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Abstract. Security analysis often requires understanding both the con-
trol and data-flow structure of a binary. We introduce a new program
representation, a hybrid information- and control-flow graph (HI-CFG),
and give algorithms to infer it from an instruction-level trace. As an
application, we consider the task of generalizing an attack against a pro-
gram whose inputs undergo complex transformations before reaching a
vulnerability. We apply the HI-CFG to find the parts of the program
that implement each transformation, and then generate new attack in-
puts under a user-specified combination of transformations. Structural
knowledge allows our approach to scale to applications that are infeasible
with monolithic symbolic execution. Such attack polymorphism shows
the insufficiency of any filter that does not support all the same trans-
formations as the vulnerable application. In case studies, we show this
attack capability against a PDF viewer and a word processor.

1 Introduction

In security analysis it is often necessary to understand both the information-
flow and control-flow structure of a large code base. Disassemblers concentrate
on recovering control-flow structure, and some research systems [18,26,17] re-
verse engineer data structures. But there is insufficient automated support for
understanding the flow of information between data structures, and the relation-
ship between data structures and code. We propose new techniques that combine
information-flow analysis with control-flow graph recovery to scale precise binary
analysis to large software systems, and apply them to generating polymorphic
attacks against programs that support complex input transformations.

Applications are getting larger and more complex due to increasing function-
ality, a more sophisticated software stack, and new abstractions and concepts
that simplify development. These applications are hard to debug and vulnerabil-
ities are becoming more and more complex, e.g., a vulnerable program location
might only be reached after a specific input is passed through several buffers and
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1 // ISO -8859 -1 to UTF -8 conversion
2 void trafo(char *src ,
3 char *dst , int len) {
4 while (len -- > 0) {
5 if (*src < 0x80) {
6 *dst++ = *src++;
7 } else {
8 *dst++ = 0xc0 | \
9 (*src & 0xc0) >> 6;

10 *dst++ = 0x80 | \
11 (*src++ & 0x3f);
12 }
13 }
14 }
15 ...
16 trafo(buf0 , buf1 , 256);

Fig. 1: This example shows both (a) simple transformation and (b) the corre-
sponding HI-CFG.

functions whereas the data can be modified by each function. Symbolic execution
is a great tool to analyze security properties of an application given a potentially
vulnerable program location. Unfortunately, symbolic execution does not scale
well to large contexts and long-running programs with multiple input transfor-
mations, due to the explosion of the number of possible paths that have to be
evaluated and the state that has to be tracked. A simple alternative to sym-
bolic execution is (concrete) fuzzing or fuzz testing. Fuzz testing uses templates
to probabilistically generate input data that tries to trigger a program crash.
A security analyst then analyzes the crash logs to locate vulnerabilities. Due to
the probabilistic input generation fuzz testing is unlikely to reach a vulnerability
that is guarded by complex, low-probability conditions.

This paper introduces a new program representation, a Hybrid Information-
and Control-Flow Graph (HI-CFG), that captures both the information-flow
graph and the control-flow graph of a program. The HI-CFG shows the data
structures within a program as well as the code that generates and uses these
data structures, inferring an explicit connection of producer and consumer edges
between data-flow nodes and blocks in the control-flow graph. Figure 1(a) shows
a simple example of a transformation and the corresponding HI-CFG graph. The
transformation that copies data from buffer buf0 to buf1. Figure 1(b) shows the
HI-CFG that contains the control flow graph as well as the data flow graph and
the producer/consumer edges between the two graphs.

Using the information in the HI-CFG about individual data structures (i.e.,
buffers) and transformations enables an iterative, step-by-step analysis of these
buffer transformations. Instead of using monolithic symbolic execution that re-
verses all transformations in a single (but potentially exponentially large) step,
iterative symbolic execution starts from a potentially vulnerable program loca-
tion and reverses each transformation individually. Figure 2 shows a vulnerabil-
ity hidden behind several transformations that can be reversed using iterative
symbolic execution.



Fig. 2: Iteratively reversing a set of data transformations based on information
from the HI-CFG.

One possible way to build a HI-CFG is using source-based program analysis.
Unfortunately, in the context of security analysis, the source-code of a program
is usually not available and the program itself might be stripped. This paper
presents an algorithm to build a HI-CFG for a given binary-only program based
on the analysis of an execution trace for a benign input that executes the buffer
transformations but does not necessarily trigger the vulnerability. Prerequisites
for the algorithm are only the (stripped) binary and a benign input that executes
the buffer transformations.

Another advantage of the HI-CFG from an attacker’s perspective is that
given one vulnerability the symbolic execution engine can be used to generate
many different exploit paths, leveraging different encodings or different trans-
formations. Often transformations are many-to-one (e.g., many different deflate
compressed streams decode to the same original data) and the symbolic exe-
cution engine can be used to produce different encodings for a specific target
string. Also, many file formats allow a specific program location to be reached
by different chains of transformations. With file formats that allow recursive ob-
jects, an attacker can choose from an infinite amount of transformations. Such
attacks can only be detected if the analysis tool has deep knowledge of the file
format and implements all transformations as well.

We evaluate the feasibility of HI-CFG construction using only a stripped
binary for two case studies: a PDF viewer, and a word processor. For both
programs, we describe the construction of the HI-CFG as well as how symbolic
execution can be used to generate different attacks by inverting transformations
along the HI-CFG buffer chains.

The contributions of this paper are:

1. we introduce a new program representation, a Hybrid Information- and
Control-Flow Graph (HI-CFG), which combines control-flow and data-flow
information by inferring producer/consumer edges;

2. we give algorithms for building a HI-CFG given only a stripped binary pro-
gram and a benign input to that program;

3. we evaluate the security capabilities of the HI-CFG using two case studies
for large, real-world programs: Poppler and AbiWord.



Our symbolic execution approach for attack generation is not a contribution
here; it is described in more detail in a technical report [21]. Further information
about the project is available on the BitBlaze web site [12].

2 The Hybrid Information- and Control-Flow Graph

For the central program representation used in our approach we propose what we
call a Hybrid Information- and Control-Flow Graph (“HI-CFG” for short, pro-
nounced “high-C-F-G”). The HI-CFG combines information about code, data,
and the relationships between them. Because data structures represent the in-
terface between code modules, a HI-CFG is a suitable representation for many
tasks that require decomposing a large binary program into components.

We start by describing the kinds of nodes and edges found in a HI-CFG (Sec-
tion 2.1). Then we mention potential variations of the concept and applications
for which they would be suitable (Section 2.2).

2.1 Nodes and Edges

A HI-CFG is a graph with two kinds of nodes: ones representing the program’s
data structures, and ones representing its code blocks. Data structure nodes are
connected with information-flow edges showing how information is transferred
from one data structure to another. Code block nodes are connected with control-
flow edges indicating the order in which code executes. Finally, data nodes and
code nodes are connected by producer-consumer edges, showing which informa-
tion is created and used by which code: a producer edge connects a code block to
a data structure it generates, while a consumer edge connects a data structure to
a code block that uses it. A more detailed example HI-CFG is shown in Figure 3.

The subgraph of a HI-CFG consisting of code blocks and control-flow edges
is similar to a control-flow graph or call graph, and the subgraph consisting
of data structure nodes and information-flow edges is similar to a data-flow
graph. However, the HI-CFG is more powerful than a simple combination of a

Fig. 3: A detailed example of a coarse-grained HI-CFG for a program which
parses two kinds of commands from its input, decodes those commands using
lookup tables, and then performs an appropriate computation for each command.



control-flow graph and a data-flow graph, because the producer-consumer edges
additionally allow an analysis to find the code that is relevant to data or the
data that is relevant to part of the code.

2.2 Generality and Uses

We can create a HI-CFG with differing levels of granularity for code and data.
A fine-grained code representation has one code block per basic block, while
a coarse-grained representation has one code block per function. Analogously,
a fine-grained data representation has a data structure node for each atomic
value (like an integer), while a coarse-grained data representation has one data
structure node per allocated memory region. To record information about finer-
grained structure, we can augment a coarse-grained data structure node with an
inferred type that describes its internal structure.

When an analysis can recover only part of the information about a program’s
structure, such as when combining static and dynamic approaches, we can also
annotate each HI-CFG edge with a confidence value between 0 and 1. A confi-
dence value of 1 represents a relationship that our system knows definitively to
hold, whereas a fractional value indicates an uncertain relationship.

Component Identification. One application of a HI-CFG would be to
identify functional components within a binary. The hierarchical, modular struc-
ture of a program is important at the source level for both developer understand-
ing and separate compilation, but this structure is lost after a compiler produces
a binary. Below the level of a dynamically linked library, a text segment is an
undifferentiated sequence of instructions. However we would often like to de-
termine which parts of a binary implement a certain functionality, such as to
extract and reuse that functionality in another application. Caballero et al. [5]
demonstrate the security applications of such a capability for single functions,
but many larger functional components would also be valuable to extract.

An insight that motivates the use of a HI-CFG for this problem is that the
connection between different areas of functionality in code are data structures.
A data structure that is written by one part of the code and read by another
represents the interface between them. Thus locating these data structures and
dividing the code between them is the key to finding functional components.
Given a HI-CFG, the functional structure of the program is just a hierarchical
decomposition of the HI-CFG into connected subgraphs. Data structures con-
nected to multiple areas represent the interfaces of those components.

Information-flow Isolation. A different kind of decomposition would be
valuable for programs that operate on sensitive data. In a monolithic binary pro-
gram, a vulnerability anywhere might allow an attacker to access any information
in the program’s address space. But often only a small part of an application
needs to access sensitive information directly. Just as automatic privilege sepa-
ration [4] partitions a program to minimize the portion that requires operating
system privileges, we would like to partition a program to minimize the portion
that requires access to sensitive information. This problem can again be seen
as finding a structure within the HI-CFG, but for information-flow isolation we



wish to find a partition into exactly two components, where there is information
flow from the non-sensitive component to the sensitive one but not vice-versa.

Attack Generation. For this paper, our application of the HI-CFG is to find
the structure of a program’s buffer usage to facilitate efficient attack generation.
For this, we use a relatively coarse-grained HI-CFG. We represent code at the
level of functions, so control-flow edges correspond to function calls and returns.
To represent data structures, we use a level of granularity intermediate between
atomic values and memory allocations: our tool detects buffers consisting of
adjacent memory locations that are accessed in a uniform way, for instance an
array. Our current prototype implementation detects only one level of buffers,
so we do not infer types to represent their internal structure.

Because our HI-CFG construction algorithm, as described in Section 3, is
based on dynamic analysis, each edge in the HI-CFG represents a relationship
that was observed on a real program execution. Thus all edges effectively have
confidence 1.0. The converse feature of this dynamic approach is that relation-
ships that did not occur in the observed execution do not appear in the HI-CFG.
However this is acceptable for our purposes because we base the HI-CFG, and
thus the search for an attack, on an analyst-chosen benign execution. If desired
the analyst can repeat the search with a benign input that exercises different
parts of the program functionality.

3 Dynamic HI-CFG Construction

In this section, we describe our approach to HI-CFG construction: first some in-
frastructure details, then techniques for collecting control-flow information from
dynamic traces, categorizing memory accesses into an active memory model,
grouping data accesses into buffers, tracking information flow via targeted taint
analysis, and merging significantly similar buffers.

3.1 Infrastructure

To construct a HI-CFG via dynamic analysis, we take a trace-based approach.
We use the BitBlaze Tracecap tool to record instruction traces. Tracecap also
records statistics about loaded executables and libraries, and produces a log of
function calls including arguments and return values that we later use to track
standard memory allocation routines.

Our modular trace analysis system interfaces with Intel’s XED2 [15] library
(for instruction decoding). It includes an offline taint propagation module that
allows for a virtually unlimited number of taint marks, and a configurable num-
ber of taint marks per byte in memory and registers. The implementation of
the trace collection and trace analysis focuses on x86 while the techniques for
HI-CFG construction apply to general architectures.



3.2 Control Flow

The HI-CFG construction module primarily identifies functions by observing
call and ret in the instruction trace. At a call instruction, the module updates
the call stack for the current thread and creates a control-flow edge from the
caller to the callee. (This includes indirect call instructions such as those used
for C++ virtual methods.) At a ret, the module finds the matching entry in
the call stack and marks any missed call stack entries as invalidated.

In addition to literal call instructions, our system also recognizes optimized
tail-calls by noticing execution at addresses that have previously been call

targets. A limitation of this approach is that tail-called functions will never be
recognized if not normally called. This limitation of the current implementation
could be addressed by adding a static analysis step to the HI-CFG construction
process, but it has not been a problem so far.

3.3 Memory Hierarchy

The HI-CFG construction records memory accesses in a hierarchical model of
memory which follows the lattice shown in Figure 4. space types at the top
of the lattice represent an entire process address space. At the bottom of the
lattice, primitives represent memory accesses observed in the instruction trace.
The categorization of a memory access corresponds to a path from the top of
the lattice to the bottom. Existing entries in the memory model add their own
types as additional requirements in the path. For example, a memory access
under an existing dynamically allocated memory region will at least have the
path space, dynamic region, dynamic allocation, primitive. The memory
model will then insert the memory access and create or adjust layers according
to the types in the path.

Memory structures such as dynamic allocations and stack frames are added
to the memory model as they are identified by one of several indicators. Dynamic

Fig. 4: The hierarchy of types in the model of memory used in our HI-CFG
construction algorithm.



allocations are added to the memory model by tracking standard memory alloca-
tion routines such as malloc and free. Stack frames are created by tracking esp

during call instructions and claiming all memory accesses between the base of
the stack frame and the end of the stack region during matched ret instructions.

Memory structures such as stack and dynamic regions are based on memory
pages. The “region” type classification relies on the intuition that most programs
tend to use each page for a single purpose such as for stacks, dynamic alloca-
tions, memory-mapped executables, or operating system structures. Additional
constraints prohibit stack frames and dynamic allocations from appearing in the
memory model without their respective regions.

3.4 Grouping Buffers

Instruction traces contain every individual load and store instruction performed
by the traced program, but for the HI-CFG we wish to group these accesses into
buffers to better understand their structure. We identify buffers as groups of
adjacent memory locations between which the program expresses commonality.

We experimented with several heuristics for identifying buffers and currently
use a combination of two approaches. Our first system recognizes instructions
that calculate memory access addresses by adding an index to a base pointer. The
system searches the operands involved in the address calculation for a suitable
base pointer (which must point to an active page of memory). Upon finding a
suitable base pointer, the system submits a candidate buffer consisting of an ad-
dress equal to the value of the base pointer and a size that extends the buffer from
the base pointer to the end of the observed memory access. For example, analyz-
ing a one-byte memory access of address 0x800000ff by the instruction “movzbl
(%esi,%edx,1), %eax” where the base pointer esi is 0x80000000 would yield
a 0x100-byte candidate buffer from 0x80000000 to 0x800000ff.

The first system often detects both arrays consisting of homogeneous data
types and structures consisting of heterogeneous data types. However, it fails
when the address of the memory access is constructed by pointer arithmetic
across multiple instructions. Our second system addresses this weakness by rec-
ognizing spatially adjacent memory accesses. To reduce the false positive rate of
buffer detections, our second system also tracks the order of memory accesses
within each function. Upon observing a return instruction and updating the call
stack, or freeing a chunk of dynamically allocated memory, the second system
uses the accesses from the returned function or freed memory as starting points
to search through the active memory model for linear access patterns. Specifi-
cally, our system numbers the accesses sequentially and then sorts them by their
address. A long enough run of adjacent accesses (currently 6) form a group if for
each pair of adjacent accesses, the distances between them, both in the sequen-
tial order and in address, match. A pseudocode description of this algorithm,
simplified to omit the treatment of nested functions and some optimizations, is
in Figure 5. An example of the algorithm applied to strcpy can be found in a
companion technical report [8]. Similar access patterns across multiple calls to
the same function, such as by functions that access one byte of a buffer per call,



are also recognized by this system. In addition, access patterns are stored within
buffers so that they may grow with subsequent accesses. If found, the system
will submit the candidate buffer for further processing described next.

const MIN SIZE = 6
for insn in trace

match insn.type of
case CALL: opcount := 0; accesses := [ ]

case LOAD(addr) or STORE(addr):
append(accesses, (addr, opcount++))

case RETURN:
a := sort(accesses, by(addr))
for indexes i in a

group := [ a[i ] ]
old stride := None
for indexes j=i, j+1 in a

new stride := (a[j+1].addr − a[j ].addr, a[j+1].opcount − a[j ].opcount)
if (old stride == None) old stride := new stride
if (old stride 6= new stride) break
append(group, a[j+1])

if (group.length ≥ MIN SIZE) make group(group)

Fig. 5: Pseudocode for identifying linear access patterns in a trace.

Once the two systems have submitted their candidate buffers, the HI-CFG
module combines the sets of discovered buffers (keeping all non-overlapping
buffers, and preferring larger buffers in the case of overlap) and commits them to
the active memory model. Adding a buffer to the active memory model merges
the grouped memory accesses with the new buffer, which summarizes relational
information such as producer and consumer relationships with functions and in-
formation flow to other buffers, which are described in the next subsection. Our
system merges a subsequent buffer with an existing one if the starting or ending
addressing of the new buffer matches either the starting or ending address of the
old one, or if either buffer is completely contained within the other.

3.5 Information Flow

To trace the information flow between buffers, our system primarily uses a spe-
cialized form of dynamic taint analysis [23,24]. We introduce a fresh taint mark
for each buffer as a possible source for information flow. We then propagate these
taint marks forward through execution as the data values are copied into registers
and memory locations, or used in arithmetic or bitwise operations. When a value
with a taint mark is stored into another buffer distinct from the source buffer, we
record an information flow from the source to that target. Like most techniques
based on dynamic taint analysis, this technique will not in general account for



all possible implicit flows. Therefore, we supplement it with an upper-bound
technique that constructs a low-confidence information-flow edge whenever the
temporal sequence of buffers consumed and produced by a function would allow
an information flow. (In other words, if a function first reads from buffer A, and
then later writes to buffer B, we create a low-confidence information flow edge
from A to B.)

3.6 Buffer Summarization

Buffers in the active memory model are moved into the historical memory model
when they or their hierarchical parents are deactivated. Primarily, this occurs
for stack allocated buffers (when functions return) and dynamically allocated
buffers (when the allocated chunk is freed). The remaining entries in the active
memory model are deactivated when the HI-CFG construction module analyzes
the last instruction in the trace.

Passthrough buffers, through which information flows without being acted
upon by multiple functions, are not added to the historical memory model af-
ter deactivation. The motivations for this choice are twofold: first, passthrough
buffers are generally less interesting for our analysis and their removal is a slight
optimization; second, passthrough buffers will connect legitimately separate sec-
tions of the HI-CFG with information flow. Removing passthrough buffers im-
proves the precision of the HI-CFG by eliminating cases that would indicate
spurious information flow: for instance, if memcpy copied through an internal
buffer that were not removed, every source of a copy would appear information-
flow connected to every target.

We define passthrough buffers as those that satisfy the following criteria:

– The buffer is not a source of information flow (i.e., it has at least one incoming
information flow edge).

– The buffer is not a sink of information flow (i.e., it has at least one outgoing
information flow edge).

– The buffer is produced and/or consumed by exactly one function.

If all of the criteria are met, the passthrough buffer is removed from the
graph, and new information flow edges connect buffers that were connected by
the passthrough buffer. When deactivated buffers do not meet the criteria for
passthrough buffers, they are moved into the historical memory model and sum-
marized, as we describe next.

The summarization process finds buffers that are related (intuitively, multiple
instances of the “same” buffer), and merges them along with their relational
information. We define when two buffers should be merged by giving each buffer
a value we call a key. Two buffers should be merged if they have both the same
parent and the same key. In the current implementation we store an MD5 hash
of the key material to save space. The key includes an identifier for the type of
an object, and by default it also contains the object’s offset within its parent.

The keys for dynamic allocations and stack frames contain different informa-
tion in addition to a type identifier. Dynamic allocations use the calling context



of the allocation site, up to a configurable depth (currently set to 10 calls),
similar to a probabilistic calling context [3]. Stack frames use the address of
the function. As a result, our system is able to identify two local variables or
dynamic allocations as the same across multiple calls to a function and in the
presence of custom memory allocation wrappers.

We use a disjoint-set union-find data structure [13] to manage the identities of
buffers as they are summarized. The merging of buffers corresponds to a union
operation, and we use a find operation with path compression to maintain a
canonical representative, associated for instance with a taint mark. This allows
the tool to efficiently maintain information-flow from historical buffers even after
they are deactivated.

4 Application: Attack Polymorphism

As our primary example of a security application of a HI-CFG, we describe how
to use the transformation structure represented in the HI-CFG to efficiently
produce new attacks that differ in the transformations applied to the input
before reaching a vulnerability. We first describe the technique and how it uses
the HI-CFG, then describe experiments applying the technique to two vulnerable
document-processing applications.

4.1 Transformation-Aware Attack Generation with a HI-CFG

In a large application, an input value will typically undergo a number of trans-
formations before being used in a vulnerable function. Moreover, the sequence
of transformations that apply may vary depending on the input structure. For
instance portions of a document might appear in one of several encoding for-
mats, or they might be compressed. This flexibility is potentially powerful for an
attacker, because it allows for polymorphism: the same underlying attack can be
carried out using a wide variety of input files which look superficially dissimilar.

We show that using the transformation structure available in the HI-CFG,
along with symbolic execution, an attacker can easily generate transformed at-
tack inputs, without a need to understand the transformations. We treat the
generation of transformed inputs as a search problem, and we use the struc-
ture of transformations to guide the search. Symbolic execution does not scale
to generate complete inputs to a large program. But using the transformation
structure, we can apply symbolic execution to search for a pre-image of a single
transformation at a time.

Specifically, our approach generates a HI-CFG from an execution of the vul-
nerable program on a benign input which does not contain an attack, but does
exercise the desired transformations. We also presume that the attacker has
enough knowledge to trigger the attack in the vulnerable function (perhaps also
by symbolic execution); in general this is not enough to directly give a program
input that triggers the vulnerability. Our system uses the transformation struc-
ture from the HI-CFG to determine the relevant transformations performed on



Test 1 Test 2 Test 3 Test 4 Test 5

Hex encoded 10 16 55 125 250
RLE encoded 5 8 25 60 120
Object data 12 10 29 57 114

Table 1: Set-up of the different test cases. All values are in bytes.

the program input to produce the buffer contents used by the vulnerable func-
tion. It then uses repeated searches based on symbolic execution, working back-
ward from the vulnerable function’s input buffer. For each transformation, it
computes a pre-image: buffer contents for a previous buffer, which when passed
through the transformation, yield the contents for the next buffer in the trans-
formation sequence. This process is shown graphically in Figure 2.

A sequence of transformations leading to the function containing a potential
vulnerability will appear in the HI-CFG as a path. The first node in the path is
a buffer representing the program input. The remaining nodes in the path before
the last are additional buffers internal to the program, connected by information-
flow edges. Finally, the path ends with a consumer edge leading to the function
containing the potential vulnerability. There may be multiple such paths, such
as if there are buffers containing both primary data and meta-data. Among all
the paths of the form described above, we choose the path for which the size of
the smallest buffer on the path is maximized, to prefer primary data buffers.

Given the sequence of buffers, the HI-CFG also contains information about
which functions implement each transformation. Specifically, each function that
implements part of the transformation will have a consumer edge from the earlier
buffer and a producer edge to the later buffer. In the case where the transfor-
mation is spread across multiple functions, the nearest call-graph ancestor that
dominates all of the functions connected to both buffers will generally be a func-
tion whose execution performs the transformation.

4.2 Performance Comparison between Iterative and Monolithic
Symbolic Execution

This section empirically evaluates the proposition that iteratively reversing in-
dividual transformation is faster than reversing all transformations in one single
(but more complex) step.

Our test program sets up a chain of two transformations. The input is first hex
decoded (pairs of ASCII characters in the ranges 0–9, a–f, or A–F map into data
bytes, skipping whitespace). The data bytes are then decompressed according
to a byte-level run length encoding (RLE), in which compressed bytes indicate
either a repeat count for a single byte, or a run of bytes to be copied verbatim.
Both encoding schemes are supported for objects in PDF files: in sequence they
encode data that is compressed but still printable.

For our performance evaluation we use three different configurations of the
same application with different input data. See Table 1 for the different test



Test 1 [s] Test 2 [s] Test 3 [s] Test 4 [s] Test 5 [s]

Iterative SE 20 183 77 816 37635
Monolithic SE 599 14042 35972 Timeout Timeout

Table 2: Scalability of iterative symbolic execution compared to monolithic sym-
bolic execution. All numbers are in seconds, the timeout was set to 12 hours.

configurations of the data that is used for the two transformations. We then
evaluate both iterative and monolithic symbolic execution. Monolithic symbolic
execution uses the object data as its target and directly recovers the hex encoded
input data. Iterative symbolic execution leverages the HI-CFG representation to
split up the large transformation into two transformations and recovers the RLE
encoded data first and uses the result from the first step as input for the second
step where the RLE encoded data is reversed to hex encoded data.

The experiments use our binary symbolic execution tool FuzzBALL [2,20],
which builds in turn on the Vine library from the BitBlaze framework [27].
To further improve its performance on generating transformation pre-images,
FuzzBALL includes support for pruning unproductive paths, prioritizing paths
by the prefix length they produce, and handling loads and stores to tables with
single large formulas. These are described in detail in a technical report [21], and
the implementation is available from the BitBlaze web site. To isolate the benefit
of the HI-CFG, we enable these other optimizations for monolithic symbolic
execution as well.

Table 2 shows the different performance for iterative and monolithic symbolic
execution. Even for very short input sequences with only few bytes as object data
iterative symbolic execution clearly outperforms monolithic symbolic execution
by 30x (for Test 1). For larger test cases iterative symbolic execution outperforms
monolithic symbolic execution by up to 78x (Test 2) or 467x (Test 3).

4.3 Case Studies

As case studies, we apply our attack polymorphism to two vulnerable document-
processing systems: the PDF parsing library Poppler and the word processor
AbiWord. These programs are open-source, and we use the source code to verify
our results, but the system does not use the source code or source-level informa-
tion such as debugging symbols.

Poppler Poppler is a PDF processing library used in applications such as
Evince. The vulnerability for which we generate attacks is cataloged as CVE-
2010-3704 [22]. The vulnerability is an integer overflow in a Type 1 font character
index, which can trigger an arbitrary memory write. The “stream” that contains
an embedded font within a PDF document is typically compressed to save space;
it can also be encrypted if the document uses access control, or transformed us-
ing other filters. By applying our system with benign documents that use various
filters, we can create PDF files where the exploit is transformed in various ways.



We can also apply symbolic execution to create the malicious font itself; de-
tails are in a previous technical report [8]. We used a separate benign input and
generated a separate HI-CFG for each sequence of transformations. For space
reasons we give a detailed description of the first; the others were similar.

The most common PDF compression format is FlateDecode, using the De-
flate algorithm of RFC 1951 [10]. As a benign input, we use a PDF file generated
by pdftex applied to a small TEX file, which contains a FlateDecode-compressed
font. The execution trace from the benign execution contains 13,560,478 instruc-
tions, and constructing the HI-CFG took about 1.2 hours (4217 s) on a Xeon
X5670. The HI-CFG contains 1283 functions and 1590 groups.

An excerpt of the relevant portion of the HI-CFG generated by our tool is
shown in Figure 6. Input passes through a sequence of four buffers before the
vulnerable code is triggered, so given contents for the final buffer which trigger
a vulnerability in the font parser, our system compute three levels of preimages.
However, two of the transformations are direct copies for which preimage com-
putation is trivial. Between the second and third buffers our system computes
a preimage under the FlateDecode transformation: a compressed font that de-
compresses to the attack font. One average this requires searching through 111
execution paths, and takes a little less than two hours (6598.69 s over ten runs
dropping the fastest and slowest, on an Intel Core 2 Duo E8400).

Another commonly-used transformation of streams in PDF files is RC4 en-
cryption. It is relatively easy for our symbolic execution system to re-encrypt
modified data by constructing pre-images because RC4 is a stream cipher, and
the key is fixed. We applied our technique to a version of the previously described
sample document with RC4 and an owner password. There is one symbolic path,
and the running time is 20 seconds, mostly devoted to program startup.

Two further transformations supported by Poppler include run-length encod-
ing and a hexadecimal encoding of binary data, as described in Section 4.2. We
test inverting these two transformations with a PDF file that again contains the
benign Type 1 font, but run-length encoded and then hex-encoded. As seen with
the implementation in Section 4.2, these transformations are relatively easy to
invert; the preimage computation requires 143 seconds and 315 symbolic paths.

Fig. 6: An excerpt of the HI-CFG for our Poppler case study showing the buffer
sequence. The input travels from left to right and FoFiType1::parse contains the
vulnerability.



AbiWord AbiWord is a word-processing application that supports a number
of file formats. In particular we examined its processing of documents in Office
Open XML format (used with the extension .docx) from Microsoft Word. An
Office Open XML document is structured as a compressed Zip file containing
multiple XML documents representing the document contents and metadata.

Recent versions of AbiWord (we used 2.8.2) suffer from a crash in XML
processing that is triggered when a shading tag occurs outside of a paragraph
tag; we have not determined whether this bug is exploitable. The execution
trace collected from the benign execution contains 69,503,117 instructions, and
constructing the HI-CFG took about 5.8 hours (20910 s). The generated HI-CFG
contains 5379 functions and 5838 groups. Looking at the sequence of buffers in
the HI-CFG, the document data starts in a standard-IO input buffer, and is
then decompressed by the inflate function. The decompressed buffer is then
copied via memmove into a structure called the parser context, which is used
by xmlParseDocument; the function containing the vulnerability is a callback
from this parser. An XML document triggering the crash could be found using
a schema-aware random testing tool, or the details of the attack can also be
completed using symbolic execution of the parser [8].

Given the crash-inducing XML text, our tool finishes the task of producing
an attack .docx file by finding a preimage for the compression used for the
XML text in the .docx file’s Zip encapsulation. In fact, Zip files use the same
DEFLATE algorithm mentioned earlier in the Poppler case study, though an
independent implementation. On average (across 10 runs dropping the fastest
and slowest), the search requires 237 seconds and 92 symbolic paths.

4.4 Discussion

Next we discuss in more detail some of the limitations and implications of the
attack polymorphism capability.

Invertible Transformations. Our approach for computing inverse images
via symbolic execution depends on several features of a transformation imple-
mentation in order to find an inverse efficiently. While common, these features
are not universal. First, our tool is designed for transformations whose input
and output come via contiguous data structures such as arrays that are accessed
sequentially. With additional data-structure inference, the approach could be ex-
tended to more complex linked and nested structures. However it must be clear
when the transformation has committed to an output value: our current approach
works when each output location is written exactly once. Second, pruning is most
effective if the transformation’s input and output are closely interleaved, so that
unproductive paths can be pruned early. One example of a class of transforma-
tions that do not satisfy these features, and cannot generally be inverted by our
approach, are cryptographic hash functions.

Implications for Attack Filters. Our results show that it is easy for an
attacker to create variants of an attack that are camouflaged using transfor-
mations supported by an input format, such as the various filters supported in
PDF documents. The consequence for the designers of defenses such as network



sensors and anti-virus systems is that in order to recognize all the variants of an
attack, these systems would have to duplicate all of the transformations imple-
mented in the system they protect. For instance to recognize all possible variants
of an attack PDF, a defense system would need to include decoders for all the
stream formats supported by Adobe Reader.

5 Related Work

Our techniques for determining which memory accesses constitute a buffer are
most similar to the array detection algorithms of Howard [26,25], a tool which in-
fers data-structure definitions from binary executions. Our algorithms are some-
what simpler because we do not currently attempt, for instance, to detect mul-
tidimensional arrays. Other systems that perform type inference from binaries
include REWARDS [18] which has been used to guide a search for vulnerabilities,
and TIE [17] which can be either a static or dynamic analysis. Similar algorithms
have also been used for inferring the structure of network protocols [7]. By con-
trast, our HI-CFG also contains information about code and the relationships
between code and data, which are needed for our application.

Perhaps the most similar end-to-end approach to attack generation is the
decomposition and restitching of Caballero et al. [6]. They also tackle the prob-
lem of vulnerability conditions which are difficult to trigger because of other
transformations the input undergoes, in their case studies decryption. Though
they use symbolic exploration to find vulnerabilities, they use a different tech-
nique, based on searching for an inverse function in the same binary, to gener-
ate preimages. The decomposition and restitching technique can also recompute
checksums, which is a key capability of TaintScope [28]. TaintScope uses taint-
directed fuzzing to search for vulnerabilities, and a checksum can typically be
recomputed using simple concrete execution. However TaintScope uses symbolic
execution, including lookup tables identified by IDAPro, to find preimages for
simple transformations of the checksum value in a file, such as endian conversions
or decimal/binary translation.

The AEG [1] and Mayhem [9] systems also generate attack inputs using
symbolic execution. AEG automates some additional aspects of exploit genera-
tion not covered in this paper, such as generating some common kinds of jumps
to shellcode. However, these projects do not describe any vulnerabilities as in-
volving transformation of the input prior to the vulnerable code, which is the
key challenge we address.

The kinds of program information contained in the HI-CFG are available sep-
arately using existing techniques; the focus of our contribution is the extra value
that comes from combining them in a single representation. For instance, hav-
ing both information-flow and producer-consumer edges allows our approach to
characterize a transformation in terms of both the data structures it operates on
and the code that implements it. The program dependence graph (PDG) [11,14]
also has edges representing both control and data flow, but it is unsuitable for
our application as it has no nodes representing data structures.



Our problem of computing preimages for transformations is similar to the
“gadget inversion” performed by Inspector Gadget [16], which also applies to
functionality automatically discovered within a binary. Inspector Gadget’s search
for inverses uses only concrete executions, but it keeps track of which output
bytes depend on which input bytes. Symbolic execution can be seen as a gen-
eralization in that symbolic expressions indicate not just which input values an
output value depends on, but the functional form of that dependence. This often
allows symbolic execution to compute a preimage using many fewer executions.

Our technique is based on searching backwards through the program execu-
tion to see if a vulnerability can be triggered by the input. A similar intuition
has been applied to the control flow of a program (as opposed to information
flow as we consider); examples include the static analysis tool ARCHER [29] and
the call-chain-backward symbolic execution approach of Ma et al. [19].

6 Conclusion

In this paper we introduce a new data structure, the Hybrid Information- and
Control-Flow Graph (HI-CFG), and give algorithms for constructing a HI-CFG
from binary-level traces. The HI-CFG captures the structure of buffers and trans-
formations that a program uses for processing its input. This structure lets us
generate transformed attack inputs efficiently, because understanding the struc-
ture of transformations allows our system to find preimages for them one-by-one.
We show the feasibility and applicability of our approach in two case studies of
the Poppler PDF library and the AbiWord word processor. This demonstrated
ease of constructing attacks using complex transformation sequences implies that
the problem of filtering such attacks is very difficult.
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