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Abstract. Signature-based input filtering is an important and widedpldyed defense. But cur-
rent signature generation methods have limited coveradetengenerated signatures often can
be easily evaded by an attacker with small variations of #pto#t message. In this paper, we
proposeprotocol-level constraint-guided exploratioa new approach towards generating high
coverage vulnerability-based signatures. In particalar,approach generates high coverage, yet
compact,vulnerability point reachability predicatesvhich capture many paths to the vulner-
ability point. In our experimental results, our to@lcanq generates compact, high coverage
signatures for real-world vulnerabilities.

1 Introduction

Automatic signature generation remains an important opan@m. According to Syman-
tec’s latest Internet Security Threat Report hundredswfsecurity-critical vulnerabil-
ities were discovered in the second half of 2007 [1]. For mafrthese vulnerabilities,
the exploit development time is less than a day, while thetpdevelopment time is
often days or months [1]. In addition, the patch deploymanetcan be long due to
extensive testing cycles.

To address these issusgnature-based input filterinigas been widely deployed in
Intrusion Prevention (IPS) and Intrusion Detection (ID$tems. Signature-based in-
put filtering matches program inputs against a set of sigeatand flags matched inputs
as attacks. It provides an important means to protect vabiehosts when patches are
not yet available or have not yet been applied. Furthernfordegacy systems where
patches are no longer provided by the vendor, or criticaksys where any changes to
the code might require a lengthy re-certification procagsasure-based input filtering
is often the only practical solution to protect the vulndegtrogram.

The key technical challenge to effective signature-baséeitse is to automatically
and quickly generate signatures that have both low falsiiyesand low false nega-
tives. In addition, it is desirable to be able to generataagres without access to the
source code. This is crucial to wide deployment since it Evsthird-parties to generate
signatures for commercial-off-the-shelf (COTS) prograwithout relying on software
vendors, thus enabling a quick response to newly found vabilgies.

Due to the importance of the problem, many different apgneador automatic sig-
nature generation have been proposed. Early work proposgehteratexploit-based
signaturesusing patterns that appeared in the observed exploits,unlt signatures



can have high false positive and negative rates [2—10]. Megently, researchers pro-

posed to generataulnerability-based signatureshich are generated by analyzing the
vulnerable program and its execution and the actual camditneeded to exploit the

vulnerability and can guarantee a zero false positive fetel]?].

Automatic vulnerability signature generation. A vulnerability is a pointin a program
where execution might “go wrong”. We call this point th@nerability point A vulner-
ability is only exploited when a certain condition, thelnerability condition holds on
the program state when the vulnerability point is reachédisTto exploit a vulnerabil-
ity, the input needs to satisfy two conditions: (1) it neemlkead the program execution
to reach the vulnerability point; (2) the program state saedsatisfy the vulnerability
condition at the vulnerability point. We call the conditithrat denotes whether an input
message will make the program execution reach the vulrgygimint thevulnerability
point reachability predicatéVPRP). Thus, the problem of automatically generating a
vulnerability-based signature can be decomposed intoitleatifying the vulnerability
condition and identifying the vulnerability point reaclilélp predicate. A vulnerability-
based signature is simply the conjunction of the two. Whaéhlproblems are impor-
tant, the space limitations makes trying to cover both imglsipaper unrealistic. Thus,
in this paper we focus on how to generate vulnerability pog@ichability predicates
with high coverage and compact size, and we refer the read&B8j for details on the
vulnerability condition extraction. In this paper, we ug&imal signatureo refer to a
vulnerability signature that has no false positives andateefnegatives.

Coverage is a key challengeOne important problem with early vulnerability-based
signature generation approaches [11, 12] is that the siggsbnly capture a single
path to the vulnerability point (i.e., their VPRP contaimdyoone path). However, the
number of paths leading to the vulnerability point can be/large, sometimes infinite.
Thus, such signatures are easy to evade by an attacker wathreodifications of the
original exploit message, such as changing the size ofblarlength fields, changing
the relative ordering of the fields (e.g., HTTP), or chandief values that drive the
program through a different path to the vulnerability pgird, 15].

Acknowledging the importance of enhancing the coverageutiiarability-based
signatures, recent work tries to incorporate multiple paito the VPRP either by static
analysis [16], or by dynamic analysis [17,18]. Howeverfgeaning precise static anal-
ysis on binaries is hard due to issues such as indirectiontgye and loops.

ShieldGen takes a probing-based approach using protaceétonformation [18]—
using the given protocol format, it generates differentivi@med variants of the orig-
inal exploit using various heuristics and then checks wéretimy of the variants still
exploits the vulnerability. The advantage of this approadhat by using protocol for-
mat information, the final signature is expressed at theopadtlevel (which we call
protocol-levelsignature) instead of the byte level. Compared to signatat¢he byte-
level (which do not understand the protocol format), protdevel signatures have two
advantages: they are more compact and they naturally careants of the exploits
caused by variable-length fields and field re-ordering (Seeerdetail in Section 2.2).
The disadvantage of the approach used by ShieldGen is thakfgtoration uses heuris-
tics to figure out what test inputs to generate. Such hecsistin introduce false pos-
itives and do not use the information from the execution efgthogram, which would



increase the coverage of the program execution space. Asuli, e exploration is
inefficient and has various limitations (See Section 2.3).

Bouncer extends previous approaches using symbolic ezedat generate sym-
bolic constraints on inputs as signatures [17]. Even thddghncer makes improve-
ments in increasing the coverage of the generated sigisaiustill suffers from sev-
eral limitations. First, it generates byte-level signatuinstead of protocol-level signa-
tures. As a result, it is difficult for Bouncer to handle ewasattacks using variable-
length fields and field re-ordering. Second, Bouncer’s engplon is inefficient and
largely heuristic-based. As mentioned in their paper, tite@s tried to use symbolic-
constraint-guided exploration to explore the program etien space to identify dif-
ferent paths reaching the vulnerability point, but coutdnake the approach scale to
real-world programs and thus had to resort to heuristiclks asduplicating or removing
parts of the input message or sampling certain field valugy to discover new paths
leading to the vulnerability point. Thus, a key open probfengenerating accurate and
efficient signatures is how to generate vulnerability poggchability predicates with
high coverage.

Our approach. In this paper, we propog@otocol-level constraint-guided exploration
a new approach to automatically generate vulnerabilitypreachability predicates
with high coverage, for a given vulnerability point and aiti@ exploit message. Our
approach has 3 main characteristics: 1) @agstraint-guidedi.e., instead of heuristics-
based exploration as in ShieldGen and Bouncer), 2) the @nisguided exploration
works at theprotocol-leveland generates protocol-level signatures at the end, anid 3) i
effectivelymergesxplored execution paths to remove redundant exploraftoathree
points seamlessly weave together and amplify each othensfii. By using constraint-
guided exploration, our approach significantly increakesffectiveness and efficiency
of the program execution space exploration. By lifting th@bolic constraints from the
byte level to the protocol level, our constraint-guidedlexation is done at the protocol
level, which makes the exploration feasible for real-wgsldgrams, addressing the
problem that Bouncer couldn’t solve. By merging paths ingRploration, we further
reduce the exploration space.

Elcano. We have designed and developgltang realizing the aforementioned ap-
proach. We have evaluated the effectiveness of our system teal-world vulnerable
programs. In our experiments, Elcano achieved optimal @sezto-optimal results in
terms of coverage. In addition, the generated signatuees@nmpact. In fact, most of
the signatures are so compact that they can be understookibyan.

Compared to Bouncer, Elcano produces higher coveragetaigsa For example,
for the GHttpd vulnerability Bouncer run for 24 hours, exjig only some fraction of
all possible paths, and produced a partial signature wighifitant false negatives. In
contrast, Elcano generates an optimal signature for the samerability in 55 seconds.
Compared to ShieldGen, Elcano produces more accuratetgigeaaboth in terms of
less false negatives (i.e., higher coverage) and lessgaksigves.

In addition to signature generation, extracting a high cage vulnerability point
reachability predicate is useful for other applicationshsas exploit generation [19]
and patch testing. For example, the Microsoft patch MSO0B+filssed some paths to
the vulnerability point and as a result left the vulnerabpittill exploitable after the



patch [20]. This situation is not uncommon. A quick searchtenCVE database re-

turns 13 vulnerabilities that were incorrectly or incomntplg patched [21]. Our tech-

nigue could assist software developers to build more ateyratches. Furthermore,
our protocol-level constraint-guided approach can ireege effectiveness of gener-
ating high-coverage test cases and hence be very valuabtdgtteare testing and bug

finding.

2 Problem Definition and Approach Overview

In this section, we first introduce the problem of automagineyation of protocol-level
vulnerability point reachability predicates, then pregair running example and finally
give the overview of our approach.

2.1 Problem Definition

Automatic generation of protocol-level vulnerability point reachability predicates.
Given a parser implementing a given protocol specificatiomyulnerability point, and

an input that exploits the vulnerability at the vulnerabifoint in a program, the prob-
lem of automatic generation of protocol-level vulnerapitioint reachability predicates

is to automatically generate a predicate functionsuch that when given some input
mapped into field structures by the pars€revaluates over the field structures of the
input: if it evaluates tdrue, then the input is considered to be able to reach the vulner-
ability point, otherwise it is not.

Parser availability and specification quality. The problem of automatic generation of
protocol-level vulnerability point reachability predtea assumes the availability of a
parser implementing a given protocol or file specificatiarctBrequirementis identical
to previous approaches such as ShieldGen [18]. The parsar gbme input data can
map it into fields, according to the specification, or faihétinput is malformed. In the
latter case, the IDS/IPS could opt to block the input or lgitthrough while logging
the event or sending a warning. Such parser is availabledimmwon protocols (e.g.,
Wireshark [22]), and many commercial network-based IDSRS have such a parser
built-in. In addition, recent work has shown how to createragic parser that takes as
input multiple protocol specifications written in an intexdiate language [23, 24].

The quality of the specification used by the parser mattefslé/ébtaining a high
quality specification is not easy, this is a one time effoftjala can be reused for mul-
tiple signatures, as well as other applications. For examplour experiments we ex-
tracted a WMF file format specification. According to the CVEt&base [21] the WMF
file format appears in 21 vulnerabilities, where our speaifon could be reused. Sim-
ilarly, an HTTP specification could be reused in over 150Metdbilities. Also, recent
work has proposed to automatically extract the protocati§pation from the program
binary [25-28]. Such work can be used when the protocol ugetdovulnerable pro-
gram has no public specification.

Exploit availability. Similarly to all previous work on automatic generation ofner-
ability signatures [11,12,17,18], our problem definiti@sames that an initial exploit
message is given.
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voi d service() { 17 voi d doRequest (char =*IineBuf){

char msgBuf[4096] ; 18 char vul Buf [ 128], uri [ 256];
char 1ineBuf[4096]; 19 char ver[256], nethod[256];
int nb=0, i=0, sockfd=0; 20 int is_cgi = 0;
nb=r ecv(sockfd, msgBuf, 4096, 0); 2 sscanf (| i neBuf,
for(i = 0; i < nb; i++) { 2 "o@55s 9255s 9%@55s",
if (megBuf[i] == "\n") 23 nmet hod, uri, ver);
br eak; 24 if (strcnp(method, " GET")==0 ||
el se 25 strcnmp( et hod, "HEAD") ==0) {
lineBuf[i] = nmegBuf[i]; 26 if strncnmp(uri,"/cgi-bin/",
27 9) == is_cgi = 1;
if (lineBuf[i-1] == "\r") 28 else is_cgi = 0;
lineBuf[i-1] = "\0’ 29 if (uri[O0] '="/") return;
else lineBuf[i] = "\0"; 30 strcpy(vul Buf, wuri);
doRequest (| i neBuf) ; 31 }
} 2}

Fig. 1. Our running example.

Vulnerability point availability. Finally, our problem definition assumes that the vul-
nerability point is given. Identifying the vulnerabilityomt is part of a parallel project
that aims to accurately describe the vulnerability conditj13]. Such vulnerability
point could also be identified using previous techniquesZaY.

2.2 Running Example

Figure 1 shows our running example. We represent the exam@léanguage for clar-
ity, but our approach operates directly on program binaiag example represents
a basic HTTP server and contains a buffer-overflow vulnétabin the example, the
ser vi ce function copies one line of data received over the netwotd lin nebuf
and passes it to ttdoRequest function that parses it into several field variables (lines
21-23) and performs some checks on the field values (line¥124¥Fhe first line in the
exploit message includes the method, the URI of the reqaest®urce, and the proto-
col version. If the method is GET or HEAD (lines 24-25), and fiist character of the
URI is a slash (line 29), then the vulnerability point is reed at line 30, where the size
of vul Buf is not checked by thet r cpy function. Thus, a long URI can overflow the
vul Buf buffer.

In this example, the vulnerability point is at line 30, ané tulnerability condi-
tion is that the local variableul Buf will be overflowed if the size of the URI field in
the received message is greater than 127. Therefore, foexaimple, the vulnerabil-
ity point reachability predicate ig:st r cnp( FI ELD.METHOD, " GET") == 0 ||
strenp( FI ELD.METHOD, "HEAD') == 0) && FIELDURI[O0] # '/’ while
the vulnerability conditionid: engt h( FI ELD.URI ) > 127, and the conjunction of
the two is an optimal protocol-level signature.

2.3 Approach

In this paper we propose a hew approach to generate highageeyet compact, vul-
nerability point reachability predicates, callptbtocol-level constraint-guided explo-



ration. Next, we give the motivation and an overview of the threerabieristics that
comprise our approach.

Constraint-guided. As mentioned in Section 1, previous approaches such agi&eal
and Bouncer use heuristics-based exploration [17, 18]rist@tbased exploration suf-
fers from a fundamental limitation: the number of probesdeekto exhaustively search
the whole space is usually astronomical. In addition, araagtive search is inefficient
as many probes end up executing the same path in the proghas,. Juch approaches
often rely on heuristics that are not guaranteed to sigmifizancrease the signature’s
coverage and can also introduce false positives.

For example, ShieldGen [18] first assumes that fields candigeprindependently,
and then for fixed-length fields it samples just a few valuegaxth field, checking
whether the vulnerability point is reached or not for thoakigs. Probing each field in-
dependently means that conditions involving multiple Setdnnot be found. Take the
conditionSI ZE1 + SI ZE2 < MSG.SI ZE, whereSI ZE1 and Sl ZE2 are length
fields in the input, and/SG.SI ZE represents the total length of the received message.
The authors of ShieldGen acknowledge that their signattaesot capture this type of
conditions, but such conditions are commonly used by progita verify that the input
message is well-formed and failing to identify them willrimdluce either false positives
or false negatives, depending on the particular heurBtizhing only a few sample val-
ues for each field is likely to miss constraints that are Batidy only a small fraction
of the field values. For example, a conditional statemenit st f ( FI ELD==10)
|| (FIELD==20) then exploit, else safe, where FIELD is a 32-bit in-
teger, creates two paths to the vulnerability point. Figdéach of these paths would
require23® random probes on average to discover. Creating a signéatredvers both
paths is critical since if the signature only covers one [fatp.,FI ELD == 10), the
attacker could easily evade detection by changing FIEL Dateetvalue 20.

To overcome these limitations, we propose to use a consfgaided approach by
monitoring the program execution, performing symbolic@x®n to generate path
predicates, and generating new inputs that will go downfamift path. This constraint-
guided exploration is similar in spirit to recent work onngssymbolic execution for au-
tomatic test case generation [30-32]. However, simplyyapglthose techniques does
not scale to real-world programs, given the exponential memof paths to explore.
In fact, in Bouncer [17] the authors acknowledge that thepted to use a constraint-
guided approach but failed to do so due to the large numbeatbispthat need to be
explored and thus had to fall back to the heuristics-baseblipg approach.

To make the constraint-guided exploration feasible anectffe we have incorpo-
rated two other key characteristics into our approach asrithesi below.

Protocol-level constraints.Previous symbolic execution approaches generate what we
call stream-level conditions.e., constraints that are evaluated directly on the sirea
of input bytes. Such stream-level conditions in turn getesstteam-level signatures
which are also specified at the byte level. However, preweark has shown that sig-
natures are better specified at the protocol-level instédwedyte level [6,18]. We call
such signaturegrotocol-level signatures

Our contribution here is to show that, by lifting streamdksonditions tgprotocol-
level conditionsso that they operate on protocol fields rather than on thé inytes, we



can make the constraint-guided approach feasible, as osimgjraints at the protocol-
level hugely reduces the number of paths to be explored cadpa using stream-level
conditions. The state reduction is achieved in two waystFihe parsing logic often
introduces huge complexity in terms of the number of execupaths that need to be
analyzed. For example, in our experiments, 99.8% of all tramgs in the HTTP vul-
nerabilities are generated by the parsing logic. While @#king constraints need to be
present in the stream-level conditions, they can be remioviba protocol-level condi-
tions. Second, the stream-level conditions introducedhbyptarsing logic fixes the field
structure to be the same as in the original exploit messagextimple fixing variable-
length fields to have the same size as in the original explegsage, and fixing the
field sequence to be the same as in the exploit message (wht@cgqs such as HTTP
allow fields to be reordered). Unless the parsing conditamesremoved the resulting
signature would be very easy to evade by an attacker by aygpsmall variations to
the field structure of the exploit message. Finally, the gtability point reachability
predicates at the protocol level are smaller and easierdenstand by humans.

Merging execution paths.The combination of protocol-level conditions with congita
guided exploration is what we cadfotocol-level constraint-guided exploratipsn iter-
ative process that incrementally discovers new pathsigadithe vulnerability point.
Those paths need to be added to the vulnerability point edality predicate. The sim-
plistic approach would be to blindly explore new paths byersing conditions and at
the end create a vulnerability point reachability predidatat is a disjunction (i.e., an
enumeration) of all the discovered paths leading to the analpility point. Such ap-
proach has two main problems. First, blindly reversing éooras produces a search
space explosion, since the number of paths to explore becerponential in the num-
ber of conditions, and much larger than the real number dfsptdtat exist in the pro-
gram. We explain this in detail in Section 4. In addition, elgrenumerating the dis-
covered paths generates signatures that quickly explosieen

To overcome those limitations, we utilize the observatit the program execution
may fork at one condition into different paths for one praieg task, and then merge
back to perform another task. For example, a task can bedatialn check on the input
data. Each independent validation check may generate aneltiple new paths (e.g.,
looking for a substring in the HTTP URL generates many paths) if the check is
passed then the program moves on to the next task, whichyisusiges the execution
back into the original path. Thus, in our exploration, we apeotocol-level exploration
graphto identify such potential merging points. This helps alés the search space
explosion problem, and allows our exploration to quicklgake high coverage.

2.4 Architecture Overview

We have implemented our approach in a system called Elcdmaiichitecture of El-
cano is shown in Figure 2. It comprises of two main componehtsconstraint ex-
tractor and theexploration modulgand two off-the-shelf assisting components: the
execution monitoandthe parser

The overall exploration process is an iterative processititaementally explores
new execution paths. In each iteration (that we also cat),tas input is sent to the
program under analysis, running inside the execution monithe execution monitor
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Fig. 2. Elcano architecture overview. The darker color modulegyaren, while the lighter color
components have been designed and implemented in this work.

produces an execution trace that captures the completeitexeof the program on
the given input, including which instructions were exedued the operands content.
The execution monitor also logs the test result, i.e., wérette vulnerability point was
reached or not during the execution. In addition, the pastacts the message format
for the input, according to the given protocol specification

Then, given the execution trace and the message formamtistraint extractor ob-
tains thefield constraint chainThe field constraint chain is conceptually similar to the
path predicataused in previous work on automatic test case generatiorthbutondi-
tions are at the protocol-level and each condition is tagg#dadditional information.
We detail the field constraint chain and its constructioneatt®n 3.

The exploration module maintains thmtocol-level exploration graplwhich stores
the current state of the exploration, i.e., all the execupiaths that have been so far ex-
plored. Given the field constraint chain, the exploit messagd the test result, the ex-
ploration module merges the new field constraint chain ineodurrent protocol-level
exploration graph. Then, the exploration module uses tlo¢opol-level exploration
graph to select a new path to be explored and generates a pattliat will lead the
program execution to traverse that path. Given the newlgggad input, another iter-
ation begins. We detail the exploration module in Section 4.

The process is started with the initial exploit message and iteratively until there
are no more paths to explore or a user-specified time-lim#ashed. At that point the
exploration module outputs the VPRP. The VPRPs producedltgng are written
using the Vine language [33] with some extensions for stoppgrations [34]. The Vine
language is part of the Bitblaze binary analysis infragtriec[35].

3 Extracting the Protocol-Level Path-Predicate

In this section we present the constraint extractor, whigrgan execution trace, pro-
duces a field constraint chain. The architecture of the caimstextractor is shown in
Figure 3. First, given the execution trace gagh predicate extractquerforms symbolic
execution with the input represented as a symbolic variabteextracts thpath pred-
icate, which is essentially the conjunction of all branch coradi§ dependent on the
symbolic input in the execution captured in the executiacdr The concept of sym-
bolic execution, the path predicate and how to compute itva@teunderstood and have
been widely used in previous work including vulnerabilityrgature generation [11,12]
and automatic test case generation [30, 31]. Thus, we tedénterested reader to these
previous work for details.
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The path predicate generated by previous work is at themstteeel, i.e., the con-
ditions are on raw bytes of the input. To enable constrainded exploration, Elcano
needs to lift the path predicate from the stream-level topitedocol-level, where the
conditions are instead on field variables of the input. To erthle distinction clear, we
refer to the path predicate at the stream-leveldtneam-level path-predicatand the
path predicate at the protocol-level theotocol-level path-predicatdn addition, the
constraint extractor needs to remove the parsing conditishich dramatically reduces
the exploration space and makes the constraint-guidedtfuin feasible.

To accomplish this, first th&eld condition generatolifts the stream-level path-
predicate to the protocol-level, and then fiedd condition generalizegeneralizes it
by removing the parsing conditions and outputs fileéd constraint chainwhich is
essentially the protocol-level path-predicate, wheréheamdition is annotated with
some additional information and conditions are orderedgithie same order as they
appeared in the execution.

3.1 The Field Condition Generator

Given the stream-level path-predicate generated by the paidicate extractor and
the message format of the input given by the parser, the fagidition generator out-
puts a protocol-level path-predicate. It performs thisvio tsteps. First, it translates
each byte symbol NPUT[ x] in the stream-level path-predicate into a field symbol
FI ELDfi el dname [x - start(fieldnane)] using the mapping produced
by the parser. Second, it tries to combine symbols on cotigedoytes of the same
field. For example, the stream-level path-predicate migbluide the following con-
dition: (I NPUT[ 6] << 8 | INPUT[7]) == 0. If the message format states that
inputs 6 and 7 belong to the same 1640 field, then the condition first gets trans-
lated to( FI ELDJI D[ 0] << 8 | FIELD.I D[ 1]) == 0 and thenitis converted
toFI ELD.I D == 0 whereFl ELD.I Dis a 16-hit field symbol.

The message format provided by the parser is a hierarchas| where one field
may contain different subfields, with the root of the treerespnting the whole mes-
sage. For example, the nebuf variable in our running example represents the
Request - Li ne field, which in turn contains 3 subfieldsktt hod, Request - URI ,
andHTTP- Ver si on. Thus, a condition such astrstr(linebuf,"../") #

0 would be translated et r st r (FI ELD.Request-Line,"../") # 0.Acon-
dition on the whole message would translate into a conddiothe specialVBGfield.

Benefits. This step lifts the stream-level path-predicate to thequoklevel, breaking
the artificial constraints that the stream-level path-jmae imposes on the position of



fields inside the exploit message. For example, protocalk sis HTTP allow some
fields in a message (i.e., all except the Request-Line/$tane) to be ordered dif-
ferently without changing the meaning of the message. Tiws equivalent exploit
messages could have the same fields ordered differently bytbdevel vulnerability
point reachability predicate generated from one of themldvoot flag that the other
also reaches the vulnerability point. In addition, if vatelength fields are present in
the exploit message, changing the size of such fields chahggmsition of all fields
that come behind it in the exploit message. Again, suchalrivariation of the exploit
message could defeat stream-level signatures. Thus, bessipg constraints using
field symbols, protocol-level signatures naturally alloiedd to move its position in
the input.

3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protéeed! path-predicate gener-
ated by the field condition generator, the protocol spetifioeand the input that was
sent to the program and outputs a field constraint chain wtherparsing-related con-
ditions have been removed.

First, the field condition generalizer assigns a symbolitatde to each byte of the
input and processes the input according to the given progmazification. This step
generates symbolic conditions that capture the conssraimtthe input which restrict
the message format of the input to be the same as the messag feturned by the
parser on the given input. We term these conditions the panditions. Then, the
field condition generalizer removes the parsing conditfom® the protocol-level path-
predicate by using a fast syntactic equivalence checkelfdlst syntactic check fails,
the field condition generalizer uses a more expensive elgniva check that uses a
decision procedure.

Benefits. The parsing conditions in the protocol-level path-pretdicaver-constrain the
variable-length fields, forcing them to have some specite &¢.g., the same as in the
exploit message). Thus, removing the parsing conditidnsvalthe vulnerability point
reachability predicate to handle exploit messages whergghable-length fields have a
size different than in the original exploit message. In &ddj for some protocols such
as HTTP, the number of parsing conditions in a single prdttm@| path-predicate
can range from several hundreds to a few thousands. Sucheaningber of unneces-
sary conditions would blow up the size of the vulnerabilibyrg reachability predicate
and negatively impact the exploration that we will presenBection 4. Note that the
parsing conditions are enforced by the parser, so we caly safaove them from the
protocol-level path-predicate while still having the cdiwhs enforced during the sig-
nature matching time. We refer the reader to the extendesibrefor more details [36].

The field constraint chain. To assist the construction of the protocol-level explo-
ration graph (explained in Section 4), the constraint ettnaconstructs théeld con-
straint chainusing the generalized protocol-level path-predicate(dfte parsing con-
ditions have been removed). A field constraint chain is araeoéd version of the
protocol-level path-predicate where each branch condisoannotated with the in-
struction counter and an MD5 hash of the callstack of the parogat the branching



point, and these annotated branch conditions are put indarex chain using the same
order as they appear in the execution path.

4 Execution-Guided Exploration

In this section we present the exploration module, whiclsdld given field constraint
chain to the protocol-level exploration graph, selects & path to be explored and
generates an input that will traverse that path. That inpusid to start a new iteration
of the whole process by sending it to the program running éekecution monitor.
Once there are no more paths to explore or a user-specifiedlitimt is reached, the
exploration module stops the exploration and outputs theR.P

Our exploration is based onpaotocol-level exploration graptwhich makes it sig-
nificantly different from the traditional constraint-basexploration used in automatic
test case generation approaches [30, 31, 37]. Using a pldee| exploration graph
provides two fundamental benefits: 1) the exploration spsignificantly reduced, and
2) it becomes easy to merge paths, which in turn further resitlee exploration space,
and reduces the size of the vulnerability point reachgbjiedicate. In this section,
we first introduce the protocol-level exploration graphxtne@e present our intuition
for merging paths, and then we describe the explorationga®ased to extract the
vulnerability point reachability predicate.

4.1 The Protocol-Level Exploration Graph

The explorer dynamically builds protocol-level exploration graphs the exploration
progresses. In the graph, each node represents an inpertakag branching point (i.e.,
a conditional jump) in the execution, which comprises thatqeol-level condition and
some additional information about the state of the progrdrarwthe branching point
was reached, which we explain in Section 4.2. Each node cantia edges repre-
senting the branch taken if the node’s condition evaluatgdue (T) or false §). We
call the node where the edge originates sharce nodeand the node where the edge
terminates thelestination nodelf a node has aopen edgdi.e, one edge is missing),
it means that the corresponding branch has not yet beenrexiplo

4.2 Merging Execution Paths

When a new field constraint chain is added to the protocatiexploration graph, it is
important to merge all conditions in the field constraintinithat are already present
in the graph. Failure to merge a condition creates a duplicatlie, which in turn effec-
tively doubles the exploration space because all the seibaaging from the replicated
node would need to be explored as well. Thus, as the numbargicdted nodes in-
creases, the exploration space increases exponentially.

The key intuition behind why merging is necessary is thas iidmmon for new
paths generated by taking a different branch at one nodeyjitklg merge back into
the original path. This happens because programs may fexuton at one condition
for one processing task, and then merge back to perform entatbk. One task could
be a validation check on the input data. Each independexkahay generate one or
multiple new paths (e.g., looking for a substring in the UBRhgrates many paths), but if
the check is passed then the program moves on to the nexetgskahother validation
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Fig. 4. Exploration module architecture. The darker color modsiigiven, while the lighter color
components have been designed and implemented in this work.

check), which usually merges the execution back into thgiral path. For example,
when parsing a message the program needs to determine itsgage is valid or not.
Thus, it will perform a series of independent validity chetl verify the values of the
different fields in the message. As long as checks are pabssgokogram still considers
the message to be valid and the execution will merge backhetoriginal path. But, if
a check fails then the program will move into a very differpath, for example sending
an error message.

The intuition on the merging is that two nodes can be mergedey represent
the same program point and they are reached with the sameapragate. To identify
the program point, each condition in the field constraintichis annotated with the
program’s instruction counteeip) and an MD5 hash of the callstack, both taken at
the time the condition was executed. To identify the progsteite we use a technique
similar to the one introduced in [38] where we compute theddedll values (both
concrete and symbolic) written by the program during thecetien up to the point
where the condition is executed. Thus, we merge nodes ttisflys& conditions: same
eip, same callstack hash, equivalent conditions, and saogegm state, where Elcano
queries the decision procedure to determine if two condfitere equivalent.

4.3 The Exploration Process

Figure 4 shows the architecture of the exploration modulés tomprised of three
components: thexplorer, theprioritization engingeand thénput generatoyplus an off-
the-shelfdecision proceduteThe exploration process is comprised of 3 steps: (1) given
the field constraint chain, the explorer adds it to the curpeotocol-level exploration
graph producing an updated graph; (2) given the updateagubtevel exploration
graph, the prioritization engine decides which node’s agaige to explore next; (3) for
the selected node’s open edge, itthygut generatoigenerates a new input that will lead
the program execution to reach that node and follow the walespen edge.

The new input is then used to start another iteration of theleprocess as shown
in Figure 2, that is, the new input is replayed to the programrming in the execution
monitor and a new field constraint chain is generated by thetcaint extractor, which
is passed to the explorer and so on. The prioritization enginn charge of stopping
the whole process once there are no more paths to exploreserapecified time-limit
is reached. When the exploration stops, the explorer osithetVPRP.

Next, we detail the 3 steps in the exploration process andtb@xtract the VPRP.
We illustrate the different steps using Figure 5 which repres the graph for our run-
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Fig. 5. Building the protocol-level exploration graph for our rimg example.

ning example. Note that, the A—F node labels are not realiiyqgfehe protocol-level
exploration graph but we add them here to make it easier ¢v tefthe nodes.

Adding the new path to the exploration graph.To insert a new field constraint chain
into the protocol-level exploration graph, the explorartst merging from the top until

it finds a node that it cannot merge, either because it is nibieigraph yet, or because
the successor in the new field constraint chain is not the saraas in the graph. To
check if the node is already in the graph, the explorer chiétke node to be inserted

is equivalent (same EIP, same callstack hash, equivalemitian, and same state) to
any other node already in the graph. We call the last nodecitabe merged from the
top thesplit node

Once a split node has been identified the explorer keepgyttgirmerge the rest
of the nodes in the new field constraint chain until it finds aethat it can merge,
which we term thgoin node At that point, the explorer adds all the nodes in the new
field constraint chain between the split node and the joirerasla sequence of nodes
in the graph hanging from the split node and merging at thernoide. The process of
looking for a split node and then for a join node is repeatetil thre sink of the new
field constraint chain is reached. At that point, if the exptovas looking for a join
node then all nodes between the last split node and the strd&dated to the graph as a
sequence that hangs from the last split node and ends atthe si

For example, in Figure 5A the graph contains only the origiell constraint chain
generated by sending the starting exploit message to tlgggm which contains the
three nodes introduced by lines 24, 26, and 29 in our runniagele (since the parsing
conditions have already been removed). The sink of theraldield constraint chain
is the vulnerability point nodeMP). Figure 5B shows the second field constraint chain
that is added to the graph, which was obtained by creatingaut ithat traverses the
false branch of node A. When adding the field constraint cimdiiigure 5B to the graph
in Figure 5A, the explorer merges node A and determines thagssplit node because
A's successor in the new field constraint chain is not A's sgsor in the graph. Then,
at node B the explorer finds a join node and adds node D betvreesptit node and
the join node in the graph. Finally node C is merged and we shewpdated graph in
Figure 5C.



Selecting the next node to exploreEven after removing the parsing conditions and
merging nodes, the number of paths to explore can still lgelaBince we are only
interested in paths that reach the vulnerability point, \@@ehimplemented a simple
prioritization scheme that favours paths that are moréylike reach it. The prioriti-
zation engine uses a simple weight scheme, where thereraewleights 0, 1, and 2.
Each weight has its own node queue and the prioritizatiomerejways picks the first
node from the highest weight non-empty queue. The explasagas the weights to the
nodes when adding them to the graph. Nodes that represgneldbconditions get a
zero weight (i.e., lowest priority). Nodes in a field consttahain that has the VP as
sink get a weight of 2 (i.e., highest priority). All other rexiget a weight of 1. We favor
nodes that are in a path to the VP because if a new path doesinklydead back to the
VP node, then the message probably failed the current chewekiat on to a different
task and thus it is less likely to reach VP later. We disfaeoipl exit conditions to de-
lay unrolling the same loop multiple times. Such heuristtpk achieve high coverage
quickly.

Generating a new input for a new branch.We define anode reachability predicate
to be the predicate that summarizes how to reach a specifie indtie protocol-level
exploration graph from th&t ar t node, which includes all paths in the graph from the
Start to that node. Similarly, we defindbeanch reachability predicate be the predi-
cate that summarizes how to traverse a specific branch ofe Adoranch reachability
predicate is the conjunction of a node reachability preadigath the node’s condition
(to traverse the true branch), or the negation of the noaeldition (to traverse the false
branch). To compute a new input that traverses the specéitchrselected by the pri-
oritization engine, the explorer first computes the bramethability predicate. Then,
the input generator creates a new input that satisfies tmehraachability predicate.

To compute the branch reachability predicate, the explotrcomputes the node
reachability predicate. The node reachability predicatessentially the weakest pre-
condition (WP) [39] of the source node of the open edge owveptitocol-level explo-
ration graph—»by definition, the WP captures all paths in tleeqzol-level exploration
graph that reach the node. Then, the explorer computes tjenmion of the WP with
the node’s condition or with the negated condition depegdin the selected branch.
Such conjunction is the branch reachability predicatectvig passed to the input gen-
erator.

For example, in Figure 5C if the prioritization engine sédébe false branch of node
D to be explored next, then the branch reachability predipabduced by the explorer
would be:A && D. Similarly, in Figure 5D if the prioritization engine setsche false
branch of node B to be explored next, then the branch redabiedicate produced
by the explorer would be: A| | (A && D)) && B.

The input generator generates a new input that satisfiesdinelbreachability pred-
icate using a 3-step process. First, it uses a decision guoe¢o generate field values
that satisfy the branch reachability predicate. If the sieai procedure returns that no
input can reach that branch, then the branch is connectée tint eachabl e node.
Second, it extracts the values for the remaining fields (nastrained by the decision
procedure) from the original exploit message. Third, ita{dssthe message format pro-
vided by the parser to identify any fields that need to be wgatigiven the dependencies



Program CVE Protocol | Type | Guest OS |Vulnerability Type
gdi32.dll (v3159) CVE-2008-108Y EMF file |Binary] Windows XP| Buffer overflow
gdi32.dll (v3099) CVE-2007-3034 WMF file |Binary| Windows XP| Integer overflow
Windows DCOM RP(QCVE-2003-0352 RPC |Binary| Windows XP| Buffer overflow
GHttpd CVE-2002-1904 HTTP | Text | Red Hat 7.3| Buffer overflow
AtpHttpd CVE-2002-1816 HTTP | Text | Red Hat 7.3| Buffer overflow
Microsoft SQL ServefCVE-2002-0649ProprietaryBinary|Windows 2000 Buffer overflow
Table 1.Vulnerable programs used in the evaluation.

on the modified values (such as length or checksum fieldshg.#gl the collected field
values it generates a new input and passes it to the replayeaefer the reader to
our extended version [36] for our handling of field condisdhat depend on a memory
read from a symbolic address.

Extracting the vulnerability point reachability predicat e.Once the exploration ends,
the protocol-level exploration graph contains all the disred paths leading to the
vulnerability point. To extract the VPRP from the graph thg@lerer computes the
node reachability predicate for the VP node. For our runexgmple, represented in
Figure 5E the VPRP ist A| | (A && D)) && C. Note that, a mere disjunction
of all paths to the VP, would generate the following VPR && B && O) || (A
& D & & B && C)|| (A & & B && CO)|| (A && D && B && C).Thus,
Elcano’s VPRP is more compact using 4 conditions insteadtof 1

5 Evaluation

In this section, we present the results of our evaluationfik&epresent the experiment
setup, then the constraint extractor results and finalle#pdoration results.

Experiment setup. We evaluate Elcano using 6 vulnerable programs, summaiized
Table 1. The table shows the program, the CVE identifier ferutinerability [21],
the protocol used by the vulnerable program, the protoga {y.e., binary or text), the
guest operating system used to run the vulnerable prograhtha type of vulnerability.
We select the vulnerabilities to cover file formats as welhasvork protocols, multi-
ple operating systems, multiple vulnerability types, anthtopen-source and closed
programs, where no source code is available. In additienoltier vulnerabilities (i.e.,
last four) are also selected because they have been anatyaezious work, and this
allows us to compare our system'’s results to previous ones.

5.1 Constraint Extractor Results

In this section we evaluate the effectiveness of the coinsteatractor, in particular of
the field condition generalizer, at removing the parsingditions from the protocol-
level path-predicate. For simplicity, we only show the tesior the protocol-level path-
predicate produced by the field condition generator fromettecution trace generated
by the original exploit. Note that, during exploration tipiocess is repeated once per
newly generated input. Table 2 summarizes the resultsOrfygnal column represents
the number of input-dependent conditions in the protoeeél path-predicate and is
used as the base for comparison. Nuom-parsing conditionsolumn shows the number
of remaining conditions after removing the parsing cowodisi.



Program  |Original [Non-parsing Program  |All branches

conditions explored |VPRP
Gdi-emf 860 65 Gdi-emf no 72
Gdi-wmf 4 4 Gdi-wmf yes 5
DCOM RP(Q 535 521 DCOM RPQ no 1651
GHttpd 2498 5 GHttpd yes 3
AtpHttpd 6034 10 AtpHttpd yes 10
SQL Server| 2447 7 SQL Server yes 3

Table 2. Constraint extractor results for the Table 3. Exploration results, including

first test, including the number of condi- whether all open edges in the protocol-level
tions in the protocol-level path-predicate exploration graph were explored and the
and the number of remaining conditions af- number of conditions remaining in the vul-
ter parsing conditions have been removed. nerability point reachability predicate.

The removal of the parsing conditions is very successfulliex@eriments. Over-
all, in the four vulnerable programs that include varialelegth strings (i.e., excluding
Gdi-wmf and DCOM-RPC), the parsing conditions account #1496 to 99.8% of all
conditions. For formats that include arrays, such as DCON RRe number of pars-
ing conditions is much smaller but it is important to remouels conditions because
otherwise they constrain the array to have the same numlmewnfents as in the ex-
ploit message. By removing the parsing conditions, eactl fiehstraint chain repre-
sents many program execution paths produced by modifyiadaimat of the exploit
message (e.g., extending variable-length fields or remrgléelds). This dramatically
decreases the exploration space making the constraidedeixploration feasible.

5.2 Exploration Results

Table 3 shows the results for the exploration phase. We ssradefined time-limit of 6
hours for the exploration. If the exploration has not cortgaeby that time Elcano out-
puts the intermediate VPRP and stores the current state ekiiioration. This state can
later be loaded to continue the exploration at the same mdiete it was interrupted.
The first column indicates whether the exploration comglbtfore the specified time-
limit. The second column presents the number of conditinriké intermediate VPRP
that is output by the exploration module once there are n@ipaths to be explored or
the time-limit is reached.

The results show that in 4 out of 6 experiments Elcano exglatiepossible paths,
thus generating a complete VPRP. For the DCOM RPC and Gderpadriments, the 6
hour time-limit was reached, thus the VPRPs are not complétey also show that the
number of conditions in the VPRP is in most cases small. Tredlstamber of condi-
tions in the VPRP and the fact that in many cases those conditire small themselves,
makes the signatures easy for humans to analyze, as opmopeevtous constraint-
based approaches where the large number of conditions isighature made it hard
to gain insight on the quality of the signature. We do thatdlyeling the nodes in the
graph with the full protocol-level conditions.

Performance.Table 4 summarizes the performance measurements for Elsntea-
surements were taken on a desktop computer with a 2.4GHZJate2 Duo CPU and
4 GB of memory. The first column presents the VPRP generaitioain seconds. For
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the Gdi-emf and DCOM RPC examples, the 6 hour time-limit onegation time is
reached. For the rest, the generation time ranges from wmgeminute for the GHttpd
vulnerability up to 23 minutes for the Microsoft SQL vulnbiiity. Most of the time
(between 60% and 80% depending on the example) is spent loptiseraint extractor.
Thus, we plan to parallelize the exploration by having ar@eixplorer, which spawns
multiple copies of the constraint extractor and the executhonitor, each testing a
different input and reporting back to the explorer. The rigrimg columns show the
number of tests in the exploration, the average time peirtesticonds, and the average
size in Megabytes of the execution trace.

Compared to Bouncer, where the authors also analyze the £@kerSand GHttpd
vulnerabilities, the signatures produced by Elcano haghéiicoverage (i.e., less false
negatives) and are smaller. For example, Bouncer spend®drg to generate a signa-
ture for the SQL Server vulnerability, and the generatedatigre only covers a frac-
tion of all the paths to the vulnerability point. In contraStcano spends only 23 min-
utes, and the generated signature covers all input-depbraiches to the vulnerability
point. Similarly, for the GHttpd vulnerability the authastop the signature generation
after 24 hours, and again the signature only covers a fractfcall input-dependent
branches to the vulnerability point, while Elcano genesaeomplete signature that
covers all input-dependent branches to the vulnerabibiytdn under one minute.

SQL server. The parser returns that there are two fields in the exploitsages the
Command (CMD) and the Database name (DB). The original pobtievel path-predicate
returned by the constraint extractor contains 7 conditidren the CMD field and the
other 3 on the DB field. The exploration explores the open gd§¢hose 7 nodes and
finds that none of the newly generated inputs reaches therability point. Thus, no
new paths are added to the graph and the VPRFFISELD . CVD==4) &&
(strcnmp(FI ELD.DB, "") #0) && (st rcasecnp(Fl ELDDDB, " MSSQLSer ver ") #£0) .
Note that, the vulnerability condition for this vulneratyjlstates that the length of
the DB field needs to be larger than 64 bytes. Thus, the lastdnditions in the VPRP
are redundant and the final protocol-level signature woal@ Bl ELD.CND == 4) &&



I engt h(FI ELDDB) > 64 . According to the ShieldGen authors, who had access to
the source code, this signature would be optimal.

Gdi-wmf. Figure 5 shows on the left the field structure for the expldé &énd on
the right the VPRP. The original protocol-level path-poedé contained the 4 aligned
nodes on the left of the graph, while the exploration disc®eme new path leading to
the vulnerability point that introduces the node on the tidtne graph shows that the
program checks whether théer si on field is 0x300 (Windows 3.0) or 0x100 (Win-
dows 1.0). Such constraint is unlikely to be detected by ipgbpproaches, since they
usually sample only a few values. In fact, in ShieldGen thelyre a different vulner-
ability in the same library but run across the same condtraire authors acknowledge
that they miss the second condition of the disjunction. Tlansattacker could easily
avoid detection by changing the value of the Version fieldc&8iwe have no access to
the source we cannot verify if our VPRP is optimal, though whdve it to be.

Other experiments.Due to space constraints we refer the reader to our extereted v
sion [36] for details on the Atphttpd, GHttpd and DCOM RPC rex¢es. For the At-
phttpd and GHttpd vulnerabilities, where we have acceshdasburce code, the ex-
tended version contains the optimal signatures that we algrnextracted for the vul-
nerability. The results show that Elcano’s VPRPs exactlicinar are very close to the
optimal ones that we manually extracted from the source.code

6 Conclusion

In this paper we propose protocol-level constraint-guiglquloration, a novel approach
to automatically generate high coverage, yet compact.evability point reachability
predicates, with application to signature generation|axgeneration and patch veri-
fication. Our experimental results demonstrate that ourcamh is effective, generates
small vulnerability point reachability predicates wittghicoverage (optimal or close
to optimal in cases), and offers significant improvemengs gvevious approaches.
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