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Abstract

Automatic analysis of malicious binaries is necessary deoto scale with the rapid development and recovery of
malware found in the wild. The results of automatic analgsésuseful for creating defense systems and understanding
the current capabilities of attackers.

We propose an approach for automatic dissection of makdinaries which can answer fundamental questions such
as what behavior they exhibit, what are the relationshipaéen their inputs and outputs, and how an attacker may
be using the binary. We implement our approach in a systetaccBitScope. At the core of BitScope is a system
which allows us to execute binaries with symbolic inputse&ixing with symbolic inputs allows us to reason about
code paths without constraining the analysis to a partiéaofaut value.

We implement 5 analysis using BitScope, and demonstrateitbanalysis can rapidly analyze important properties
such as what behaviors the malicious binaries exhibit. kamgple, BitScope uncovers all commands in typical DDoS
zombies and botnet programs, and uncovers significant mhayust minutes.
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1 Introduction

The ability to automatically dissect a malicious binary axtract information from it is an important cornerstone for
system forensic analysis and system defense. Maliciowasib®) also callechalware include denial of service attack
tools, spamming systems, worms, and botnets. New malwanplea are uncovered daily through widely deployed
honeypots/honeyfarms, forensic analysis of compromigetms, and through underground channels. As a result of
the break-neck speed of malware development and recowgpmated analysis of malicious programs has become
necessary in order to create effective defenses. Malwalgsis is needed to create signatures for subsequent nealwar
detection, detecting scams, and in general “knowing thyrsfie

Automatic dissection of malicious binaries, however, ihallenging task. There is no source code available, and
to make things worse, the binary could be packed or obfuddatevade purely static binary analysis. There may
be different behavior embedded in the malicious binary Whidl only be activated under certain conditions such as
receiving a command from the network.

Regardless of the type of malware, there are common higél-dgiestions we would like to answer, such as:

e What actions may the malware perform, and what is the coficwlbetween potential actions? For example,
does the malware write or delete files, does it send out n&tpaxckets, and does it accept remote commands?

e How do we run the malware to uncover its behavior? Since nmralgpically does not come with a user
manual, it may be difficult to derive inputs which cause endsetlbehavior to be activated. For example, a
malware sample may immediately exit without a particulagisty key.

e How do inputs and outputs relate? For example, a DDoS cddiendly create a packet which in part depends
upon attacker’s input, and is in part constant.

Any system that can answer these questions is of high valoe.eample, we can use the space of possible
actions to prioritize future analysis, e.g., malware theletes files is of high importance. If we can identify unique
characteristics of its behaviors, we may be able to devetpyatures to weed out future malware infestations.

Unfortunately, although needed, there has to date bengitbgress towards useful automatic malware analysis
which can answer these questions. One approach for anglymtware is to manually use a debugger and try and
reason about the behavior. Manual analysis, however, aslglslow, error prone, and does not scale.

Another approach for malicious binary analysis is to runrtfaicious binary sample in a confined environment
such as a virtual machine environment and observe and rétsoadtions. Such an approach, however, can only
provide very limited information. The logged informaticgcords only the external behavior of the malicious binary
running in a specific setting. However, malicious binari@ymave many different functionalities embedded which are
only exhibited under certain environments or conditionshsas when a correct command is received or a particular
register key is set; and many malware will simply exit and dthimng when conditions are not met. If the virtual
machine environment setup for the test does not satisfyeilpgired conditions, the relevant malicious functionedti
will not be activated. One could try to test the sample wiffedent environment setup and try to feed random network
inputs. However, setting up different environments antirtgghe sample with them is expensive and ineffective—the
probability of guessing the right environment to satisfy tiondition can be extremely low. Thus, such an approach has
extremely limited utility for automatic analysis of malicis binaries, and in many cases, may not be able to produce
any useful results.

Our Approach. We propose a system, call@&itScopeto perform automatic malware dissection. BitScope takes
as input a malicious binary, and outputs information abowtcation paths. This information is then be used by
supplemental analysis designed to answer specific questooh as what behavior the malware exhibits, what inputs
activate interesting behavior, and dependency betweensmgnd outputs.

BitScope dissection is not performed by executing the maweith different concrete input values. Instead,
BitScope abstracts away specific concrete inputs by exegtlie program osymbolicinputs which simultaneously
capture a multitude of different inputs to the program. Exierg with symbolic inputs allows us to reason about code
paths without constraining the analysis to a particulautryalue.

BitScope employs whole system emulation in order to inf@regy input to the program. Specific inputs are
replaced with symbolic variables. BitScope then symbdiioaxecutes all instructions which are derived from an
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struct { int type; char arg[512]; } cnd;
/1 Code to set up server.
whi l e(1){
read(net_sock, &cnd, sizeof(cmd));
if (cnd.type == 0x1){
DDoS(cnd. arg) ;
} else if(cnd.type == 0x2){
Span{cnd. arg) ;
} else if(cnd.type == 0x3){
Execut e(cnd. arg) ;
} else {
die();

Figure 1: Our running example.

input. However, many instructions do not depend on the irgmd can be executed natively. Thus, BitScope performs
a mix of symbolic and concrete execution.

The BitScope approach gives us two powerful capabilitiést,he execution paths we explore are not constrained
by specific inputs. As a result, we can explore a larger foaoctif the program than traditional methods. Second, the
information collected by BitScope can be used for additiomare specific analysis.

We build BitScope, and demonstrate its utility by creatingrialysis components build on top of the core sys-
tem. Our components can answer important questions suchats@havior the malware exhibits, what input/output
dependencies exist, what inputs cause interesting behawid the overall flow of the program.

We test our system on two representative types of malwargel®mand DDoS zombies. Botnets and zombies
serve as platforms for attackers to conduct various attaxfien with global repercussions. For example, it has been
reported that a single botnet at one point used up about 15%ludo’s search capacity [2]; 27% of all malicious
connection attempts observed in certain darknets can betljimttributed to botnet-related spreading activity][32
and it is well known that botnets are the main sources ofiliged denial-of-service (DDoS) attacks, spams, and
personal information and identity thefts.

To evaluate our approach, we have run BitScope on severaimga of real malware. In each case, we have
observed the malware under traditional conditions and @watpthese observations with those given by BitScope.
For each example we have been able to discover significarepiaf information that would have been very difficult
or impossible to observe with traditional methods. Thiginfation includes commands accepted by various bots
and zombies, capabilities of these malicious programs,dap@éndency information correlating their inputs to their
outputs.

Contributions. We present and evaluate BitScope, a system for compreleemsalysis of malware. Specifically,
we show how effective analysis can be built on top of mixectakien. Our experiments indicate that we can explore
a significant portion of the malware code: in several caseamwevered all the commands in our test DDoS zombies
and bot programs. For example, our approach uncovers 7f#9atif API| call sites where malware interacts with
its host — call sites such as sending out DDoS packets anditxgcommands on the host — while running the
program alone only shows 324 call sites. Additionally, a®magonent of this system we present the first complete
Mixed Execution Engine capable of enabling symbolic menaatgresses.

2 Goals and Our Approach

2.1 Motivating Example

We motivate our work with a running example, shown in Figliyevhich shares many characteristics with typical
malicious binaries. For clarity, we keep the example mugipsr than most malware. We also show the malware in
source-code form for ease; in practice our system works tvenainaries.
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Our example is a zombie which reads in a command from the mktwlocommand consists of a command type
t ype and a command argumeat g. The example performs one of 4 different actions based ordhamand: it
initiates a DDoS attack where the argument is the targetissspam where the argument is the spam message, will
execute a command given by the argument on the local hosigor d

2.2 Goals and Challenges to Malicious Binary Analysis

Given a malicious binary program, our goal is to automalfaahcover as much about the malware as possible includ-
ing what actions the binary may perform, what behaviors iy mehibit, what inputs it accepts which may activate
different behaviors, and other questions.

More concretely, in our running example, we would like tortea

e Control flow. For example, we would like to learn that the example impletsiarioop which continually reads
in attackers commands from the network.

e Behaviors. Our example implements 4 different behaviors: a DDoS beimaa spam behavior, a remote
execution behavior, and a die behavior.

e Inputs. We would like to learn actual inputs to the program which\etg the behaviors. For example, we are
interested in what inputs will cause the program to exhit@tfour different behaviors mentioned above.

e DependenciesWe would like to learn that the DDoS behavior is dependenhupe input supplied by the user,
in specific, when the first int is 0x3, and the host is the reimgibytes. Similarly, we would like to learn that
the spam messages sent are dependent upon an argumerdgcbpyhe user.

The central problem is how to automatically extract thieindation from the binary. One approach is to statically
analyze the binary. However, static analysis of malicidnafies is impractical. First, static binary analysis imgeal
is a hard problem. We cannot simply use source code anabaisitjues as there are huge differences in scale and
semantics. For example, while typical source code progtews functions, types, and local variables, assembly has
instructions, does not necessarily adhere to functiorsttattions even when compiled from a higher level language,
has no local variables, one global memory, and a number ef gifoblems that make source code analysis unsuitable.
Our simple example compiles to over 200 lines of assembly.

Second, attackers may encrypt or pack the binary, thusditia actual instructions which get executed. Code
packing statically compresses a binary program (or regidrasbinary program). A code packer will insert an un-
compress stub routine which runs at load-time. The uncossstib uncompresses the compressed binary image in
memory, then transfers control to it. Code encryption episryhe executable segments of a binary program. A stub
routine takes in a password, decrypts a stream of instngtithen executes them. The program may be completely
decrypted in memory, or incrementally decrypted and exetan the fly. Code packing and encryption make static
analysis difficult. While in theory we may be able to unpadk tode statically then analyze it, in practice we usually
do not know how the code was packed or encrypted, e.g., whatitims were used, in the first place.

2.3 The Intuition Behind Our Approach

The intuition behind our approach is we can run the binaryaiéct the desired information. The main questions we
must answer are how to run the program so that we can collentiak information as possible. As aforementioned,
most malware has embedded behaviors which will only be aeti/by certain inputs. Simply running the program on
random inputs is insufficient, since random inputs will likexhibit uninteresting behavior.

Instead of using specific inputs, we run the program usingbs}im inputs which stand in for a multitude of
specific inputs. Any instruction which depends upon the impust then be performed symbolically. For example, the
instructionadd x, y wherex andy are derived from the input creates the symbolic expressienz + y, and is
not restricted to specific values ofor y. Tests and conditional jumps, however, add restrictiorige ffue branch in
the conditional jump restricts the current symbolic forentd values which are non-zero. Similarly, the false branch
restricts the symbolic formula to values which are zero. stlymbolic execution can allow us to explore different
program paths and observe the malware’s behaviors underetif conditions.

In order to enable the user to introduce symbolic inputsfigriaput source, e.g., a network input, a file descriptor,
libraries, etc., we build a symbolic system environmentolitprovides symbolic inputs to the malware as it executes.
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BitScope
Extractor
Symbolic >
system » CFG
environment—>|
Rudder: » Solutions / Inputs
Malicious —» . >
; Mixed » Impacts / Behaviors
Binary Path execution [
Selector engine » Single—path Dependency Info
(TD;D(\DF » Multi-path Dependency Info.

Figure 2: BitScope Architecture Overview

We perform a mixed symbolic and concrete execution on thevaral, where we symbolically execute instructions
which depend on the symbolic inputs, and concretely exanataictions which only depend on concrete values.

Mixed execution produces symbolic formulas in terms of timui values. The generated formulas can be used to
facilitate subsequent analysis. For example, we can genaispecific input which will execute a desired path. Other
analysis include driving execution down alternate codéqateasoning about the control flow of the program, and
inferring dependencies between inputs and outputs.

3 BitScope System Overview

At a high level, BitScope takes a malicious binary as input antputs a series of analyses. This output includes: a
control-flow graph of discovered code, inputs required leylimary to drive the different execution paths discovered,
impact that the binary has on the system, and dependencgéetive inputs and outputs of the malicious binary.

Our system is composed of four components which complenaetitether to yield this comprehensive view of the
analyzed malicious software. As shown in Fig@reéhese components include: the Symbolic System Envirobmen
Rudder, the Path Selector, and the Extractor. We give arvievefor each of the components below.

The Symbolic System Environment. The Symbolic System Environment monitors the flow of infotiorain and

out of the malicious binary. Specifically, it manipulateptits to the malicious binary to control the execution of the
malicious software, and it records the outputs from the ai@lis binary including its impact on the system such as
sending packets and writing to files. The logged informatiidhbe used by the Extractor to provide analysis results.

The Symbolic System Environment is built on top of the wheystem emulator, QEMU. At a high level, the
Symbolic System Environment works by intercepting Windé calls made by the malicious software. We do this
by adding hooks to QEMU’s execution.

A malicious binary receives input data whenever a Windows &l returns some information to the malicious
software. When this happens, instead of allowing the aataatrete value to be returned, the Symbolic System
Environment will create a new symbolic variable that repras the return value. This symbolic variable represehts al
the values that could have been returned to the malicio@siRudder, described later, uses these symbolic vasiable
to perform symbolic execution on the malicious binary.

Information also flows out of the system when Windows APIsalle made. Therefore, we log the calls that are
made as well as the arguments to these calls. If the arguritetitsse calls are symbolic, then we determine how

these symbolic outputs correspond to the original symbofiats.
For example, consider:

send(fd, buf, 30, 0);

In this call, the data being written to the socket is congdeutput from the binary. lfuf is marked as symbolic,
we will find howbuf relates to the inputs the malicious binary has received.ablowe call also returns information
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to the binary. Therefore, we will mark the return value aslsglic. Later, if the return value is checked for success,
this will allow us to investigate what the malicious binayes both in case of success and in case of failure.

Rudder. Rudder is responsible for performing mixed concrete andofimexecution on malicious software. Sym-
bolic execution is necessary to handle the symbolic vagthlat are introduced by the Symbolic System Environment.
Meanwhile, concrete execution is used as an optimizatioalfoperations that do not depend on those symbolic vari-
ables.

As malicious software is executed, operations will be panfed on the symbolic variables that the Symbolic
System Environment introduces. Symbolic execution allawgo track how other values become symbolic as the
program executes and to relate these derived values to thi@arsymbolic variables that were introduced. For
each newly derived symbolic value, we build a formula captuthis relation. Then, when we reach a branch in
the malicious code that depends on a symbolic value, we caresx the condition of that branch in terms of this
formula. In particular, the constraint required to take titue or false branch, calledath predicate is the logical
conjunction of the constraints of all previous branchesg@ltihe execution path and the constraint introduced by the
current branch. Rudder builds this formula in terms of thiginal symbolic variables introduced by the Symbolic
System Environment.

By solving the formula that Rudder has constructed, we ctarohine which directions of the branch are satisfiable
under the current constraints. The true benefit of the SyimBgistem Environment shows here. For each satisfiable
path, we can find the original input values that would ordigairive execution down that path. Newly discovered
feasible path(s) are then added to the pool of feasible pa#iistained by the Path Selector to be further explored.

The Path Selector The Path Selector keeps a pool of feasible paths to be fuzipored.

In general, it is unreasonable to explore all the paths gin@ibinary. In many cases, loops introduce an infinite
number of such paths. Therefore, it is the job of the PathcBmid¢o prioritize the paths that are available. Since
different approaches work better in different situatiotee Path Selector is modular to allow different algorithms
to be dropped in. For example, if the user is able to disaskeethb input binary and find parts of the code that are
specifically interesting to investigate, the Path Selezaoruse the disassembled code to give shorter paths to tits poi
of interest a higher priority. In other cases, where no sofdrination is available, the path selector can prioritiathg
based on a metric such as symbolic branch coverage. In tbés paths involving unvisited branches will be given
priority over paths that are retracing visited code.

The Extractor The Extractor is responsible for analyzing the informativett other system components obtain and
providing that analysis to the user. It takes informatioonirRudder and the Symbolic System Environment and
produces outputs such as a control-flow graph of discoveydd,@nputs required by the binary to drive the different
execution paths discovered, impact that the binary hasesystem, and dependency between the inputs and outputs
of the malicious binary.

4 System Design and Implementation

In this section we describe the details of the design andamphtation of the BitScope system, including the four
components: Symbolic System Environment, Path SelectaldBr, and Extractor.

4.1 Building up Symbolic System Environment

Using the Symbolic System Environment, we manipulate théerenment of the malicious code. As described in
Section3, the goal of the Symbolic System Environment is two-foldsrigates symbolic inputs the malware reads in
and it logs the actions of the malware.

It achieves these goals through hooking Windows API callsest hooks are written as modular plugins to the
Symbolic System Environment. Windows API calls are intpted by adding code to QEMU that executes right
before the emulated environment would jump to a hooked fonctVhen the emulated CPU reaches the entry point



6/18

of a hooked function, the QEMU will execute the hook asseciatith that function. When the hook is finished, it
can allow the actual API function to be executed, or simpitguover it. If the actual function is called, another hook
can be dynamically added to be called when the API functiturms.

Hooks can mark pieces of data in the system as symbolic. Fongbe, whemn ecv is called, we often will mark
the buffer it writes into as symbolic, which allows us to &ats effects throughout the system. Hooks most commonly
mark return buffers and return values as symbolic. Howénaoks can be far more complex, and even maintain state
of their own between calls. As described in the next secttardder is notified of the creation of symbolic variables
by the Symbolic System Environment, which will create newbpylic variables and notify Rudder which register or
memory location it represents.

Hooks that we implement also serve a second purpose. Simtes flexecute in QEMU, they have access to all
information about the emulated machine. For example, thayirtspect memory or examine register state. This yields
the ideal environment to log information about API callsttiiee made. When an API call is made, we note where it's
called from as well as the arguments it's called with. Adxfitlly, we make note of whether the arguments have been
marked as symbolic. If they have, the information from then8glic System Environment and Rudder will allow the
Extractor to correlate the call being made to the originahlsglic system inputs. This correlation between input and
output provides important dependency information and mafkese logs significantly more valuable than traditional

logging.

4.2 Mixed Concrete and Symbolic Execution

We use the term Mixed Execution to refer to the combinationafcrete and symbolic execution. In our system,
this is realized by Rudder, which is responsible for acyuaktecuting the malicious binary. Additionally, Rudder
is responsible for ensuring that execution paths that weoder are realizable, i.e., that there exists real inputs to
the system that will drive execution down the same paths. ddmeept of Mixed Execution originally proposed
in EXE [10] and DART [20] for bug finding in source code. To thesb of our knowledge, we are the first one
to develop a fully-functional Mixed Execution Engine fomhries including enabling symbolic memory addresses.
Mixed Execution on binaries although is similar in spirithtixed Execution on source code, however, the details
of the design and implementation are completely differant Mixed Execution on binaries is significantly more
challenging as binaries in general are harder to analyzesbiarce code.

By utilizing symbolic execution, Rudder is able to find brhas in the malicious binary that depend on symbolic
variables as the program executes. When this type of brarfound, Rudder will construct a path predicate for each
branch direction. Each path predicate describes the @ntstithe symbolic inputs need to satisfy for the program
execution to go down that path. The new path predicate isgdhginction of the constraints of the current path before
the current branch and the constraint imposed by the cubmamich. Once these path predicates are constructed,
Rudder will use the Solver to determine if each directiorhaflbranch is satisfiable. All possible directions are given
to the Path Selector to enqueue as future paths to be explored

For each instruction, we perform mixed execution by follogvithese steps. First, we must determine whether
the instruction will execute concretely or symbolicallgistis described in Sectiof.2.1 If the instruction can be
executed concretely, we simply execute on the real CPU.r@ibe, we must synchronize the symbolic machine with
the concrete machine, as described in Secti@2 Once the machines are synchronized, we are ready to transla
the instruction to IR (SectioA.2.3 and execute it symbolically (Secti@n2.4)

4.2.1 Determine Whether to Execute an Instruction Symbolially or Concretely.

An instruction can be executed concretely iff all operanfdthe instruction are concrete. Thus, deciding whether
an instruction should be executed concretely or symbdjicafjuires information about which data in the system is
concrete and which is symbolic. For registers, we simplyntaén a table denoting whether each register contains
symbolic or concrete data. For memory, we keep a page-tapéedata structure that shadows each valid memory
location, marking it as symbolic or concrete. This datacitrre allows us to efficiently track all valid memory. Every
instruction executed symbolically must update this strirecto reflect the propagation of symbolic data throughout
the system. Additionally, when the Symbolic System Enuvinenmt notifies Rudder of a new symbolic variable, the
locations represented by this symbolic variable must b&etbas symbolic.
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Instructions i 2= k() = relry = x(re)|r = vlr i= 1 Opv
|r:=0yv|label l;|jmpllijnpr

[if rjp ¢, else jnp 4o

+, =%, /, &, >, &, |, 6, ==, =, <, < (Binary operations)

Operations [,
Oy,
Operands v

=, ! (unary operations)
n (an integer literal) r (a register) ¢ (a label)
Types T = reg64t | reg32t | regl6t | reg8t | reglt | Array of 7 * 7

Table 1: Our RISC-like assembly IR. We convert all x86 asdgiimistructions into this IR.

If we determine that all operands of the instruction are cete; we can simply execute the instruction concretely
and continue with the next instruction. Otherwise, we mositinue toward symbolic execution as described below.

4.2.2 Synchronize Machines

Mixed execution means that many instructions will be exedwoncretely and never be executed on the symbolic
machine. Therefore, if an instruction to be symbolicallgexted has any concrete operands, we must update those
concrete values inside the symbolic machine. In the casegiters, this is trivial- for an instruction about to be
symbolically executed, we simply copy all of its concretgisger operands from the real CPU to the symbolic machine.
Memory accesses with concrete addresses are handled’sintlawever, we also have to deal with memory accesses
where the memory address itself is symbolic, which is dbscrbelow.

Symbolic Memory Addresses. A symbolic memory address means that the data specifyinghwhemory is to be
read or written is itself symbolic. This means that we dop&dfically know which memory location is about to be
accessed.

In the case of a memory read, we know that some memory is beaegsed, but because the address is symbolic,
we don’t know exactly which memory this is. In this case, we tiee Solver to determine the range of possible values
of this address. In some cases, the range that the Solvenseasutoo large to effectively consider. In this case, we
add a constraint to the system to limit its size, therefargting the complexity that is introduced. In practice, we
found that most symbolic memory accesses are already eamstirto small ranges, making this unnecessary. For
example, consider code that iterates over an array. Ea@ssta the array is bounded by the constraints imposed by
the iteration itself. Note that this is a conservative applg meaning that all solutions found are still correct. ©ac
range is selected, we simply move all concrete memory vatutbat range into the symbolic machine.

In the case of a memory write, we apply a similar techniquentd fihe range of addresses tleauld bewritten.

We update the page-table type data structure mentionede@fiol mark that entire range as symbolic, thus all future
accesses to that memory will be done with the symbolic machin

In both of these cases, we continue correct mixed executientae symbolic memory access.

4.2.3 Translating to an Intermediate Representation (IR).

In order to perform sound symbolic execution, we must cadlyeaterpret the semantics and effects of all assembly
statements. x86 is much too complex to analyze directly.eixample, parts of a register can be directly referenced
and modified (e.g%al references the lower 8 bits &&ax), there are single instuction loopsgpz instructions),
instructions with implicit side-effects (arithmetic ingttions set theef | ags register), and the semantics of each
instruction may depend on the operand addressing mode&elf, or 32-bit operands). Thus, we translate each x86
instruction into a simplified intermediate representafiii?). Our IR resembles a RISC-like assembly language, as
shown in Tablel.

Our IR has assignments (= v), binary and unary operations (= r,[J,v andr := [J,v where(d, and[,, are
binary and unary operators), loading a value from memoxy éntegister«; := x(r2)), storing a value«r, := ),
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direct jumps (jmgY) to a known target label (labé)), indirect jumps to a computed value stored in a registerdij),
and conditional jumps (if then jmp¢; else jmp¢s). Memory is treated as an array of bytes. In the IR, we geaerat
variablevar nem reg8.t[reg32_t] tocorrespondto memory, which is an array which takes a 8wéx, and
returns an 8-bit value.

The translation from an x86 instruction to our IR is desigttechodel the semantics of the original x86 instruction,
including all implicit side effects, register addressingdes, and other issues. We perform all symbolic execution on
IR statements.

For example, the following assembly instructions add twohars and then jump to addre®sf f if the result
overflows¥ebx, otherwise falls through is:

Ox1. add 0x1254, %ebx

0x2. jo Oxff
0x3.

We translate this to the IR as:

T_32t1 = 0x1254;

/! REBX is the variable in the IR for %bx

T 32t0 = R EBX + T_32t1;

/Il Set ROFto 1if there is overflow

R OF = (1==(1& (((R_EBX® (T_32t 194294967295))
&(T_32t 2T _32t0)) >31)));

cjnmp(R_OF == 1, Oxff, 0x3)

whereR_CF is the variable in the IR for the overflow flag, and thienp jumps to location 0xff if the overflow flag is
set, and falls through to the next instruction otherwise.

4.2.4 Symbolic Execution

In concrete execution, a register or a memory location talescrete value such as integers. At a high level, symbolic
execution allows registers and memory locations to corgtgimbolic expressions in addition to concrete values [26].

Thus, a value in a register may be an expression suzh asY whereX andY are symbolic variables.
For example, if we symbolically execute the program:

X = y+1;
z = X *3;
k = 4+4;
men{ k] = z;

we produce the final values = (y+1) *3 andneni 4+4] = (y+1) *3. Note that in pure symbolic evaluation

we need not evaluate the expression “4+4" to 8: integerliseran be treated just like variables. .
Pure symbolic execution as described can produce formyfamential in the size of the program, e.g. executing:

X1 = x0+x0; x2 = x1+x1; X3 = x2+x2;
produces the formula3 = x0+x0+x0+. ... +x0 where there are 80’s. We use a variant of straight symbolic
execution where common sub-expressions can be named usiegy @xpression, reducing the overall size. For
example, our symbolic evaluator will evaluate the abovergda as:

let x1 = x0+x0 in let x2 = x1+x1 in x2+x2

More specifically, our symbolic evaluator performs thedaling action based upon the type of each statement to
execute:

e \We generaté et expressions for assignment operations| €t expression binds a unique variable name to
the expression computed.et expressions avoid blowup due to substitution during symbmtaluation as
mentioned above.

e We symbolically execute loads and stores usirgpstractions. A store creates a new memory, which is a new
A abstraction. A load is modeled as\eapplication to mimic reading from the current memory statbe \-
abstraction acts like an array: given an address, it retheast value written to that address. Uiy represent
an initial memory state. Then a stora : = v to memory addresg with valuewv (in memory context\)
can be modeled as an if-then-else expression with argument

My = Az.if z == a thenv else (M )
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This is a function which takes an argument — an addressand returns the value associated with the address,
e.g.,v if x == a. A memory read of address. is performed by function application\; a,.) = if a, == a
thenv else (M;_1 a,.). The application evaluates the if-then-else expressainrning the last-written value to
the address,..

e For conditional jumps of the form:

cjnp(e, true branch, false branch)

build a path predicate for following the true branch and a path predicate for theddiranch. For example,
if the expressior is ROF == 1, and our current symbolic formula f& CF is ¢, then the path predicate is
¢ N (ROF == 1) for the true branch, and A (R.OF # 1) for the false branch.

4.2.5 The Solver

A path predicate is a boolean function. Thus, a path preglisaither satisfiable or unsatisfiable. A satisfiable path
predicate means that there is an assignment of values toodigmariables in the path predicate which make it true.
Since the symbolic variables in a path predicate are inpidgibkes, a satisfiable path predicate means there exists a se
of inputs which would execute the path. Conversely, an isfsdile path predicate means that the path would never
be executed.

We employ a Solver, such as a theorem prover or decision guoeeto check whether a path predicate is satis-
fiable. If a path predicate is satisfiable, the Solver retamexample solution. The example solution makes the path
predicate true, which by construction is thus an input wihédtes us down the program path represented by the predi-
cate. Rudder is extensible; we can plug in any Solver apfatpand our system thus can automatically benefit from
any new progress on decision procedures, etc. Currentlyrimgplementation, we use STP as the Solver [10, 19].

4.2.6 String Functions Optimizations.

In our experiments, we noticed that often the greatest cexitylin our paths was introduced by string functions
(st rcnp, strt ok, etc.). These string functions are extremely common in Gecatde found them to be especially

common in our examples, because most of these examplese@ausing string input.

Upon investigation, we found that the complexity from th&sgctions is not because of the formulas they create,
but because of the complicated execution paths the?/ createneral, when we arrive at a branch that depends on
symbolic data, we can pass this information to the Solveffiadvhich directions are possible. For example, consider
st r| en, which could be implemented like this:

int i =0;
whi |l e(*str++)i ++;
return i;

In the shown code, if the input string is based on symboliaddien clearly the returned value will depend on how
that symbolic data is constrained. However, the value thatturned is never directly manipulated with symbolic
data. Therefore, the return value of this functioaliwaysconcrete. This is still completely correct. However, we are
now, essentially, solving across the space of possiblespatstead of choosing paths and solving across the space of
symbolic values.

In an effort to reduce this complexity, we have implementaadcfion summaries for many of these functions.
When one of these string functions would need to be execytatialically, we instead execute our function summary
which is responsible for propagating symbolic data in theesavay that the original call would have. For example, in
the case okt r | en, we observe that the desired effect is for symbolic strimgisave symbolic lengths. Therefore,
we create a summary that will avoid actually callsigr | en and instead return a new symbol.

It's important to note that these summary functions are amyoptimization. They provide a method to reduce
the number of paths through a given program. Without thesersary functions our analysis is correct. However, we
have observed better performance when using these fusction

After we obtain results using these summary functions, vegthisse values in a run with these summary functions
disabled. This allows us to make several simplifying asdionp in our summary functions without losing overall
correctness.
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4.3 Path Selector

Simple Path Selection The Path Selector is responsible for prioritizing the patiieugh malicious software. In
practice, the number of paths through software is very lasgeven infinite. Therefore, we require algorithms that
will allow us to prioritize these paths in order to find intstiag paths in a reasonable amount of time. We have
designed BitScope to work efficiently with many differentdés of information about the malicious binary. Therefore,
the Path Selector allows different algorithms to be useddbas this information level.

In the worst case, the Path Selector hasupuiori knowledge of the binary being analyzed. In this case, the Pat
Selector will attempt to explore as much of the unknown etade as possible. As Rudder queries the Path Selector
about branches, the Path Selector will build a representati the parts of the executable that have been explored.
When future queries are received, priority is given to bhescthat will lead outside the currently known paths.

In a slightly improved case, we may have a binary which we apmble of at least partially disassembling. In
this case, we locate points in the assembly that are integeSthese ‘interesting points’ include potentially madies
function calls. Given this information, the Path Selectdl give paths that reach these interesting points a higher
priority.

In both of these cases, the chief goal of the Path Selectorusé known information to most efficiently gather
more information.

4.4 Extractor modules

We have implemented several Extractor modules in BitScwp&h perform a range of useful analyses. Each module
provides one more analyses. Modules can also be combineddontore complex analysis.

Control Flow Graph Module. The Control Flow Graph Module generates a control flow gr&p#Q) of the ana-
lyzed binary. A CFG is useful for answering questions sucWiaat system or library calls the binary uses, and what
order the calls are used in. For example, simple control floalysis can be used to show malware implements a
server poll-accept-action loop. Control flow provides apariant basis for subsequent analysis, and also gives a high
level picture as to how different procedures or code segsnetdte.

Previous work has shown the value of determining the coffimal of binaries when static disassembly is pos-
sible [28]. However, malware often decompresses, decrgptstherwise dynamically generates code at run time,
making static disassembly impractical.

The Control Flow Graph Module creates as much of the CFG asldewia static analysis, and then continuously
updates the CFG based on the dynamic execution of the biAarfgudder finds and executes new paths, the Control
Flow Graph Module adds them to the CFG. For each run, Ruddputsuwhich instructions were executed to the
Control Flow Graph Module. We fill in the control flow graph byiuing execution down different code paths, as
described below. In addition, when code is dynamically dgme@ssed, decrypted, or otherwise generated, the Control
Flow Graph Module dumps the memory image and performs stdt@e-program control flow analysis to add the
new code to the CFG.

Input Analysis Module Malware does not typically come with documentation, sorleay how to properly run the
malware, usually to observe its behavior, can be a daurdisig tWe implement an Extractor module which learns
new, interesting input values by analyzing and solving thieegated path predicates. For example, in our experiments
we are able to learn the various input commands for bots.

One analysis provided by this module is to find the set of igpliat drive execution down a particular program
path. A path predicate by design is a formula which is saliifor inputs that are accepted by a program path. We
implement a feedback loop which solves path predicates hergée new inputs. Given the predicdtethe Solver
generates an example inplthat satisfiegh) and hence leads us down the corresponding program path. aivesét
¢ = ¢ A (—I), and iterate to get a new inpiit, and so on.

Another analysis provided by this module dsal-orientedinput generation, which finds an input that drives
execution to a particuldarget The input to goal-oriented input generation is a targeenodeach, and the analysis
generates an input which drives execution to the target.n@de generate inputs for a particular goal by driving
execution down a path to the goal, generating a path predighich is then solved for the input. We implement
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goal-oriented input generation using the CFG Extractorutstb keep track of which paths we have explored in the
malware. Note if the code is encrypted, we can still use #itinique to explore previously untaken branches by
specifying the branch target as the goal target.

For any node in the CFG, there are typically many paths thatamechoose from. We isolate which paths could
reach the target node by creating a chop of the CFG whichdeslwnly those paths from entry to the target node.
We then select the shortest path from source to targetdcdletarget path. The target path consists of a sequence of
conditional jumps targets to take. The module uses Ruddimnte execution down the target path by only solving for
the path predicate for the desired conditional jump targéthe path utilizes parts of the CFG that were discovered
via static analysis, the selected target path may be umadddi due to imprecision of the static analysis; no input
would ever take that path. The selected path is unrealizbie reach a point where the Solver is unable to find an
input that satisfies the path predicate of the next desiraditional jump target. When that happens, we iterate with
the next shortest path. When we discover a realizable patlsolve the path predicate and output the answer as the
goal-oriented input.

Impact Analysis Module. We often want to know what types of behavior a particular @igionalware may exhibit.
For example, we may want to know if it deletes files or sends/oek packets. We have implemented the Impact
Analysis Module which determines behaviors dependent Wgimlows API calls. We are able to detect control flow
in the malicious binary that depends on API calls by usingtsyiin execution. By solving the constraints that Rudder
constructs for this control flow, we can explore all code kfbdependent on these API calls. Using this method, we
get much better code coverage than analysts simply runniegecutable would observe. Additionally, we log actions
taken by the malware during these runs. This allows anabfslse impact this malware can have on a system.

Single-path Dependency Analysis Module. In many cases there is a straight-forward relationship eéetwinput
and output behaviors. For example, a bot may accept a comtm&1idoS a particular host, and that host then appears
in the output DDoS attack. The Single-path Dependency AsimlModule uncovers such dependencies.

We perform single-path dependence analysis on the infeamgenerated by Rudder. Instructibiis dependent
upon instructior: if a computes a value thatuses. For example, one system call may set a value a subsegstem
call uses, e.gst at a filename, which is subsequently opened. Dependence anialgsalculated backwards: for the
goalb, we calculate all instructionswhich went into the calculation @t

Multi-path Dependency Analysis Module. The Multi-path Dependency Analysis Module analyzes sévare of
a program, using several different inputs, to infer add#icdlependencies.

We have implemented a genedliata-flow analysi&xtractor component. Dataflow analysis can be used to canput
many interesting dependencies. Two useful ones we haveimgited are may-constant analysis, which determines
any constants used in the program, and global-value nunthevhich determines if the program computes the same
sub-expression several times.

May-constant analysis has proven useful for uncoveringt@ots in packets sent out by malware. May-constant
analysis determines, for each symbolic operation, if thp@umust be one of a set of constants, and if so, what
possible constants it may be. Constant analysis is perfbimuictively. Any literal integer is a constant. Then, any
instruction with all constant arguments is also a const@me detail is that loops may produce a potentially infinite
number of constants. Our analysis limits the number of @oristto less than a pre-defined paraméter

Global-value numbering is useful for a similar reason: we see if observable output, or parts of the observable
output, are related by an expression. The global value ntintbalgorithm is a bit more complicated, but essentially
involves recognizing when two computed expressions aralgmt. Both global value numbering and may-constant
analysis are covered in more detail in standard compilesk$such as Muchnick [29].

4.5 System Implementation

We have implemented the above components in about 38,088 dhC/C++ and OCaml code. Since we want our
system to work with binaries (even when they are packed) mg@y dynamic binary instrumentation in our system.
In particular, we use QEMU [8], a whole system emulator thegsudynamic translation technique, as the basis for
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dynamic binary instrumentation. At runtime, a block of mistions in the guest system are translated into a piece of
code in the host system and then executed. This featureesnablto perform dynamic instrumentation on any code
in the guest system (including code in the kernel space).

Symbolic System Environment Implementation. QEMU only provides a hardware-level view of the system, such
as the state of registers and memory. For the analysis ofimadi code, a software-level view is required. In partigula
we want to know which process and which module (i.e., shabedrl or main executable) an instruction comes from.
In addition, if this instruction is a call to a Windows API, weant to know which Windows API it is and its argument
information.

To achieve these, we have developed a kernel module, andtload the guest system to obtain the necessary
software-level information. This kernel module is awaréhaf creation and deletion of processes. When a new process
is created, the kernel module obtains the value of currer &Rister. As the CR3 register contains the physical
address of the current process’s page table, it is diffegrd unique) for each process. The kernel module is also
aware of new modules being loaded. For each newly loaded lmatthe kernel module obtains its base address, and
scans its exported section for the offsets of exported fanst Then we obtain the entry point of an exported function
by adding the base address to its offset. All this infornmraisgpassed on to the Symbolic System Environment through
a predefined I/O port.

Thus, when executing a guest instruction, we can check theruCR3 to know which process is running, and
we only perform instrumentation on the process(es) undalyais. At the beginning of every basic block, we check
the current program counter with the entry points of Windéus that we are interested in. If it matches one entry,
then we perform instrumentation on it. The instrumentatimtudes logging the function name and its argument list,
and special handling for some APIs such as introducing syiminputs.

Obtaining the argument list of an API call requires exangnihe stack according to its prototype. We have
developed a parsing tool to scan the API prototypes in Wirddogader files and automatically generate for each API
a stub function that records the argument information.

Some APIs need special handling for either introducing sylimbnputs or implementing function summaries
(such as for string functions). For most such APls, the ims&nntation is to simply make it return immediately with
symbolic variables. For instance, whercyv is called, we make it return immediately and mark the retwatue
and the receiving buffer as symbolic. However, the instmotaon can be complicated for some APls. An example
is get host bynane, which returns a pointer tet r uct host ent if successful, and NULL otherwise. We have
to wait until it returns to mark the real content as symbdhstead of simply marking the pointer as symbolic. In
addition, in case the malware relies on the success of tHitoodo evil, we replace the argument of host name with
“localhost” before the real invocation and recover it afeturn.

Currently, we have implemented hooks for all WinSock fumies, some file operation functions such as Registry
functions, and most functions involving time and date todduce symbolic inputs. We have also implemented
function summaries for most functions describedirr i ng. h.

The implementation of this component consists of aboutd@t|hes of C code, excluding the stubs generated
from the parsing tool.

Rudder Implementation. Rudder is implemented in about 14,000 lines of C/C++ codel&n@00 lines of OCaml.
We use STP [10, 19] as our Solver in this version of Rudder. iSERlecision procedure well suited for the types of
operations commonly found in the formulas Rudder conssruct

Path Selector Implementation. We have designed our system to allow easy implementatioswfpath selection
algorithms. Currently, we have two interfaces which thégerithms can use: a linked in code interface, and a separate
socket interface. In both cases the interface allows Rutidgive current path data to the path selection algorithm
and receive commands in return. In our current implemenmiathese commands simply tell Rudder which path of
a branch to select or if it should restart execution. In thark, we envision storing multiple virtual machine states,
which will allows us to suspend and resume execution frombaapch seen in the code.

The code interface is currently used by our main exploratigorithm. This algorithm builds a graph of the code
that it has seen in current and previous runs and choosesatew Ipased on least traveled branches.
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We have also implemented a socket interface. This allows gaection algorithms to be built and run separately
from the main application. When a new path decision need®tmade, Rudder will simply send a request to the
remote Path Selector which will respond with the new actie. use this interface with our second algorithm. This
algorithm loads in the disassembly for a certain binary alb aga list of desired code locations. Currently, this
algorithm will then give priority to shortest paths betwabha malicious software’s entry point and the desired code
location.

Extractor Implementation. Extractor modules are implemented in OCaml. We originalyeloped modules in
C/C++, but found we could implement the same algorithms irm@Cmuch more concisely (and with fewer bugs
thanks to strong type checking).

Our control flow graph module consists of about 1600 lines 6a@l. The CFG module produces graphs in
the Graphviz DOT format. The CFG module can also computeliop,ca callgraph which depicts the callee/callers
relationships, and a supergraph which shows both the tt&irucontrol flow and callee/caller relationships togethe

We build the dependency analysis as dataflow analysis. Tierigedataflow analysis is built on top of the CFG,
and adds about 165 more lines of code. Our specific dependeratysis is about 1000 lines of OCaml code. Our
implementation follows that of Muchnick [29].

We learn new inputs by querying STP [10, 19] with the generpseh predicate’s. About 1000 lines are devoted
to translating expressions in our IR into STP.

5 Evaluation

We have evaluated BitScope with 8 representative malwanples. \We get some of them from Malfease [1], and the
others from collaborative researchers. We present détailalysis results on three of them and summarize our results
on all samples. In our experiments, we run BitScope on a Lmaghine with a dual-core 3.2GHz Pentium CPU and
2GB RAM. Inside QEMU, we allocate 512M RAM for the guest systwith Windows XP Professional installed.
For each sample, we keep the system running until no moretemmal jumps depending on symbolic variables are
discovered for 2 minutes.

5.1 Detailed Analyses

Here we present detailed analysis results on three piecealefare, Trin00, TEN2K, and SDBot 04b respectively.

5.1.1 Trin0OO

Trin00 is a zombie program for launching DDoS attacks [16}vdits for commands sent from a master and launches
DDoS attacks according to the commands. Trin00 was orilgimalinux zombie, but we have ported it to Windows
for our analyses.

As a baseline comparison, we have executed Trin00 withai®tcBpe, and have observed that it creates a UDP
socket, binds it to port 27444, and then sends hello mesgahedo*”) to 3 IP addresses on port 31335. We believe
these IP addresses to be those of the master machines. Ehprotiram simply waits and does not exhibit further
behaviors.

We then ran BitScope on the Trin0O0 zombie program. The erehtbtime for BitScope to analyze Trin00 took un-
der 3 minutes. Within this time, BitScope fully explored flregram and discovered 218 conditional jumps depending
on symbolic inputs. BitScope is able to extract much rich&rimation about Trin00 than the baseline case.

First, BitScope identified several network inputs whichvate different behaviors in Trin00. By analyzing the
information from the Symbolic System Environment and Rudttee Input Analysis Module identified that the input
message has a special format- in particular, it is compos#uee parts, Inputl, Input2, and Input3, separated by
spaces. Further, the Input Analysis Module identified 7 jgaalues for Inputl, “aaa”, “bbb”, “shi”, “png”, “dle”,
“rsz”, and “xyz”, which will activate different functionéles in Trin00. Essentially, Inputl provides the command.
Note that the information BitScope extracted about the tmgan serve as a preliminary signature to flag potential
Trin0O0 control traffic using the UDP port number 27444 andiftemmands.
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Figure 3: Analysis results on TEN2K input and output message

The Impact Analysis Module identified new functionalitiekem program execution followed the paths activated
by these commands. For example, when Inputl contains thev&haa” or “xyz”, Trin00 will continuously send out
UDP packets.

The Dependency Analysis Modules output further infornrattm the dependency between inputs and outputs.
First, the Single-path Dependency Analysis Module idesdifihat for the initial hello message sent by Trin00, the
payload and destination IP addresses are independenteafstimbolic inputs and the other API calls. The Multi-
path Dependency Analysis Module shows that the payloadtendédstination IP addresses are constant across all the
different runs. Second, for the UDP flooding packets gerdrathen commands “aaa” or “xyz” are sent, the Single-
path Dependency Analysis Module indicates that the degim# address is constructed from the input message, in
particular Input3, the destination port is generated frbgrtand function call, and the payload is independent of
the inputs. To our surprise, both dependency analyses s$taivihie payload size is a constant 4.

5.1.2 TFN2K

TFN2K is another DDoS zombie program [6]. TFN2K is more cosxpthan Trin00, it uses raw sockets to receive
commands and send flood packets. TFN2K was originally a Lprogram, but for these analyses, we have ported it
to Windows. Additionally, we have removed the original gmtion functionality for these analyses.

First, we ran TFN2K without BitScope to observe its behavims the baseline case for comparison. In this case,
we observed that TFN2K creates three raw sockets for ICMP, @@ UDP respectively and waits to receive data on
them. We observed no other behaviors.

We then ran TFN2K under BitScope. The end-to-end time foB&ipe is under 4 minutes. Within this time,
BitScope fully explored the program and discovered 20 damthl jumps depending on symbolic inputs. BitScope is
able to extract much richer information about TFN2K thanhlibseline case.

First, the Input Analysis Module identified network inputéieh activate different behaviors ini TFN2K. By
analyzing the information from the Symbolic System Enviremt and Rudder, BitScope identified that the input
message has a special format. Fig8f&) illustrates an example of the input message format in@h&P payload
where the first and third byte (i.e. offset 28 and 30) has tothand the second byte (i.e., offset 29) can be different
values. Depending on the value of the second byte, TFN2Kpeitform different actions. Thus, the value of the
second byte acts as a command. The Input Analysis Modulevened twelve commands in TFN2K, which are 'a’,
b, e, d e’ L g h T, T, K and T

The Impact Analysis Module identified new functionalitieeem program execution followed paths activated by
these commands. For example, the command 'h’ activates B Iflooding attack, 'f’ activates a TCP flooding
attack, and 'e’ activates a UDP flooding attack, as the Impaetlysis Module can segendt o being called many
times in all these cases.

The only messages TFN2K sends out are flooding packets, whictbe ICMP, UDP, and TCP packets, when
activated by the correct command. Thus, results from theeBeépncy Analysis Modules are for the flooding packets.
For an ICMP flooding packet, as shown in Fig&(e), the single-path dependency analysis indicates tiessdlirce
IP address is a random number from the result ofrtaeadomfunction call, and the destination IP address is from

1BitScope hooks theand function call
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the input message (offset 31 to 34), which is the argumené rémaining bytes are all concrete. In the multi-path
dependency analysis, we found that many fields in the patkaya exhibit specific constant values. These are shown
in Figure3(c).

The Multi-path Dependency Analysis Module has identifiee tbllowing special patterns in the ICMP packet
generated for flooding: (1) the two bytes in offset 21 to 220x@8 and 0x00, indicating that this is an ECHO request
packet; (2) the two bytes in offset 23 to 24 are OxF7 and Oxi¢hvare ICMP checksum. For a UDP flooding packet,
the Single-path Dependency Analysis Module show that tlséirtion IP address is from the input, and the source
IP address is randomly generated from the resuttaxidom For a TCP packet, Multi-path Dependency Analysis
Module shows that it always has SYN URG flags, which meandgtasSYN flooding.

5.1.3 SDBot

SDBot is a typical IRC bot program that allows a remote atadk control a computer using Internet Relay Chat
(IRC) [24]. We have analyzed a specific variant: SDBot 04b.

As with our other examples, we first ran SDBot without BitSeadp order to create a baseline for compari-
son. First we observed SDBot ca&et Modul eFi | eNanme, Get Syst enDi rect ory and CopyFi |l e. This
resulted in SDBot copying itself to the Windows system divez Next, SDBot callsRegCr eat eKeyEx and
RegSet Val ueEx to create a registry key that causes it to start on boot. lyinahppears to sleep between calls to
I nt er net Get Connect edSt at e.

We then ran SDBot under BitScope. SDBot is much more comfleg.end-to-end time for BitScope is about 2
hours. In this time BitScope discovered 119 conditionalgsrdepending on symbolic inputs and new behaviors in
SDBot First, the Input Analysis Module identified input m&ges needed to be of a particular format where an input
message consists of several space-delimited strings. fBhstfing is always the command and following strings are
the arguments. The Input Analysis Module was able to ex8ammmands for IRC, and the arguments of 3 out of
9 IRC commands, “NOTICE”, “PRIVMSG”, and “332", provide aetl commands for the bot program. The Input
Analysis Module identified 72 bot commands for SDBot 04b.

The Impact Analysis Module identified new behaviors whergpan execution followed the paths activated by
the commands. For example, the “udp” bot command causes WD@&irflg packets.

The Dependency Analysis Modules identified dependencynmdition between inputs and outputs. For IRC re-
sponse messages, both the Single-path Dependency Anlsllgdisie and Multi-path Dependency Analysis Module
found that part of the payload depends on the input buffetainimg the command. For UDP flooding attacks, the
Single-path Dependency Analysis Module shows that thegaalyis independent of symbolic inputs. However, the
destination IP address is dependent on the command bufieharport used can either originate from the command
buffer or a simple and call.

5.2 Summarized results

To demonstrate the general utility and performance of Bige¢ we provide the following metrics from different
aspects. The first is the end-to-end execution time. It sHwwvs long it takes for BitScope to finish analyzing a
sample. The second metric is the number of discovered donditjumps depending on symbolic inputs, The third
metric is the behaviors uncovered. Since it is in generditdit to quantify the number of different behaviors, here
we use the numbers of unique call sites to Windows APIs in dinepde to provide this measure. For comparison, we
give the number discovered by BitScope in the third columud,the number discovered by a normal execution of the
malware without BitScope in the forth column as the base:lifihe difference between these two infers BitScope’s
capability of discovering hidden behaviors.

We list these three metrics for all the samples in TableWe can see that it normally takes only minutes for
BitScope to analyze a sample to uncover substantially mehavior, except SDBot 04b which took 2 hours. This
execution time is still satisfactory, in the comparisonhatite time and efforts the human analysts spend currently.
In addition, we observe that the number of unique API caflssitncovered by BitScope increases significantly than
the number under the un-instrumented environment, dematimg} that BitScope is capable of revealing substantially
more behaviors of malware that are invisible under nornralichstances.
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Code | Runtime | Symbolic | Behaviors Discovered
size Cjmps BitScope | Normal
Discovered env

Trin00 201KB 569s 28 45 10
TFEN2K 47KB 212s 20 39 16
SDBot 04b | 238KB ~2hr 119 115 46
evilbot 16KB 127s 7 44 22
sdbot 2311 | 59KB 383s 13 234 66
ircbot 0045 | 74KB 186s 5 86 81
ircbot 004d | 34KB 181s 5 93 58
q8bot 37KB 120s 9 53 25

Table 2: Performance results

6 Discussion and Future Work

There are a variety of potential limitations to our approawet current implementation, including:

e We currently do not handle floating point numbers in the syimlevaluator. Adding floating point numbers is
straight-forward, but so far has been unnecessary. We aténgdo support floating point operations in future
versions.

e The scalability of the solver limits the depth at which we eaplore programs. Attackers could try and create
formulas which would be difficult to solve. However, the farka itself still serves as a useful tool for many
analysis, such as dependency analysis.

e \We do not attempt to break crypto routines. Attackers oftmarypto to password-protect their malware. For
example, a typical scenario is a piece of malware eallgpt to check a password, and if the crypt’ed password
matches the hard-coded password, executes the commahduglt our current infrastructure does not address
this problem, one technique is to recognize such calls aroe fexecution to always succeed. We are currently
implementing this approach.

Although attackers can come up with ingenous ways to maklysisdard, the advantage of our approach is we
still learn about whatever we can execute.

7 Related Work

This work builds upon our previous infrastructure for mix@xkecution [4]. Although we use the mixed execution
engine described there, we have since addressed sevecaicie§. In particular, we can now hook almost all windows
API calls. This allows us to analyze a wider variety of softevd/\Ve also now handle symbolic memory accesses and
string manipulation routines. In this work, we use the miea@cution engine as a component to perform more
complex analysis.

Many state-of-art dynamic analysis tools provide limitaddtionalities to support human analysts. Tools such as
CWwsSandbox [35], Norman Sandbox [5], TTAnalayze [7], and &d834] automatically record program actions but
only on a single execution path and may miss some cruciaM@h®ur technique explore multiple execution paths
to address this limitation and thus have more complete vieayowogram’s behavior. Many software testing tools also
proposed to detect bugs by exploring multiple paths. Fomgte, model checking tools [13,23, 25] convert programs
into state machine and use it to verify relevant program irgs.

We use mixed symbolic and concrete execution to triggeeufit behaviors embedded in malware. Symbolic
execution was first proposed by King in 1976 [26]. Since thdras been used in many different settings, including
automatic test case generation [20, 33, 36], vulneraHilgged signature generation [9], sound replay of applinati
dialog [30], and program verification [16, 17].
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EXE and DART both use mixed execution to find bugs in programr@code [10, 20] while we perform mixed
execution on binaries. Engineering mixed execution foabas is quite different than for source code. For example,
we must deal with symbolic memory writes and reads, whicloiiree code is equivilant to reasoning about loading
and storing pointers from collections such as arrays. Aeradifference includes the lack of abstractions: while seur
code has complex types, procedures, and variable scopiiaiwan be used as hints for mixed execution, binaries
have only simply types, no functions, only globally addesssiemory region and registers.

Methods for automatic test data generation presented ihg2d [22] also use constaint solving techniques to
identify interesting input values but have some limitatithe first method only works on high level languages and the
latter one only handles linear constraints.

We also perform some static analysis, such as dataflow asa8tstic analysis has been used in recent researches
to verify safety properties of a program [3] and to uncovelioi@us behaviors that may evade dynamic detection [27].
Another study uses static binary analysis to automatiggiyerate attack signatures based on the vulnerability pre-
sented in a program [9].

We apply our technique to real-world botnet programs. Gthewve performed automatic malware detection [11,
12, 31], and analyzed behavior patterns in bot networks18432]. These approaches are complementary. For
example, our approach can uncover bot commands from a batybinhich can then be used to identify or monitor
specific bot networks.

8 Conclusion

We have proposed techniques for automatically analyzirigioas binaries. We developed a system called BitScope
to demonstrate our approach. At the heart of BitScope is &syfor mixed execution of malicious binaries in a
whole system emulation environment. The result of the miegtution is a mathematical formula which captures
the conditions necessary to execute code paths. The beheifit@d execution is the analysis is not constrained to a
specific input value, but is abstracted over all input vafoea code path. We show that these formulas can be used as
a basis for many interesting analysis. We demonstrate 5analysis, and found they produced important information
for real-life malicious binaries.
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