !p[2]))
return 1;

while (! ISSLASH (*p))
{ if (! *p++) return 0; }

}
}

Unpatched Patched

Fig. 7. The unpatched and patched functions in tar

A version of the program tar has an input validation error called the “dot dot”
function vulnerability. (See http://www.securityfocus.com/bid/25417/info
for more information.) Attackers may exploit the vulnerability to overwrite files
on the computer. Figure 7 shows the unpatched and patched versions of the func-
tion in which the vulnerability is found. The difference in the source code is that
the unpatched function uses a do-while loop, whereas the patched function uses
a while loop. This patch changes the control flow of the program. Again, Bin-
Hunt was able to find the correct matching between all non-empty functions from
the two binary files. In this case, more than 95% of the matches had a match-
ing strength of 1.0. This is due to the fact that function contains_dot_dot()
is located towards the end of the binary file, and changes in it do not result in
much basic block re-ordering. Out of the 470 non-empty functions, the match for
function contains_dot_dot() had the smallest matching strength of 0.571622.

The graph isomorphism calculation on the CFGs for function
contains_dot_dot() found a matching for about two-thirds of the basic
blocks (the unpatched version has 36 basic blocks and the patched version has

http://www.securityfocus.com/bid/25417/info

252 D. Gao, M.K. Reiter, and D. Song

(a) Unpatched (b) Patched

Fig. 8. Part of the CFGs of function contains dot dot()

37 basic blocks). Figure 9 shows the number of basic blocks that were matched
with a matching strength less than the value on the x-axis. The analysis of the
unmatched basic blocks to identify the vulnerability required a little more effort
because of the changes in control flow. Figure 8 shows part of the CFGs of the
unpatched and patched function contains_dot_dot().

0 0.2 0.4 0.6 0.8 1
Matching strength

0

5

10

15

20

25

30

N
um

be
r

of
 b

as
ic

 b
lo

ck
s

Fig. 9. Matching strengths of ba-
sic blocks in contains dot dot()
(CDF)

As can be seen from Fig. 8, a loop ex-
ists in both CFGs, i.e., the path between ba-
sic block number 8 and 18 in the unpatched
function and the path between basic block
number 9 and number 8 in the patched func-
tion. There is a special basic block that does
the comparison of a byte with the charac-
ter “/” (ASCII 0x2f); this is basic block 12
in the unpatched function and basic block 10
in the patched version. It can been seen from
the CFGs that the comparison is performed
in the middle of the loop in the unpatched
function, and at the beginning of the loop in
the patched function. With this, the vulner-
ability is found.

In this case study, there are more than 41,000 instructions in each of the
two binaries. It took about 30 minutes for BinHunt to finish the analysis.

BinHunt: Automatically Finding Semantic Differences in Binary Programs 253

(a) Unpatched (b) Patched

Fig. 10. Different register allocation for
function contains dot dot()

One of the reasons why it took only 30
minutes is that some of the functions in
the two binaries are exactly the same,
and so BinHunt did not need to per-
form the graph isomorphism for these
functions.

Another interesting thing to note is
about different register allocation. Fig-
ure 10 shows the first few basic blocks of
function contains_dot_dot() for both
the unpatched and patched versions.
We can see from basic block number 2
that eax is used in the unpatched func-
tion, while edx is used in the patched
function for the same purpose. This is
an example of syntactic differences that BinHunt managed to skip when finding
semantic differences.

6.3 Application Folder Information Disclosure in ASP.NET

0 0.2 0.4 0.6 0.8 1
Matching Strength

0

10

20

30

40

N
um

be
r

of
 f

un
ct

io
ns

Fig. 11. Matching strengths of func-
tions in ASP.NET (CDF)

The last case study we did was on Microsoft
.NET framework 2.0 (ASP.NET). Unlike the
previous two cases in which we compiled the
source to obtain the binary executables in-
dependently, in this case study we down-
loaded the binary files directly from the soft-
ware vendor. ASP.NET in many versions of
Microsoft Windows allows remote attack-
ers to bypass access restrictions via unspec-
ified “URL paths” that can access Appli-
cation Folder objects “explicitly by name”
(CVE-2006-1300). This vulnerability occurs
because ASP.NET only checks for slash (“/”) and does not consider %5c (the
ASCII code for “\”) when checking for accessibility.

BinHunt found that there are 38 non-empty functions in the unpatched ver-
sions of the binary files and 39 non-empty functions in the patched version, and
found the correct matching for 38 functions. Figure 11 shows the number of
functions that were matched with a matching strength less than the value on
the x-axis. We can see that all matched functions had a high matching strength.

In this case study, it was trivial to find the semantic difference as it corre-
sponds to an unmatched function FlipSlashes(), which is called from function
HttpFilterProc() to perform additional checks. BinHunt managed to locate
the unmatched basic block in function HttpFilterProc() which corresponds
to the call of FlipSlashes(). This case study shows that BinHunt works as
expected on binary files downloaded directly from the software vendor.

254 D. Gao, M.K. Reiter, and D. Song

7 Related Work

The structural comparison tools BinDiff [4] (and its extension [3]) and Bind-
View (http://www.bindview.com/Services/Razor/Papers/2004/comparing
binaries.cfm) are most related to our work. These tools construct a maximal
subgraph isomorphism between the sets of functions in two versions of the same
executable file. There are two major distinctions between these systems and
BinHunt.

First, BinHunt contributes a more thorough technique for identifying the
maximum common subgraph isomorphism. BinDiff and BindView use a greedy
method to extend a matching, and thus an erroneous match will propagate,
leading to a failure to find the maximum subgraph isomorphism. In compari-
son, BinHunt uses a backtracking technique to find the maximum isomorphic
subgraphs (see Sect. 5). While in general this would be exceedingly expensive,
we develop optimizations to make it practical. Inaccurate matches added to the
result will be replaced by better ones subsequently in the backtracking process.

Second, BinHunt uses a novel technique for basic block comparison using sym-
bolic execution and theorem proving (see Sect. 4). This method can determine
if two basic blocks are functionally equivalent, which overcomes the difficulty
encountered when, e.g., basic blocks use different register allocations. In con-
trast, BinDiff uses heuristics to test if two graphs or basic blocks are similar.
For example, BinDiff compares two graphs by calculating the number of basic
blocks, edges and callers. BindView matches basic blocks based on instructions
present in them. Due to the reliance on comparing actual instructions, a signifi-
cant number of locations are falsely identified as changes [3].

There are also binary difference analysis tools to produce and apply patches
(bsdiff, bspatch, xdelta, jdiff, jpatch, etc.). They capture all syntactic differences
between binaries; as described previously, such differences may not correspond
to semantic differences, and so they do not suffice for the goals of this paper.

8 Conclusion and Limitations

In this paper, we define the problem of finding semantic differences in binary
executables, and introduce a novel technique BinHunt based on control flow anal-
ysis. When compared with previous techniques, BinHunt uses a more thorough
graph isomorphism technique for identifying the maximum common induced sub-
graph isomorphism. Unlike previous techniques, BinHunt does not rely on many
heuristics when finding the maximum common subgraph. BinHunt also makes
use of a novel technique to compare the functionality of two basic blocks using
symbolic execution and theorem proving. In case studies on different versions of
three common programs, we showed that BinHunt is able to find the semantic
differences with high accuracy.

A limitation of BinHunt is that its analysis efficiency drops when the number
of semantic differences between binary files increases. This is due to the graph
isomorphism technique that BinHunt uses. The backtracking algorithm works

http://www.bindview.com/Services/Razor/Papers/2004/comparing_binaries.cfm
http://www.bindview.com/Services/Razor/Papers/2004/comparing_binaries.cfm

BinHunt: Automatically Finding Semantic Differences in Binary Programs 255

the best when the two graphs are similar to each other. In applications where the
differences between the two binary files are large, a different graph isomorphism
technique should be used. BinHunt does not work on packed code, either. We
leave these topics for future work.

References

1. Balakrishnan, G., Gruian, R., Reps, T., Teitelbaum, T.: Codesurfer/x86 - a plat-
form for analyzing x86 executables. In: Proceedings of the Conference on Compiler
Construction (2005)

2. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: Proceedings of the 2008
IEEE Symposium on Security and Privacy (May 2008) (to appear)

3. Dullien, T., Rolles, R.: Graph-based comparison of executable objects. In: Pro-
ceedings of SSTIC 2005 (2005)

4. Flake, H.: Structural comparison of executable objects. In: Proceedings of the GI
International Conference on Detection of Intrusions & Malware, and Vulnerability
Assessment 2004 (2004)

5. Ganesh, V., Dill, D.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590. Springer, Heidelberg (2007)

6. DataRescue Inc. IDA Pro, http://www.datarescue.com/idabase/
7. King, J.: Symbolic execution and program testing. Communications of the

ACM 19(7) (1976)
8. Krissinel, E., Henrick, K.: Common subgraph isomorphism detection by backtrack-

ing search. Software — Practice and Experience 34 (2004)
9. Levi, G.: A note on the derivation of maximal common subgraphs of two directed

or undirected graphs. Calcolo 9 (1972)
10. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to static

disassembly. In: Proceedings of the 11th ACM Conference on Computer & Com-
munication Security (CCS 2003) (2003)

11. Raymond, J., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. Journal of Computer-Aided Molecular
Design 16 (2002)

12. Sankoff, D., Kruskal, J.B.: Time Warps, String Edits, and Macromolecules: the
Theory and Practice of Sequence Comparison. Addison-Wesley Pu. Co., Reading
(1983)

13. Ullman, J.: An algorithm for subgraph isomorphism. Journal of the Association of
Computers and Machines 23 (1976)

14. Vintsyuk, T.K.: Speech discrimination by dynamic programming. Cybernetics and
Systems Analysis 4(1) (1968)

15. Wang, Z., Pierce, K., McFarling, S.: Bmat - a binary matching tool for stale profile
propagation. J. Instruction-Level Parallelism 2 (2000)

http://www.datarescue.com/idabase/

	BinHunt: Automatically Finding Semantic Differences in Binary Programs
	Introduction
	Problem Definition and Overview of Our Approach
	System Architecture
	Disassembler
	Intermediate Representation
	Constructing Control Flow Graphs and Callgraphs
	Comparing the CGs and the CFGs

	Basic Block Comparison
	Symbolic Execution and Theorem Proving
	Matching Strength

	Maximum Common Induced Subgraph Isomorphism
	Definitions
	Backtracking Algorithm
	Customizations to the Backtracking Algorithm

	Case Studies
	Buffer Overflow in gzip
	``Dot_dot'' Vulnerability in $\tt tar$
	Application Folder Information Disclosure in $\tt ASP.NET$

	Related Work
	Conclusion and Limitations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

