
DTA++: Dynamic Taint Analysis with

Targeted Control-Flow Propagation

Min Gyung Kang∗† Stephen McCamant† Pongsin Poosankam∗† Dawn Song†

†UC Berkeley ∗Carnegie Mellon University

{mgkang,ppoosank}@cmu.edu {smcc,dawnsong}@cs.berkeley.edu

Abstract

Dynamic taint analysis (DTA) is a powerful technique

for, among other things, tracking the flow of sensitive in-

formation. However, it is vulnerable to false negative er-

rors caused by implicit flows, situations in which tainted

data values affect control flow, which in turn affects other

data. We propose DTA++, an enhancement to dynamic

taint analysis that additionally propagates taint along a tar-

geted subset of control-flow dependencies. Our technique

first diagnoses implicit flows within information-preserving

transformations, where they are most likely to cause under-

tainting. Then it generates rules to add additional taint

only for those control dependencies, avoiding the explosion

of tainting that can occur when propagating taint along

all control dependencies indiscriminately. We implement

DTA++ using the BitBlaze platform for binary analysis,

and apply it to off-the-shelf Windows/x86 applications. In

a case study of 8 applications such as Microsoft Word,

DTA++ efficiently locates just a few implicit flows that

could otherwise lead to under-tainting, and resolves them

by propagating taint while introducing little over-tainting.

1. Introduction

Dynamic taint analysis (DTA for short) is a popular and

powerful technique for tracking information flow in soft-

ware even without access to source code. DTA works by

marking certain inputs to a program as tainted, and then

propagating that taint to other values that are computed

transitively based on those tainted inputs. For instance, we

can check for information disclosure bugs in a desktop ap-

plication by marking sensitive inputs as tainted, and then

checking whether they propagate to inappropriate outputs

(called sinks) [8, 16, 37]. However, a significant limitation

of standard approaches to DTA is that they do not propagate

taint along control dependencies (also called implicit flows):

parts of a program where tainted data values affect control

flow, and then the control flow variation affects other data.

This can lead to under-tainting, a type of error in which

values that should be marked as tainted are not, and so for

instance could cause an analysis to fail to detect a leak of

sensitive information.

Our hypothesis is that under-tainting occurs at just a few

places within large benign applications, such as in the im-

plementation of some kinds of data transformations (our re-

sults in Section 6 are similar to those seen in some previous

studies [21]). To obtain correct tainting results, we would

like to fix the under-tainting problems that occur at these

locations to propagate taint to the results of such a transfor-

mation. A common approach when operating at the source-

code level is to use static analysis to find all possible control

dependencies, and to propagate taint along each one. How-

ever, this approach has two difficulties when applied at the

binary level [10, 29, 30]. First, it is difficult to perform pre-

cise static analysis on binaries, because they lack many of

the structures that were present in source. Second, propa-

gating taint indiscriminately often leads to over-tainting, or

taint spread, the opposite problem from under-tainting that

occurs when too many values are tainted.

Thus there is a spectrum that ranges in the extremes from

no taint propagation for control dependencies (vanilla dy-

namic taint analysis) to universal taint propagation for con-

trol dependencies (based on static analysis). A useful mid-

dle ground is to perform targeted taint propagation for just

some control dependencies. Based on the observation that

under-tainting usually occurs at just a few locations, we pro-

pose to identify targets for additional propagation ahead of

time, in an approach we refer to as DTA++. In particu-

lar, we concentrate on the common case of information-

preserving transformations in benign programs. Note that

we focus on enabling taint propagation for benign programs

only. Malicious programs in which an adversary might in-

tentionally design implicit flows to frustrate analysis [7] are

out of scope. Information-preserving transformations, such

as the conversion of data from one format to another, oc-

cur in many contexts and it is important that they properly

propagate taint. Our approach has two phases: first we gen-

erate DTA++ rules by diagnosing branches responsible for

under-tainting and determining the extra propagation they

require using offline analysis, and then we apply those rules

during future runs of dynamic taint analysis.

Key to our approach is diagnosing only those implicit

flows that are likely to cause under-tainting. The intuition

behind our diagnosis technique is that if a transformation as

a whole is information-preserving, then it may redistribute

information between data flow and control flow, but it will

not destroy information. In some cases the code may move

partial information about a value into control flow, but if

there is information remaining in a data value, the data will

still be tainted so no under-tainting will occur. The implicit

flows that cause under-tainting are the rest: those that trans-

fer all of the information about the input into control flow,

leaving the data untainted. We can also weaken the as-

sumption of complete information preservation by instead

looking for implicit flows that transfer most of the infor-

mation about the input into control flow. The intuition of

the “amount of information transferred to control flow” can

be made precise as a kind of quantitative information flow

measurement of the branches that have been taken during a

program’s execution.

Once we have detected such an implicit flow, there are

several possible approaches for localizing it: for instance,

we could compute a small unsatisfiable core of the branch

conditions [9] to find a set of branches that were involved in

the implicit flow. However we have found a simpler tech-

nique to work well in practice: we use a binary search to

find a minimal prefix of the program trace that contains

the implicit flow; then the last instruction in this prefix is

a branch that is necessary to the implicit flow.

Once the diagnosis technique has identified a branch that

could be responsible for under-tainting, our system then

generates targeted propagation rules using an instruction-

level control-flow graph. (This phase is similar to the prop-

agation that has been proposed in other binary-level tech-

niques (e.g., [10]), with the key difference that we perform it

more selectively.) Once we have generated a set of DTA++

rules, our system can apply them on any future dynamic

taint analysis runs with just a lightweight modification to an

existing DTA tool.

In this paper we present our DTA++ technique, im-

plement it as an enhancement to an existing DTA tool,

and evaluate it in a realistic application to tracking sen-

sitive information. We implement DTA++ on top of Bit-

Blaze [6, 31]. In an extended case study, we show how

DTA++ obtains correct tainting results in large off-the-shelf

applications such as word processors. We also show vanilla

DTA often loses tainting because of implicit flows. On

the other hand, simply propagating taint for every implicit

flow leads to an enormous taint spread (orders of magnitude

more tainted bytes in our experiments).

In summary we make the following contributions in this

paper:

• First, we propose an efficient and effective technique

that identifies a minimum set of implicit flows in the

program that potentially cause under-tainting. Given

an execution trace with taint information, our tech-

nique automatically diagnoses the under-tainting prob-

lem if it exists, and then generates targeted taint prop-

agation rules to resolve the under-tainting.

• Second, we implement our technique using the Bit-

Blaze binary analysis platform [31]. Our system uses

dynamic and static analysis approaches together to de-

tect under-tainting of a value in a program execution

trace, diagnose its cause, and generate propagation

rules, and then applies the rules in the course of dy-

namic taint analysis.

• Lastly, we evaluate our technique by applying it to

under-tainting problems that we have encountered in

common off-the-shelf word processors on Microsoft

Windows. The results of this case study show that our

technique accurately identifies the implicit flows in-

volved in under-tainting, and corrects the tainting with

few side effects. Our technique also introducing orders

of magnitude less taint than when propagating taint for

all implicit flows as in previous systems such as DY-

TAN [10].

The rest of the paper is organized as follows. In Sec-

tion 2, we describe previous research efforts related to this

paper. We define the problem of under-tainting from im-

plicit flows and describe our underlying assumptions in Sec-

tion 3. We give our approach in Section 4, and Section 5

provides implementation details. We present a case study

applying our technique in Section 6 and discuss several is-

sues related to our technique in Section 7. Section 8 con-

cludes this paper.

2. Related Work

Dynamic taint analysis is a popular means for analyzing

both benign and malicious software components. Several

different techniques have been proposed based on dynamic

taint tracking for detecting unknown vulnerabilities in soft-

ware [11, 12, 26, 34]. They taint potential input sources of

malicious data such as network packets; monitor how the

tainted input data propagate throughout program execution;

and raise an alarm when the taint contaminates sensitive

data like return addresses in the stack or user privilege con-

figuration. The main ideas are also similar in analyzing ma-

licious software components leaking sensitive user informa-

tion on the system [15,22,25,33,36,37]. There are also on-

going efforts to apply the dynamic taint analysis techniques

to track and confine confidential information in production

systems running inside a virtualized environment [16, 17].

However, taint analysis techniques have several chal-

lenges in achieving accurate analysis results. Schwartz et

al. [29] point out several fundamental challenges including

under-tainting and over-tainting. A major cause of under-

tainting is implicit flows caused by control dependencies,

since vanilla dynamic taint analysis tracks only data depen-

dencies. Implicit flows are especially problematic in appli-

cations that require analyzing information flows within mal-

ware, because adversarial program authors could potentially

embed very complicated implicit flows in their programs to

evade analysis. For instance Cavallaro et al. [7] describe

these and other challenges in using dynamic taint analysis

in a fully adversarial context. In this paper we limit our

scope to applying DTA to benign applications, though note

that tracking information flows through benign software is

valuable in detecting whether that information reaches ma-

licious software. A more pessimistic assessment of the ap-

plicability of DTA that includes propagation across memory

accesses (as we use in this work) is given by Slowinska and

Bos [30]. Our work tackles some of the same challenges

they identify, but we argue our results show the challenges

are not insurmountable.

The challenges we refer to as under-tainting and implicit

flows from control dependencies have been studied since at

least the 1970s [14,18], but the lion’s share of previouswork

has been performed on source code, and often requires de-

veloper effort such as annotations or refactoring during de-

velopment. It is much more difficult to deal with such flows

in pre-existing binary applications. An example of a recent

system that attempts this is Clause et al.’s DYTAN [10]. Our

approach is a refinement of one like DYTAN that performs

a similar propagation, but it uses a more narrowly targeted

selection of branches for which to propagate taint (our diag-

nosis phase), in order to reduce over-tainting in the results.

In concurrent work, Bao et al. [5] propose what they

call “strict control dependence” to include some but not all

control dependencies in taint tracking and related analyses.

Their definition gives similar results as ours in many cases,

but is based on the syntax of a comparison expression. By

contrast we use a more general and precise semantic-level

condition, implemented using symbolic execution. Bao et

al.’s implementation uses a compiler transformation, so it

could not be applied to proprietary programs such as many

of those in our case study.

3. Problem Definition and Approach Overview

In this section we define in more detail the problem that

our DTA++ approach solves. We start by giving some

background about under-tainting in general, then give an

overview of our approach, and illustrate with examples.

3.1. Background and Motivation

First, we define the concept of under-tainting. Given a

(benign) program and a tainted (sensitive) input, we per-

form taint propagation to see what other values are tainted

(contain sensitive information). In taint analysis, under-

tainting is a situation where a value is not tainted even

though it is affected by the tainted input. We intentionally

choose not to make the concept of “affected” completely

formal, since which kinds of input-output relations should

propagate taint often depends on the details of the analysis

intent. A general intuition is that if we compare two ex-

ecutions of a program in which the untainted inputs were

the same and the tainted inputs were different, intermedi-

ate values and outputs that also differ between the runs are

candidates for tainting. However in many applications we

do not wish to treat all such differing values as tainted, if

the causal relationship between the input and the differing

value is too indirect or attenuated.

The under-tainting problems that we want to solve are

those caused by implicit flows. We define an implicit flow to

be a program structure in which tainted data affects control

flow, so that the control flow difference might in turn affect

other data. (Schwartz et al. [29] refer to this as control-

flow taint.) A more general concept of implicit flows would

also include structures in which tainted data affects an ar-

ray index or pointer: for instance, a table lookup when the

table index is tainted. Such examples could also naturally

be addressed by the technique of this paper, but existing

DTA systems already implement a special case for such ta-

ble lookups which gives the same results, so we have not

needed to do so. We call those implicit flows that cause

under-tainting culprit implicit flows, and the corresponding

branch instructions culprit branches.

To find culprit implicit flows, we focus on implicit flows

in (nearly) information-preserving transformations. (We

say that a transformation is information-preserving if it im-

plements an injective function: every legal input value pro-

duces a distinct output value.) These occur when all or

nearly all of the information present in a particular input

value affects the program’s control flow, so that no data-

only taint propagation would occur. Another way of stating

this condition is that only a single input value, or only a

few, would cause the program to take the same execution

path that occurred on an observed run.

3.2. DTA++ Approach Overview

To address the aforementioned problem, we propose

DTA++, an enhancement to vanilla dynamic taint analy-

sis (DTA) that propagates additional taint along targeted

control dependencies in order to ameliorate under-tainting

caused by implicit flows. Given a (benign) program, our

goal is to identify data transformations containing culprit

implicit flows at which taint should be propagated to avoid

under-tainting. For efficiency, DTA++ operates in two

stages. First, an offline analysis phase, based on test exe-

cutions, detects and diagnoses any under-tainting that may

be present, and generates DTA++ rules specifying how to

propagate taint to eliminate the under-tainting. Second, the

online taint propagation phase applies the DTA++ rules dur-

ing any future use of dynamic taint analysis on the same

program, to perform targeted propagation to prevent under-

tainting. A graphical overview of this structure is shown in

Figure 4.

Offline analysis. The input for the offline analysis phase

is one or more execution traces from a program that have

been generated using vanilla dynamic taint propagation. A

trace may contain under-tainting: that is, there may be a

portion of the program input and a corresponding part of

the program output such that the input region is tainted,

and the output region is derived from the input region via

an information-preserving transformation, but the output re-

gion in untainted. As output, the analysis phase produces a

set of DTA++ rules: specifications of additional taint prop-

agations needed to prevent the under-tainting. Each DTA++

rule gives a culprit branch in the program and a list of in-

structions control-dependent on that branch, such that if the

condition at the branch is tainted, the values written by each

control-dependent instruction should also be tainted.

The offline analysis is based on test executions which

each demonstrate under-tainting of the values derived from

some part of program input. Generating such test cases is

outside the scope of this paper; we discuss this point further

in Section 7.

Online Taint Propagation Using DTA++ rules. Using

the propagation rules generated by the offline analysis

phase, we can then perform future runs of dynamic taint

analysis with simple modifications to apply additional taint

according to the DTA++ rules. Since the specification of the

DTA++ rules is general, and programs tend to have only a

few instances of culprit implicit flows, offline analysis per-

formed on a few test executions of a program will generally

suffice to determine how to propagate taint for any future

executions.

For this paper, we focus on implicit flows in transforma-

tions that are completely information-preserving; thus, our

technique will look for implicit flows in which a control-

flow path completely determines the value of an input value.

In our experience, these are the implicit flows that most

commonly lead to under-tainting. Our technique also natu-

rally generalizes to a looser quantitative condition on how

close a transformation is to being information-preserving,

but we leave as future work how to best set such a threshold

to balance false positives and false negatives.

3.3. Examples

Figure 1 shows a simplified example of an implicit flow

that causes an under-tainting problem. The C code reads

a character from a plain text input and converts it into the

Rich Text Format (RTF) [27]. As shown in the code, when

a given character is a control character like braces ({ and

}) and backslash (\), it encodes the character to a control

code starting with a backslash. For example, { in the plain-

text input is converted into a two-byte control code \{. In

the code, the if and else if clauses in line 4 and 9 have

implicit flows that assign to the output the same value as

the input value, without directly copying the original input

value. Therefore, when we taint a brace character in the in-

put data for dynamic taint analysis, the taint does not prop-

agate to the brace character in the output buffer. Figure 2

illustrates this under-tainting graphically.

The implicit flows at the if and else if clauses in

Figure 1 are typical of those we wish to locate. The trans-

formation converting from plain text to RTF is information-

preserving, and for instance the execution path that causes

the program to output \{ can occur only when the corre-

sponding input character is {.

By contrast we do not wish to propagate taint for im-

plicit flows of a small fraction of the information in an in-

put value. Such implicit flows occur commonly in large

programs, but often the relationship of original input is in-

direct, so we would not wish to treat all such implicit flows

as propagating taint. Empirically, propagating taint for all

implicit flows leads to unacceptably-large over-tainting, as

demonstrated for instance in our experiments in Section 6.

An example of an implicit flow for which we do not wish

to propagate taint is shown in Figure 3. In this example, the

value output contains a small portion of the information

contained in the original input: each output value can be

caused by many different input values. (Quantitatively, the

code transforms the 32-bit integer input, with 232 possi-

ble values, into one of only two possible values of the buffer

output, reducing 32 bits of information to only 1.) We ex-

pect that for most applications, it would not be desirable to

propagate taint for this implicit flow, so we would set the

detection threshold to exclude examples such as this.

Thus as a diagnosis solution, we want to locate culprit

implicit flows that cause the under-tainting results in the

output. Our offline analysis phase processes an instance of

the program execution and provides the exact locations in

the program code that cause the given under-tainting prob-

lem. Since we work on program binaries, the location of an

implicit flow is a conditional jump instruction in the binary

code. For example, as shown in Figure 7, an implicit flow

1 char output[256];

2 char input = next_input();

3 long len = 0;

4 if (input == ’{’) {

5 output[0] = ’\’;

6 output[1] = ’{’;

7 len = 2;

8 }

9 else if (input == ’\’)

10 output[0] = ’\’;

11 output[1] = ’\’;

12 len = 2;

13 }

14 /* ... */

15 else {

16 output[0] = input;

17 len = 1;

18 }

19 add_output(output, len);

Figure 1. C code for RTF conversion, with culprit implicit flows

T a i n t :

{ \T a i n t : {

Dynamic Taint analysis

Plaintext-to-RTF

Conversion

tainted input output with under-tainting

Figure 2. Under­tainting in the plain­text­to­RTF conversion code

causing the under-tainting in { (hex value 0x7b) begins at

the jump instruction after cmp %dl, %al; and this is the

point that we want to automatically find in the execution

trace.

4. Our Approach: Offline Analysis

In this section we present the details of our approach to

diagnosing and ameliorating the under-tainting problem de-

fined in Section 3. Since applying DTA++ rules requires

only a straightforward modification to a standard DTA sys-

tem, we concentrate on the offline analysis phase that gen-

erates those propagation rules. First, we describe how to

locate culprit branches from a given execution trace (diag-

nosis), and then we explain how to create rules to fix the

corresponding culprit flows (rule generation). An overview

of how these phases work together is shown in Figure 4.

4.1. Diagnosing Under­Tainting

The basic intuition of our diagnosis approach is to search

for parts of the execution that make control-flow decisions

based on the input that is under-tainted, where the results of

those decisions imply tight restrictions on the possible val-

ues of that input. Since determining alternative possible in-

puts requires more fine-grained information than basic taint

analysis, we use symbolic execution and base our search on

the path predicate that describes a particular execution. In

the terminology of symbolic execution, the trace of instruc-

tion executions corresponds to a program path consisting of

a sequence of branch decisions. We refer to any contigu-

ous sub-sequence of instructions from this trace as a path

substring, and a path substring that starts at the beginning

of the trace as a path prefix. We describe this search in two

parts: first, a detection predicate φ to determine whether a

path substring has a culprit implicit flow, and then a search

procedure to efficiently find the first path prefix for which φ

holds.

Detection predicate. We implement the detection predi-

cate φ using symbolic execution. The principle of symbolic

execution is to replace certain values such as program in-

puts with symbolic variables, so that computations produce

formulas instead of concrete values. We say that a branch

condition is a symbolic branch condition if it depends on

the symbolic variables. Then the path predicate for an exe-

cution is the conjunction of the formulas for each symbolic

branch condition. Thus the path predicate is a formula over

the symbolic variables that holds for executions that take

the same control flow path.

φ(t) will be a predicate that, when given a substring t of
an execution trace, returns true if the substring has a cul-

Figure 4. System overview. Our DTA++ system extends conventional dynamic taint analysis (DTA)

with under­tainting diagnosis (Section 4.1) and rule generation (Section 4.2) to ameliorate under­
tainting caused by implicit flows. Shaded boxes correspond to pre­existing components, while

white­background components are the contributions of this work.

1 char output[256];

2 long input = user_input();

3 long len = 0;

4 if (input > 100) {

5 strcpy(output, "large");

6 len = 5;

7 }

8 else {

9 strcpy(output, "small");

10 len = 5;

11 }

12 print_output(output, len);

Figure 3. Example code with a non­
information­preserving implicit flow. Such

implicit flows usually do not cause under­
tainting, so we do not want to detect them,

and in fact this example is not considered a

culprit implicit flow by our system.

prit implicit flow that tightly constrains its inputs. For ease

of description, we concentrate here on the highest possi-

ble threshold for constraint. This is an implicit flow where

the control flow encodes all of the information about the

tainted input, or equivalently, when a control-flow path can

be reached by only a single input value. Thus we want φ(t)
to be true if there is only one value of the relevant part of

the input that causes the program to take the execution path

observed in the trace.

To check this condition, we take the parts of the program

input that produced the under-tainted value as the symbolic

variables. We use symbolic execution to extract a path con-

dition as a formula over that input. Then we query a con-

straint solver to check whether there is a second solution to

the path condition, besides the input values that appeared in

the original trace.

For example, when the code in Figure 1 has the input

{, the execution path is lines 2, 3, 4, 5, 6, 7, and 19, and

the path predicate is input == ’{’. Then, we attempt

to solve this path constraint with the additional constraint

that the input be different from the concrete value {: i.e.,

input == ’{’ && input != ’{’. Trivially in this

example, the solver tells that there is no other possible value

that satisfies the constraint, so the execution path encodes

the precise value of the input byte: this is a path for which

φ holds.

Locating a culprit branch. Using the predicate φ, find-

ing the location of a culprit branch reduces to finding the

smallest prefix of the execution that satisfies φ. (If the

whole trace does not satisfy φ, then the algorithm reports

that it does not have under-tainting.) A brute-force approach

would be to try each prefix of the trace starting from the

smallest, but this might require O(n) calls to the predicate

φ, which could be inefficient. Assuming the predicate φ

must at least do some processing on each instruction in the

trace prefix, this would imply at least quadratic complexity.

(In fact constraint solving is potentially even more expen-

sive, NP-hard in general, a further incentive to reduce the

number of solver calls required.)

We use a more efficient approach based on binary search.

We fix the starting point of the trace segment, and use bi-

nary search to find the earliest ending point of the trace such

Figure 5. Binary search for a culprit branch in
a trace

that the segment contains a culprit implicit flow. Figure 6

shows our algorithm, where the function HasImplicit

implements the predicate φ. Figure 5 illustrates the search

in action. Given a trace containing a culprit implicit flow,

we split the trace and (1) try HasImplicit() on the

first half of the trace. Because HasImplicit() returns

false, we reduce the search space to the second half of the

trace. By splitting the second half of the trace, we (2) try

HasImplicit() on the first three quarters of the trace,

and in the example, the result is true, limiting the next

search space to the third quarter of the trace. Continuing,

we try HasImplicit() on (3) the first 5/8, (4) the first

11/16 of the trace, and so on.

Multiple culprit branches in a trace. The trace may con-

tain multiple culprit branches, and we may need to diagnose

and propagate taint for several to achieve the desired taint-

ing result. If there are multiple culprit branches, the diag-

nosis algorithm presented above finds the one that appears

earliest in the trace. Once we diagnose one such location,

we remove the corresponding formula from the path condi-

tion. After this modification, we can perform the diagnosis

process a second time to find another culprit branch, and in

this way repeat the process until the diagnosis finds no more

culprit implicit flows.

4.2. Rule Generation

After diagnosing the cause of under-tainting, we deter-

mine how to ameliorate it by generating rules specifying

how to propagate taint to the values affected by the flow. To

do this, we adopt a technique much like that used by Clause

et al. [10]. First, we extract control flow graphs (CFGs)

from the program binary and build a database of the imme-

diate post-dominator of each conditional branch by inspect-

ing the CFGs. (A point p in a CFG post-dominates a point

i if every path from i to the exit passes through p, and im-

mediately post-dominates it if there is no other p′ for which

p′ post-dominates i and p post-dominates p′. Immediate

post-dominance is a precise counterpart to the intuition of

the re-convergence point of a branch, and can be efficiently

computed using compiler algorithms [24].)

For each culprit branch our tool diagnoses, we query the

database for its immediate post-dominator, and generate a

rule specifying to taint the destination operands of all the

instructions up to the post-dominator.

The most precise approach to this taint propagation is

to taint any register or memory location that might have a

different value depending on whether the true or the false

side of the culprit branch was taken. Thus, a value written

to inside the branch need not be tainted if it is always writ-

ten the same value on both sides of the branch. Conversely,

even if a value is not written to on this execution, it should

be tainted if it could have been written on the side of the

branch that was not taken. However, we have found few

cases that need the full complexity of this precise propaga-

tion, so we have currently implemented a simpler approach

of tainting any value that is written by an instruction after

the branch but before the post-dominator, with some spe-

cial treatment for loops with a tainted loop condition. We

discuss this trade-off more in Section 7.

Clause et al. apply taint propagation to all the conditional

branches with a tainted condition (eflags value), but we

apply it to only the culprit branches found by the diagnosis

algorithm, which are very few (orders of magnitude less, as

we show this in our results in Section 6). This allows our

technique to provide more accurate tainting results.

4.3. Multi­level culprit implicit flows.

There can also be multi-level culprit implicit flows in the

program: culprit implicit flows whose inputs are themselves

the results of previous culprit implicit flows. Thus fixing all

the culprit implicit flows visible in a single trace may still

not be sufficient to resolve all the under-tainting in an exe-

cution. When needed our tool can repeat the combination

of tracing, diagnosis and rule generation until we obtain a

trace without under-tainting.

There are several possible approaches to detecting when

to stop generating more propagation rules. For instance, if

we have auxiliary information for the offline analysis phase

specifying which output locations are under-tainted, we can

generate rules until those locations are properly tainted. Al-

ternatively, we can simply repeat the offline analysis process

until it detects no remaining implicit flows.

5. Implementation

We implement our proposed technique using the Bit-

Blaze platform [31]. BitBlaze includes tools for both dy-

namic and static analysis available in an open-source re-

lease [6]. We use our DTA++ implementation to extend

and enhance the taint analysis performed by BitBlaze’s dy-

namic analysis component TEMU and its Tracecap plugin.

/* check for culprit implicit flow */

HasImplicit(trace, size)

if phi(trace[0:size])

return true;

else

return false;

endif

/* locating the first culprit branch */

LocateImplicit(trace, 1, size_of(trace));

LocateImplicit(trace, left, right)

integer middle, size;

if left == right

return right;

else if left > right

return -1;

endif

middle := (left + right) / 2;

if HasImplicit(trace, middle) == true

return LocateImplicit(trace, left, middle)

else

return LocateImplicit(trace, middle + 1, right)

endif

Figure 6. Pseudo­code of the algorithms

Using TEMU’s taint-enhanced whole-system emulation en-

vironment, Tracecap collects a trace that can include each

instruction executed by a subject program, and information

about its operands. To reduce the size of the generated trace

we use Tracecap filtering features such as not starting the

trace until the first instruction with a tainted operand. We

also enhanced TEMU with additional interfaces for selec-

tively tainting input values and verifying taint results of out-

put data. For diagnosis we build on BitBlaze’s existing sup-

port for path constraint generation (using the Vine toolkit)

and constraint solving (with an interface to the off-the-shelf

SMT decision procedure STP [19]). We implement the bi-

nary search algorithm of Section 4.1 and other glue code in

Python. We obtain control flow graphs and post-dominator

information by disassembling the program binary with IDA

Pro [1], and then passing its output to a CFG library that is

part of BitBlaze. The output of the rule generation phase

is a text file containing DTA++ propagation rules. We then

perform online taint propagation using these DTA++ rules

to enhance dynamic taint analysis.

6. Word Processors Case Study

To evaluate our DTA++ approach, we apply our imple-

mentation to diagnose and fix culprit implicit flows in Win-

dows word processors that exhibit under-tainting in format

conversion. In this section we describe our experimental

setup, evaluation metrics, and then our evaluation results.

6.1. Experimental Setup

For our evaluationwe use 8 word processing applications

that run on MicrosoftWindows: MicrosoftWord 2003 [23],

WordPad [35], AbiWord [2], AngelWriter [3], Aurel RTF

Editor [4], IntelliEdit [20], Crypt Edit [13], and VNU Ed-

itor. Each program can accept input in plain text format

using the keyboard, and then save the text to disk in for-

mats including RTF and HTML. For each application we

first checked whether it had an under-tainting problemwhen

converting plain text into either RTF or HTML, and if so,

used our system to diagnose and fix the problem.

For each program with RTF output, we checked for

under-tainting by running the program using TEMU’s

vanilla DTA and supplying a test input via the keyboard.

For the experiments described in this section we use

"Taint it: {" with all 11 characters tainted as the test

input (other test inputs would give similar results). Then,

we direct the program to save the text in RTF format and

observed the tainting in the bytes written into the file. When

the program converts the text to RTF, the program escapes

the brace, yielding the result "Taint it: \{". The de-

sired tainting result is that all the characters except the back-

slash (\) are tainted. We identified cases as under-tainted if

the brace character was not tainted in the output file, as illus-

trated in Figure 2. The experiments with HTML conversion

are the same except that we use a less-than character < in-

stead of a brace, which is escaped to "<". (We did not

observe under-tainting of any other bytes.)

Table 1 lists the combinations of program and target that

showed under-tainting, which we evaluate with our tool.

We then applied our DTA++ tool to diagnose and fix the

under-tainting of the brace or less-than character respec-

tively. None of these examples exhibited multi-level im-

plicit flows, so only one execution of our diagnosis algo-

rithm is required. Our execution platform is Windows XP

SP3, running inside TEMU.

6.2. Evaluation Metrics

The most basic evaluation criterion for our technique is

whether taint correctly propagates to the previously under-

tainted output byte (e.g., {). In addition, we measure how

many culprit implicit flows our system corrects, how much

time it takes to do so, and how many total bytes are tainted

(an indicator of over-tainting).

Number of culprit implicit flows diagnosed and fixed.

We count the total number of culprit implicit flows diag-

nosed and fixed by our technique.

Program # of Culprit Time for Tainted Bytes (whole system)

Description Implicit Flows Diagnosis Original Optimal DTA++ DYTAN∗

Detected & Fixed

WordPad, RTF 1 0.26s 90 131 139 25634

MS Word 2003, RTF 24 31m 5.26s 407 467 880 149485

AbiWord, HTML 1 0.63s 1062 1075 1289 89641

AngelWriter, HTML 3 14.29s 210 220 382 8503

Aurel Editor, RTF 1 0.76s 79 87 87 84425

VNU Editor, RTF 1 0.34s 101 120 121 18852

IntelliEdit, RTF 1 0.40s 127 132 132 12473

CryptEdit, RTF 1 0.23s 293 313 313 15509

Table 1. Program description and evaluation results

Program # of Tainted Branches (# Unique Taint Branches)

Description Original Optimal DTA++ DYTAN∗

WordPad, RTF 652 (64) 731 (84) 745 (87) 263292 (6248)

MS Word 2003, RTF 2620 (213) 2628 (244) 2685 (267) 417455 (15675)

AbiWord, HTML 4792 (356) 4825 (374) 5328 (446) 1024932 (11059)

AngelWriter, HTML 42 (11) 200 (49) 266 (96) 19808 (2269)

Aurel Editor, RTF 639 (63) 710 (77) 735 (88) 498904 (12134)

VNU Editor, RTF 921 (71) 1014 (89) 1039 (100) 74778 (4454)

IntelliEdit, RTF 1101 (98) 1190 (109) 1239 (123) 41898 (3114)

CryptEdit, RTF 744 (97) 822 (110) 823 (111) 57864 (3820)

Table 2. Number of tainted branches

Performance (time). Since symbolic execution and con-

straint solving are potentially expensive, we check that our

technique does not add too much overhead. To assess this,

we measure the time our system takes to locate the culprit

implicit flows in each example, given an execution trace.

(The overhead of additional propagation during future taint

propagation runs would likely be too small to measure.)

Over-tainting evaluation. Some potential sources of

over-tainting are outside the scope of this research, but it

is important to be careful of over-tainting whenever we in-

troduce additional taint propagation. So we check that our

technique does not introduce excessive over-tainting as a

side effect of fixing under-tainting. We measure the number

of tainted bytes in the system memory after applying tar-

geted taint propagation according to the rules generated by

our offline analysis technique. For this purpose, we stop the

analysis when the program writes its output to a file, and

count the total number of tainted bytes in memory using

Tracecap’s state snapshot feature. We compare the number

of tainted bytes between the unmodified execution and three

types of propagation (as listed in Tables 1 and 2):

• Original: The starting point for comparison is the num-

ber of bytes that are tainted when executing the pro-

gram using TEMU’s vanilla DTA approach with no

additional propagation. Of course this vanilla DTA has

under-tainting.

• Optimal: For a best-case comparison of what results

can be obtained by adding propagation, we inspect the

execution trace and manually identify a single instruc-

tion that is responsible for under-tainting, and verify

that adding taint to the values written by that instruc-

tion avoids under-tainting. Thus this measurement re-

flects the least possible additional tainting consistent

with removing the under-tainting.

• DTA++: In this case we apply our DTA++ technique,

using the targeted propagation rules generated using

the techniques of Section 4.

• DYTAN∗: To measure the value of targeting propa-

gation, we compare to the results obtained with the

simpler approach of performing propagation for every

branch whose condition was tainted. This simulates

using our infrastructure the results that would be ob-

tained from a tool like DYTAN [10]. (We cannot com-

pare directly with DYTAN because it does not support

Microsoft Windows programs).

6.3. Results

Summary. We were able to automatically diagnose and

ameliorate the under-tainting problems in all 8 programs

using our implementation. To evaluate the accuracy and the

efficiency of our technique, we use the metrics mentioned

in the previous subsection. Table 1 presents the results. In

summary, in most of the programs, our technique diagnoses

a single culprit implicit flow, and just fixing the detected

implicit flow solves the under-tainting problem in the out-

put data. The two exceptions are the RTF conversion of Mi-

crosoft Word, and the HTML conversion of AngelWriter;

in these cases our system finds multiple potential culprit

branches though in fact only one is responsible for under-

tainting. Our technique also diagnoses under-tainting prob-

lems efficiently. For most of the programs, the technique

detects the implicit flows within one second. Microsoft

Word is again an outlier in running time, largely because

it has the largest number of implicit flows, and each execu-

tion trace contains many instructions. Counting the num-

ber of tainted bytes in the system memory shows that our

targeted propagation reduces the unnecessary tainting dra-

matically compared to an approach that taints all control de-

pendencies (presented as DTA++ and DYTAN∗ respectively

in Table 1). Our technique taints 22 to 1445 times fewer

bytes compared to an indiscriminate approach (DYTAN∗).

The amount of taint added by our automated approach is of-

ten quite close to the minimal additional taint we found by

manual analysis (the “Optimal” column in Table 1).

We also count the number of tainted branches after fixing

the culprit implicit flows. As shown in Table 2, DTA++ adds

a few additional tainted branches by fixing the culprit im-

plicit flows, indicating little over-tainting. However, indis-

criminate propagation of DYTAN∗ shows up to 678 times

more tainted branches, indicative of severe over-tainting.

Additionally, we have examined the execution traces to

see exactly how the implicit flows affect taint propagation in

our dynamic taint analysis. We select two subject programs

to describe the under-tainting problems in detail.

WordPad RTF (a simple conditional branch). When

converting a left brace ({) into the RTF format by prepend-

ing a backslash (\), WordPad first converts 1-byte charac-

ters into two-byte ones prefixed by 8 zero bits (i.e., converts

them into Windows wide characters). During this conver-

sion, the taint tagged on the original brace character does

not propagate to the brace in the output buffer. Figure 7

shows exactly how the under-tainting problem develops in

the WordPad program execution. In the course of RTF con-

version, WordPad reads one character at a time, and checks

if the current character is a left brace (0x7b in ASCII code)

at EIP 0x4b44daad. (The current character from the in-

put is in the al register and tainted.) When the input value

is equal to the value in the dl register (in this execution

context, 0x7b), it does another equality check against the

null character (EIP: 0x4b44daab). Since the input char-

acter is not null, the program execution gets through to

0x4b44dab5 where WordPad calculates an offset value

needed to retrieve the two-byte value of the brace charac-

ter. The offset value is from two untainted address values,

and thus the resulting offset is not tainted. By using this un-

tainted offset, WordPad retrieves the two-byte format of the

left brace from a character table. Although TEMU propa-

gates taint to values from an array access with a tainted in-

dex value, the taint doesn’t propagate properly here because

the index (offset) value is not tainted. Apparently, the calcu-

lation of the offset value is controlled by a tainted value (the

tainted brace character from the input). However, the taint

flows through the control dependency at 0x4b44dadd,

and thus, it doesn’t propagate to the offset calculation and

character conversion. Also, this program execution path is

made possible only by the left brace character, so our diag-

nosis algorithm correctly detects it.

AbiWord HTML. AbiWord has an under-tainting prob-

lem when converting plain-text content to the HTML for-

mat. Unlike WordPad, the implicit flow causing the prob-

lem is not an explicit comparison against the character that

AbiWord wants to convert. That is, in the WordPad ex-

ample, the program explicitly compares the input charac-

ter with the left brace (0x7b), but the comparison in Abi-

Word is more subtle. AbiWord converts a less-than sign

into the "<" string in HTML. As in the execution trace

in Figure 8, the program first compares the input character

with the ampersand character (&) by subtracting 0x26, the

ASCII code for it (at 0x101eb133). If it’s not equal, the

program compares the resulting value (input - 0x26)

with 0x16, which is to see whether the input value is a

less-than character (<). In other words, it subtracts 0x3c in

total (0x26 + 0x16) from the input value instead of di-

rectly comparing the input value with 0x3c. If the compar-

ison passes at 0x101e13f, the program pushes an address

value into the stack. This address value is used to retrieve

the converted string value ("<") from a table later in the

program execution. However, the address value is a con-

stant value and so is not tainted by vanilla DTA.

7. Discussion

In this section we provide further discussion of some of

the design choicesmade in our approach, and its limitations.

Symbolic memory index. In dynamic taint analysis we

taint a value loaded from memory if the address used for

the load is tainted; as mentioned in Section 3.1, this can

be viewed as fixing a kind of implicit flow in memory ac-

cesses. (This treatment of loads is a configurable option in

TEMU, but we enable it for our experiments.) At the source

level, such memory loads often correspond to array index-

ing (where the address is derived from the array index), so

we also refer to this as the case of a tainted memory index.

...

0x4b44daad: cmp %dl,%al ;%dl=0x7b (not tainted), %al=0x7b (tainted)

0x4b44daaf: jne 0x4b44daa6

0x4b44dab1: test %dl,%dl ;%dl=0x7b (not tainted)

0x4b44dab3: je 0x4b44dacb

0x4b44dab5: sub %edi,%ecx ;%edi=0x4b4043a0 (not t.), %ecx=0x4b4043a2 (not t.)

0x4b44dab7: mov 0x4b4043ac(,%ecx,2),%ax ;*0x4b4043b4=0x007b (not tainted)

0x4b44dabf: cmp $0x7f,%ax ;%ax=0x007b (not tainted)

...

Figure 7. Execution trace of an implicit flow in WordPad

...

0x101eb130: movsbl %bl,%eax ;%bl=0x3c (tainted)

0x101eb133: sub $0x26,%eax ;%eax=0x0000003c (tainted)

0x101eb136: je 0x101eb223

0x101eb13c: sub $0x16,%eax ;%eax=0x00000016 (tainted)

0x101eb13f: je 0x101eb20e

0x101eb20e: push $0x10281978

...

Figure 8. Execution trace of an implicit flow in AbiWord

However, this kind of taint propagation raises an additional

question when we use taint to create symbolic values for

path constraints: what is the correct constraint formula for

the value read from the array? If we propagate taint through

an array access with a tainted index, the value copied from

the array also should be marked symbolic. The most pre-

cise approach would be to copy the entire contents of the

array at the time of access into the constraint formula, but

this has several practical problems. First, it is often difficult

to determine the bounds of an array at the binary level. Sec-

ond, large lookup-tables can make formulas too large and/or

make them take too long to solve. Instead in our implemen-

tation, we make the variables for values read from symbolic

inputs be free. In other words, we consider those tainted

values as new input values without any constraints. This

relaxation could potentially cause our tool to miss implicit

flows, though this was not a problem in our experiments.

We leave for future work the problem of how to account

more accurately for such propagations in a way that is both

automatic and scalable.

Symbolic indirect jump. It can also happen that taint

propagates to an address used in an indirect jump. Some-

what like the case of symbolic indexes above, it is difficult

to symbolically represent all the possible behaviors of such

a jump, and they are also problematic in the construction of

control-flow graphs. We did not encounter tainted indirect

jumps in any of our examples, but the context in which they

are most likely to occur is probably jump tables used to im-

plement switch statements. For this limited case it would

likely be feasible to implement special case recognition of

common switch statement instruction patterns.

1 // table of n special characters:

2 table = {’{’, ’}’, ’\’, ...};

3 input = get_input();

4 for (i = 0; i < n; i ++) {

5 if (input == table[i])

6 break;

7 }

8 if (i < n)

9 output = "\" + table[i];

Figure 9. A negative implicit flow. Here the
branch on line 5 affects the value of i because

when the branch is taken, i is not modified.

Negative implicit flows. The most subtle type of implicit

flows are those in which a tainted control flow affects later

data because a value is not modified. Some authors reserve

the term “implicit flow” for this narrower case; instead we

distinguish them as negative implicit flows. Figure 9 shows

an example of how such a flow can occur in text transfor-

mation; it is modeled after code we observed in CryptEdit.

Negative implicit flows can be diagnosed by our technique

just like other implicit flows, but they require a more so-

phisticated approach to generate propagation rules. Rather

than just tainting locations that are written inside a branch,

we must also analyze which values might have been written

had the branch not been taken (e.g., the missing increments

of i in Figure 9) and taint those locations as well. Our cur-

rent implementation only handles such situations when, as

in the example, they appear in relation to the exit condition

of a loop. For this, we apply BitBlaze’s implementation

of loop-extended symbolic execution [28], obtained from

its authors. No other negative implicit flows caused under-

tainting in our examples, but in the future we plan to extend

our implementation to handle more negative implicit flows,

at least in the most common cases without nested branches,

arrays, or indirection.

Limitations of a dynamic approach. Unlike static anal-

ysis on either source code or a program binary, dynamic ap-

proaches can only diagnose under-tainting problems present

in the instances of program execution that we observe. That

is, the dynamic approaches cannot explore all the possi-

ble execution paths in the program, leaving unseen under-

tainting problems. However, static approaches are often

limited by the complexity of possible program states and

path constraints.

We believe that a dynamic approach, based on test cases

that exercise code that can suffer from under-tainting, is

practical in this domain. This is because there are rela-

tively few code locations responsible for under-tainting, and

under-tainting is caused by the structure of the code so that

complex prerequisite conditions are not required to trigger

it. These intuitions are supported by our case studies so far.

Another possibility would be to apply test-generation tech-

niques to this problem: for instance, we could use symbolic

execution or other techniques to automatically explore new

paths and check them for under-tainting.

Forward vs. backward approaches. Our diagnosis tech-

nique is based on taint propagation information originated

from input data, so, in some sense, it is a kind of forward

slicing on the execution traces. However, since we can take

the whole execution trace and knowwhich part of the output

data should be tainted, it would also be possible to reverse

the process. When we find an untainted output byte that

we expected to be tainted, we can attempt backward slicing

from the sink to see how it tracks back to the correspond-

ing tainted input data. However, backward slicing would

not solve the problems of implicit flows that motivate this

work. The same program constructs are generally referred

to as control dependencies in the slicing literature, but they

cause the same kinds of difficulties there that they do in

tainting: ignoring control dependencies, as is often done in

dynamic slicing, can yield slices that are too small, while

including all control dependencies, as is common in static

slicing, often yields slices that are too big. The best way

to reconcile these tradeoffs is also the subject of research

in slicing, yielding approaches such as “thin slicing” [32].

On a more practical level, a key advantage for us of forward

rather than backward analysis is that forward taint propaga-

tion can be performed at the same time as the original for-

ward execution, so our execution traces only must record

tainted instructions. Backward slicing would require com-

plete execution traces which would be much bigger: more

than 1GB in some of our examples.

Malicious software components. Although we evaluated

our technique only with benign applications, implicit flows

in malicious software components can cause under-tainting.

For instance, such under-tainting could affect the use of

malware analysis platforms such as Panorama [37]. How-

ever these problems are harder to solve, since malware writ-

ers can deliberately generate and embed lots of conditional

branches, invoking implicit flows of tainted input data. At

a minimum, this means that by violating our assumption

that implicit flows are relatively rare, an adversarial pro-

gram author could make the techniques we present here be

impractically slow. Other features of our current implemen-

tation could also be exploited to create false positive or false

negative errors. To our knowledge these evasion techniques

have not yet been seen in the wild, but we expect they would

not be terribly difficult to implement if malware authors felt

they were needed. At a minimum, this suggests that such

systems should have a distinction between software com-

ponents into those that are known benign, and those that

might be malicious. Systems should then apply different

and more conservative taint propagation policies to the po-

tentially malicious components.

8. Conclusion

We have presented DTA++, an enhancement to dynamic

taint analysis that additionally propagates taint along a tar-

geted subset of control-flow dependencies. DTA++ allows

dynamic taint analysis to avoid under-taintingwhen implicit

flows occur in data transformations. By diagnosing culprit

implicit flows and performing additional propagation only

within information-preserving transformations, DTA++ re-

solves under-tainting without causing over-tainting. We

have shown how our implementation of DTA++ applies to

off-the-shelf Windows binaries. In a case study of 8 appli-

cations, DTA++ prevented under-tainting that would other-

wise have given incorrect results, while introducing orders

of magnitude less taint than when propagating taint for all

implicit flows as in previous systems such as DYTAN [10].

Acknowledgments

The authors are grateful to Kevin Chen, Daniel Reynaud,

and Aravind Iyer for their suggestions in improving the pre-

sentation of this paper.

This work was performed while Min Gyung Kang and

Pongsin Poosankamwere visiting student researchers at UC

Berkeley. This material is based upon work partially sup-

ported by the National Science Foundation under Grants

No. 0311808, No. 0448452, No. 0627511, and CCF-

0424422, by the Air Force Office of Scientific Research un-

der Grant No. 22178970-4170, by the Army Research Of-

fice under grant DAAD19-02-1-0389, and by the Office of

Naval Research under MURI Grant No. N000140911081.

Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the National Science

Foundation, the Air Force Office of Scientific Research, the

Army Research Office, or the Office of Naval Research.

References

[1] The IDA Pro disassembler and debugger. http://www.hex-

rays.com/idapro/.
[2] Abiword. http://www.abisource.com/.
[3] Angel Writer. http://www.angelicsoftware.

com/en/angel-writer.html.

[4] Aurel RTF Editor. http://sites.google.com/

site/aurelwwiz/aurelsoft.
[5] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict con-

trol dependence and its effect on dynamic information flow

analyses. In International Symposium on Software Testing

and Analysis (ISSTA), pages 13–24, Trento, Italy, July 2010.
[6] BitBlaze: Binary analysis for computer security. http:

//bitblaze.cs.berkeley.edu/.

[7] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of in-

formation flow techniques for malware analysis and contain-

ment. In Detection of Intrusions and Malware and Vulnera-

bility Assessment (DIMVA), Paris, France, July 2008.

[8] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and

M. Rosenblum. Understanding data lifetime via whole sys-

tem simulation. In USENIX Security Symposium, pages

321–336, San Diego, CA, USA, 2004.
[9] A. Cimatti, A. Griggio, and R. Sebastiani. A simple and

flexible way of computing small unsatisfiable cores in SAT

modulo theories. In Theory and Applications of Satisfiability

Testing (SAT), pages 334–339, Lisbon, Portugal, May 2007.
[10] J. Clause, W. Li, and R. Orso. Dytan: A generic dynamic

taint analysis framework. In International Symposium on

Software Testing and Analysis (ISSTA), pages 196–206, Lon-

don, UK, July 2007.
[11] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,

L. Zhang, and P. Barham. Vigilante: end-to-end contain-

ment of internet worms. In Symposium on Operating Sys-

tems Principles (SOSP), pages 133–147, Brighton, United

Kingdom, Oct. 2005.
[12] J. R. Crandall and Z. Su. On deriving unknown vulnera-

bilities from zero-day polymorphic and metamorphic worm

exploits. In Computer and Communications Security (CCS),

pages 235–248, Alexandria, VA, USA, Nov. 2005.
[13] Crypt Edit. http://download.cnet.com/

Crypt-Edit/3000-2079_4-10064884.html.
[14] D. E. R. Denning. Secure Information Flow in Computer

Systems. PhD thesis, Purdue University, May 1975.
[15] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dy-

namic spyware analysis. In USENIX Annual Technical Con-

ference, pages 1–14, Santa Clara, CA, USA, June 2007.

[16] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and

M. McCauley. Practical data confinement. Unpub-

lished manuscript, http://www.cs.berkeley.edu/

˜andreye/pdc_submission.pdf, Nov. 2009.

[17] A. Ermolinskiy, S. Katti, S. Shenker, L. Fowler, and M. Mc-

Cauley. Towards practical taint tracking. Technical Report

UCB/EECS-2010-92, EECS Department, University of Cal-

ifornia, Berkeley, June 2010.

[18] J. S. Fenton. Information Protection Systems. PhD thesis,

University of Cambridge, Cambridge, UK, 1973.

[19] V. Ganesh and D. L. Dill. A decision procedure for bit-

vectors and arrays. In Computer Aided Verification (CAV),

Berlin, Germany, July 2007.

[20] IntelliEdit. http://www.flashpeak.com/inted/

inted.htm.

[21] S. McCamant and M. D. Ernst. Quantitative information

flow as network flow capacity. In Progamming Language

Design and Implementation (PLDI), pages 193–205, Tuc-

son, AZ, USA, June 2008.

[22] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple ex-

ecution paths for malware analysis. In IEEE Symposium on

Security and Privacy, pages 231–245, Oakland, CA, USA,

May 2007.

[23] Microsoft Word 2003. http://msdn.microsoft.

com/en-us/office/aa905483.aspx.

[24] S. S. Muchnick. Advanced Compiler Design and Implemen-

tation. Morgan Kaufmann, 1997.

[25] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-

gna. Cross-site scripting prevention with dynamic data taint-

ing and static analysis. In Network and Distributed System

Security Symposium (NDSS), San Diego, CA, USA, Feb.

2007.

[26] J. Newsome and D. X. Song. Dynamic taint analysis for au-

tomatic detection, analysis, and signaturegeneration of ex-

ploits on commodity software. In Network and Distributed

System Security Symposium (NDSS), San Diego, CA, USA,

Feb. 2005.

[27] Rich text format (RTF) specification, version 1.6.

http://msdn.microsoft.com/en-us/

library/aa140280(office.10).aspx.

[28] P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-

extended symbolic execution on binary programs. In Inter-

national Symposium on Software Testing and Analysis (IS-

STA), Chicago, IL, July 2009.

[29] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever

wanted to know about dynamic taint analysis and forward

symbolic execution (but might have been afraid to ask). In

IEEE Symposium on Security and Privacy, Oakland, CA,

USA, May 2010.

[30] A. Slowinska and H. Bos. Pointless tainting?: evaluating

the practicality of pointer tainting. In European Conference

on Computer Systems (EuroSys), pages 61–74, Nuremberg,

Germany, Apr. 2009.

[31] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G.

Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.

BitBlaze: A new approach to computer security via binary

analysis (keynote invited paper). In International Confer-

ence on Information Systems Security (ICISS), Hyderabad,

India, Dec. 2008.

[32] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In

Progamming Language Design and Implementation (PLDI),

pages 112–122, San Diego, CA, USA, June 2007.

[33] E. Stinson and J. C. Mitchell. Characterizing bots’ re-

mote control behavior. In Detection of Intrusions and Mal-

ware, and Vulnerability Assessment (DIMVA), pages 89–

108, Lucerne, Switzerland, July 2007.

[34] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure

program execution via dynamic information flow tracking.

In Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 85–96, Boston, MA,

USA, Oct. 2004.

[35] Wordpad. http://windows.microsoft.com/

en-US/windows-vista/Using-WordPad.

[36] H. Yin, Z. Liang, and D. Song. Hookfinder: Identifying and

understanding malware hooking behaviors. In Network and

Distributed System Security Symposium (NDSS), San Diego,

CA, USA, Feb. 2008.

[37] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.

Panorama: Capturing system-wide information flow for

malware detection and analysis. In Computer and Commu-

nication Security (CCS), Alexandria, VA, USA, Oct. 2007.

