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Abstract

Millions of people every day identify many types of popular or widespread items, including interest-
ing entertainment content and malicious network attacks. Unfortunately, much of the information
required for these popularity contests has privacy concerns attached to its use. Unless their privacy
is preserved, participants may refuse to participate honestly, reducing the quality of the results.
Provably ensuring the privacy of participants, while retaining the level of efficiency and robustness
necessary for a practical protocol, is a serious challenge to privacy-preserving popular item identi-
fication. Previous efforts have not obtained the necessary efficiency [23] or provide only unproven,
heuristic levels of privacy [24, 16, 39, 19]. In this paper, we propose and experimentally evaluate
protocols that provably protect the privacy of participants, while adding only a small amount of
overhead.
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1 Introduction

Recently, many researchers have studied network security applications where privacy is important;
many of these applications bear a large degree of similarity. For example, a widespread network
attack can be identified by a large number of distributed network monitoring devices. Once the
monitors have individually identified a possible attack or offender, they must obtain confirmation;
anomaly detection is imperfect, and false positives will occur. Many organizations automatically
publish the network attacks they detect, and a false positive can result in the leakage of private
or proprietary data. Each network monitor can gain confidence in the maliciousness of the attacks
it has identified through comparison of its private set with the private sets of other monitors. An
attack signature, event, or IP address that is flagged as being possibly malicious by many monitors
is more likely to be truly malicious. This extra degree of confidence can prevent false positives from
being published or used to establish misguided network filtering.

There are many more examples of statistics-gathering problems in which privacy is impor-
tant. In computer troubleshooting common configurations among unbroken computers can be used
to identify configuration errors and suggest fixes for troubled computers [16, 39, 19]. Privacy is
important in this scenario, not only as an end in itself, but to prevent targeted attacks against mis-
configured computers. If information was leaked during distributed troubleshooting that revealed a
security hole, an attacker might take advantage. In a distributed content delivery network (CDN),
distributed identification of popular pages (web pages that are commonly requested at different
sites) is important for making effective caching decisions; often-requested pages should have higher
priority when caching [7]. A peer-to-peer version of such a network may wish to preserve the pri-
vacy of participants; the web browsing habits of many people would reveal a large amount of data
about their health, finances, and personal life.

Each of these problems is an application of a pair of more general problems: privacy-preserving
distributed hot item identification and privacy-preserving distributed hot item publication. In these
scenarios, players are connected through a network; each holds a private input set. A hot item is one
that appears in many players’ private input sets. The process of distributed hot item identification
allows each participant to determine which elements in his local set are hot. Once they have been
identified, distributed hot item publication allows the players to publish the hot items. In the case of
distributed network monitoring, the monitors wish to determine which tentatively identified attacks
are hot, and thus have been found by many other monitors. Distributed computer troubleshooting
is simply a problem of finding and publishing hot computer configurations, with the idea that a
common configuration is likely to be correct. To improve the performance of distributed caching
infrastructure, it must be tuned to cache hot items over unpopular ones.

Care must be taken, however, in the process of hot-item identification and publication. Data
about network monitoring can be used to aid in network attacks [24]. If certain types of infor-
mation are leaked in the process of identifying hot attacks, it can negate the benefits of improved
network security. We thus require two forms of security for privacy-preserving distributed hot item
identification protocols: owner privacy and data privacy. Owner privacy requires that, with high
probability, the elements in each players’ private input set cannot be associated with that player,
even when they are published. In the network monitoring scenario, this prevents an attacker from
‘fishing’ for information about a specific network; he cannot determine which honest network pro-
duced a report. Data privacy requires that the union of the data of all players is protected. Each
element that appears in any player’s private input set is hidden in a crowd of indistinguishable
elements; an adversary cannot determine which element of the indistinguishable set was really a
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part of some player’s input. In the network monitoring situation, this adds a great deal of difficulty
to the efforts of adversaries to learn information about honest players’ networks; false positives will
generally be rare, and thus hidden in a large crowd.

Current efforts to provide security for efficient and flexible hot-item identification and publica-
tion protocols are haphazard or heuristic, without concrete definitions of security [24, 39, 19]. With-
out such a definition and proof of security, it is difficult to evaluate the security of a scheme. Com-
parison of privacy becomes nearly impossible. Some protocols require central, trusted servers [24].
Others rely on trusting the friends of your friends of your friends (and so on) [39, 19]. We believe
these assumption are untenable in many situations. Optionally, a trusted party (or mutually mis-
trustful group of parties) may ease the operation of our HotItem-ID protocol, but no such trust
is necessary.

Many applications of privacy-preserving distributed hot item identification and publication are
highly demanding, and so we require several additional properties of such protocols. Previous work
includes a cryptographically secure protocol for hot item identification, as well as one for both hot
item identification and publication [23]. This protocol, however, requires that all participants share
a decryption key, participate in distributed decryption, and continue to participate in the protocol
from beginning to end. Turnover in protocol participants will prevent the players from completing
the execution of protocols in [23]. In many scenarios, these requirements are untenable. Especially
if the network is unreliable, it is unrealistic to assume that all of the players will participate in the
protocol from start to finish. Instead, we allow players to join or leave at will; they are not required
to share a cryptographic key. We must, in addition, prevent malicious players from affecting the
results of the protocol; they can lie about their private input set, but further attacks are prevented
in our protocols.

The contributions of this work are as follows:

• We design a HotItem-ID protocol that is efficient enough to enable a wide range of applica-
tions, while preserving essential privacy. Let k be the threshold number of players who must
hold an item before it is considered hot. If hot items appear many more times than non-hot
items (skewed distribution), our protocols achieve a multiplicitive factor performance increase
(in bandwidth) over a näıve, non-privacy-preserving protocol in the same network that is at
least linear in k: for k = 250, we expect our protocol to use 1

10th as much bandwidth as a
näıve protocol; for k = 2500, we expect our protocol to use 1

100 as much bandwidth. We also
achieve linear gains (though with a smaller constant) with non-skewed distributions.
• We design a HotItem-Pub protocol that is efficient, while preserving privacy.
• We experimentally evaluate the efficiency of our protocols, and compare it to näıve, non-

privacy-preserving protocols; our HotItem-ID and HotItem-Pub protocols are significantly
more efficient, while preserving privacy.
• We achieve a high level of efficiency through the use of several approximation algorithms,

which we have adapted for use in a distributed setting.
• We provide formal definitions of privacy for the privacy-preserving distributed hot item iden-

tification problem: data privacy and owner privacy. Our protocol achieves both of these
properties.
• Our protocols are robust against malicious players: they cannot disproportionally affect the

result of the protocol, nor can they prevent the honest players from executing the complete
protocol.
• Our protocols are flexible, and allow players to join and leave at any time, because they
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need not share cryptographic keys. Instead, we utilize a group signature scheme in a novel
way [3, 6].

• We also design an efficient privacy-preserving protocol for the distributed hot item publication
protocol. This owner and data private protocol allows players to securely publish the hot items
they identified through use of the HotItem-ID protocol. (See Appendix 4.)

Outline. In the remainder of this paper, we first describe our model and problem definitions
in Section 2. We describe our approach, tools, and HotItem-ID protocol in Section 3, before
describing the HotItem-Pub protocol in Section 4. We then analyze the correctness, security,
privacy, and performance of our protocols in Section 5. In Section 6 we briefly describe several
extensions to our protocols. We present experimental evaluation in Section 7, discuss related work
in Section 8, and conclude in Section 9. We summarize our notation in Appendix A, and give
detailed analysis in Appendix B, before giving cryptographic constructions in Appendix C.

2 Problem Definition and Desired Properties

In this section, we give a formal definition of the hot item identification problem, its security and
privacy properties, and the adversary model.
Problem Definition. In our problem setting, each player i (1 ≤ i ≤ n) in the system holds a
private dataset Si of m elements from a domain denoted M1. Let a k-threshold hot item (referred
to in this paper as a hot item) be any element a that appears in at least k distinct players’ private
input datasets. Hk is the set of all k-threshold hot items in the system. All items not in Hk are
called cold items. We define the hot item identification problem as follows: each player i (1 ≤ i ≤ n)
learns Si ∩Hk, denoted Pi.
Adversary Model. In this paper, we consider a strong adversary model. First, we assume that
the adversary can eavesdrop on all communication. Second, we assume that a fraction λ of the
players may maliciously and arbitrarily misbehave, while the rest of the players are honest-but-
curious. A honest-but-curious player will (1) follow the protocol as specified, and (2) not collude
with other players to gain information, though he may try to distill information from the messages
he receives.

On the other hand, a malicious player may not follow the protocol; instead he may behave
arbitrarily. For example, malicious players could collude such that if λn exceeds k, they can make
an arbitrary cold item hot by each reporting it as in their private input set2. However, this problem
is out of the scope of our problem. Because any player has the freedom to choose its private input
set, any protocol in this setting is vulnerable to this manipulation.

Another attack a malicious player could mount is to claim to have many copies of one item to
try to boost the frequency of a cold item to be high enough to become a hot item; we call this the
inflation attack. Thus, our protocols must ensure that during hot item identification, each player
can only contribute to the frequency count of an item at most once. Note that this is a challenging
task, as we will need to preserve the players’ privacy as well as security. We have designed a

1Note that here for simplicity, we assume each player has the same number of items in its private set; our protocols
can be easily extended to scenarios where this is not the case.

2In fact, even when λn is less than k, they could make a cold item that appears at least k−λn times in non-malicious
players to appear as a hot item.
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novel cryptographic method, one-show tags (Section 3.2), both to prevent the inflation attack and
preserve the players’ privacy. This novel construction could be of independent interest.

Moreover, malicious players could attempt to forge cryptographic signatures, send bogus mes-
sages, try to learn honest players’ private data, or fool other players. Note that our protocol
defends against all of these attacks, by provably achieving the properties of owner and data privacy
as defined below.
Definition of Correctness. Given the false positive rate δ+ and the false negative rate

• ∀a ∈ Si ∩Hk, player i learns that a ∈ Pi with probability at least 1− δ−,

• ∀a ∈ Si ∩ H̄k, player i learns that a 6∈ Pi with probability at least 1− δ+.

To allow more flexible and efficient protocols, while preserving a reasonable level of privacy for
participants, we define two new concepts of security: owner privacy and data privacy.
Definition of Owner Privacy. Intuitively, a protocol that is owner private prevents an adversary
from determining that any element a is part of a particular honest player’s private input set. Even
an element that is known to be hot cannot be shown to be held by any player; the elements of a
player’s private input set are anonymous.

Formally, we say a k-hot item identification protocol satisfies owner privacy if: no coalition of
at most λn malicious PPT adversaries can gain more than a negligible advantage in associating an
item a with a honest player i (1 ≤ i ≤ n) such that a ∈ Si, over a situation in which all players
simply are given the set of hot items P and their frequencies.
Definition of Data Privacy. Data privacy concerns protection of the union of the players’ inputs,
especially cold items. Ideally, a truly privacy-preserving hot-item identification protocol should not
reveal any information about the cold items; such a solution is given in [23]. However, as shown
in [23], such a strong privacy definition entails inefficient solutions, as the cryptographic techniques
add too much overhead in computation and communication for many situations. Thus, in this
paper, we study the tradeoff between privacy and efficiency; in particular, we rigorously define a
relaxed notion of privacy, show that it provides sufficient protection for many applications, and
design efficient solutions to achieve it.

In our definition of data privacy, the degree of the privacy of an item describes the size of the
‘crowd’ in which the element is hidden; no adversary can determine which element of the large
crowd was included in the players’ private input sets. Formally, we say an element a which appears
in fa players’ private input sets has Φ(fa)-degree of data privacy if: no coalition of at most λ
malicious probabilistic polynomial-time (PPT) adversaries [18] can distinguish the element a from
an expected indistinguishable set of Φ(fa) elements. Thus, for a cold item a, the larger Φ(fa) is,
the better protected it is in general.
Efficiency. We also want the protocol to be highly efficient. In particular, to identify hot items that
appear in at least a certain fraction of the total number of players’ private input sets, we would like
the protocol to have constant per player communication overhead. We will show that our protocol
achieves this property by using a combination of various approximate counting methods.

3 HotItem-ID Protocol

In Figure 1, we show an overview of the components of our efficient privacy-preserving hot item
identification protocol HotItem-ID and their purposes. We first introduce the intuition behind
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Figure 1: Components of HotItem-ID protocol: HotItem-ID defines how to efficiently compute an
approximate representation of Hk in distributed fashion. Each player i (1 ≤ i ≤ n) constructs local filters
to approximately represent his private input set Si, generates one-show tags for marked bits in filters, and
sends a subset of those one-show tags to the network using anonymous routing. A distributed approximate
distinct element counting protocol aggregates those tags in the network. At the end of the protocol, all
players learn the global filters that approximate Hk. At the right side of the figure we list the purpose of
each component.

each component. Then, in Section 3.6, we describe the full construction of HotItem-ID. Once
all players learn the hot items in their private datasets, they can run our HotItem-Pub protocol
(Section 4) to securely publish the identified hot items.

3.1 Approximate Heavy-Hitter Detection

A näıve approach to hot item identification is to count the number of players holding each possible
element, then determine whether that element is hot. However, performing this task is extremely
inefficient for large domains; many applications require use of strings of 1024 bits or more. In
most scenarios with a large number of players, it is prohibitively expensive to count each of these
21024 (or more) distinct elements separately. Even if the players only count the frequency of those
elements that appear in their private input sets, the bandwidth required will often be prohibitive. In
order to avoid this inefficient näıve approach, we utilize an approximate heavy-hitter identification
scheme [13]. This approximation scheme allows us to efficiently combine the process of counting
the elements held by all players.

In this approximate heavy-hitter identification scheme, each player constructs a local filter. The
players then combine their local filters to construct a global filter; this global filter approximately
identifies hot items. We illustrate this process of local and global filter construction in Figure 2.

First, each player constructs a set of T local filters, which approximately represent his private
input set. Let h1, . . . , hT : {0, 1}ω → {1, . . . , b} be polynomial-wise independent hash functions with
uniformly distributed output, such as cryptographic hash functions [26]. Each filter q (1 ≤ q ≤ T )
for player i (1 ≤ i ≤ n) is an array of b bits, represented by the bit array {wi,q,j}j∈{1,...,b}. A
local filter bit set to 1 indicates that at least one element in the player’s private input set hashes
to that bit; we refer to such bits as hit. Formally, player i (1 ≤ i ≤ n) computes each bit
wi,q,j := 1 ⇔ ∃a∈Sihq(a) = j. The players then combine their local filters into a set of global
filters, using methods described below; global filters approximately represent the players’ combined
private input sets. We will represent each global filter as the bit array {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ).

5



filter 1

filter 2

filter 3
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Figure 2: In our HotItem-ID protocol, each player i constructs a set of local filters from his private input
set Si (dark bits are ‘hit’). The players then construct global filters using an approximate counting scheme;
if a bit was hit by at least k players, then it is ‘hit’ (dark) as well. If an element hashes to a dark bit in each
of the global filters, then it is classified as hot.

If at least k players marked bits j of filter q as hit, then let the bit in the global filter xq,j := 1
(1 ≤ q ≤ T , 1 ≤ j ≤ b). Otherwise, let xq,j := 0. Given this global filter, a is hot with high
probability if x1,h1(a) = 1, . . . , xT,hT (a) = 1. For statistical analysis of this approximation scheme,
see Section 5.1.

3.2 One-Show Tags

In order to construct the global filters, we must count how many players hit each bit in their
local filters. Malicious players may attempt to affect this count by ‘voting’ multiple times for a
bit; this inflation attack could lead to elements being erroneously marked as hot. If players later
publish their hot items, the attacker would learn private information through this attack. Most
techniques that ensure players ‘vote’ at most once would reveal an unacceptable level of information
about each players’ private filters. The voting process must therefore be anonymous to prevent the
adversaries from learning information about any particular players’ private input. We ensure that
each player can ‘vote’ only once, without compromising their privacy, with anonymous one-show
tags. If a player set a bit, he constructs a tag for that bit; the players then count the number of
valid tags for each bit to construct the global filters. We require that one-show tags posses the
following properties: (a) no PPT adversary can construct more than one valid tag for any bit with
non-negligible probability; (b) any PPT player can detect tags that are invalid, or not associated
with a particular bit, with overwhelming probabilty; (c) for every bit, the tags constructed by any
two players are distinct, with overwhelming probability; (d) no PPT adversary can distinguish the
player that constructed it, with probability non-negligibly different than 1

n , where n is the number
of honest players.

Let all players share a group public key for tag verification. Each player holds an individual
private key, used to construct tags. The message and one-show parameters vary by bit, to ensure
that tags constructed for one bit are not confused with those for another bit. We denote the
algorithm for construction of a one-show tag OST(group public key, private signing key, message,
one-show parameter). We provide a construction of such tags in Appendix C. Note that this
cryptographic tool is communication-efficient; our construction requires only 1, 368 bits.
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3.3 Approximate Distinct Element Counting

We may now securely identify hot items by utilizing global filters and anonymous one-show tags.
However, exactly counting the number of valid, distinct one-show tags is inefficient; the players
would have to collect every single tag. To ensure that no tag is counted twice, the players would
also have to store information about every tag.

We can perform the task of approximate counting of distinct tags through an efficient algorithm
for approximate distinct element counting [4]. In our protocol, however, we gain even more efficiency
by estimating directly, through modified use of this approximation, whether there are more or fewer
than k tags for a bit; this is the task that must be performed to construct the global filters.

To approximate the number of distinct tags, we need t specific tags from the set. Let
H : {0, 1}∗ → {0, 1}ω be a collision-resistant cryptographic hash function [26]. Let v1, . . . , vt
represent valid one-show tags that, when hashed with H, have the smallest values of any tags in
the set. We estimate the total number of distinct tags as t2ω

H(vt)
[4]. To increase the accuracy of this

approximation, one may choose α independent hash functions and perform this estimation with
each such function; the resulting estimate is the median of the approximation obtained with each
hash function. We have found α := 1, t := 25 sufficient in practice.

To perform the task of determining whether there are at least k distinct tags corresponding to
a bit, the players can perform a full approximation. However, we have designed a more efficient
variant for this particular problem. Note that, if there exist t tags such that the values of their
hashes is at most t2ω

k , the approximation scheme we describe above will conclude that there are at
least k total distinct tags. The players thus can instead perform this more efficient collection task,
often without even examining ever tag. For example, any tag with value greater than t2ω

k may be
immediately discarded without affecting the approximation.

In many situations, there is a large gap between the frequency of hot items and cold items.
For example, worm attacks will be detected a large number of times by network monitors; normal
traffic is far more varied. Thus, to gain greater efficiency in detecting bits with at least k one-show
tags, we may adjust the t-collection protocol to follow the algorithm of [38]: each player attempts
to collect t tags with hash values of at most (1+γ) t2

ω

k . (γ is a constant based on the size of the ‘gap’
between the frequency of hot and cold items.) We gain efficiency in such situations by reducing
t, while retaining accuracy. In practice, we have found γ := .2, t := 5 sufficient. This scheme is
identical to the above scheme if γ := 0.

3.4 Anonymous Communication

We must now apply our tools to a network structure to complete the protocol. In order to disasso-
ciate the anonymous one-show tags each player constructs from their location in the network, each
player anonymously routes his tags to ρ random players. The constant ρ can be varied to achieve
greater or lesser degrees of robustness; at least one participating player should receive each player’s
tags. We require an anonymous routing scheme allows any player to send a message to a uniformly
randomly selected player, without revealing the source to any intermediate routing node. Simple
and lightweight schemes can be used, as we require only that each player send anonymous messages
to a uniformly selected destination node, without revealing who sent the message. Some previously
proposed anonymous networking schemes include [10, 8, 31, 32, 28].
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Protocol: t-Collection
Input: All n players know H, t, k, γ, and the diameter of the network, D. Each player i (1 ≤ i ≤ n) holds
a set U ′

i,0 = Ui,0 of one-show tags for some specific bit.
Output: Each player outputs success if they collected t valid one-show tags with one show value v such
that H(v) ≤ (1 + γ) t2ω

k
; otherwise, they output failure.

1. For ` = 1, . . . , D, each player i (1 ≤ i ≤ n):

(a) Sends the set of new small tags Ui,`−1 ∩ U ′
i,`−1 to all of his neighbors.

(b) If |Ui,`−1| = t then player i stops participating in the protocol and goes to Step 2.

(c) Receives a set of tags as a result of Step 1a (a) – let the set Ui,` be those which are valid tags
for the correct bit, with one show value v such that H(v) ≤ (1 + γ) t2ω

k
.

(d) Calculates U ′
i,` = U ′

i,`−1 ∪ Ui,`.

2. Each player i (1 ≤ i ≤ n) outputs success if |Ui,`| = t, and otherwise outputs failure.

Figure 3: t-collection protocol

3.5 Distributed One-Show Tag Collection

The players, once they have anonymously received their initial set of tags, then count the number
of tags associated with each bit of the filters. There are many different ways in which they can
accomplish this task, such as through the use of gossip networks or centralized servers; the ideal
method depends on the particular network in which it is employed. We suggest two distributed,
secure, and efficient protocols that require only minimal network capabilities: each player must be
able to send messages to each of its neighbors, who form a connected graph. As we require only
minimal network capabilities, even more efficient schemes than appear in previous work may be
employed [30, 33, 35]. For clarity of presentation, our protocols assume synchronous communication,
but can be easily adapted to an asynchronous model.

Our two protocols for distributed one-show tag collection function as follows: (a) collecting
t one-show tags (with sufficiently small hash value) to approximate whether there are at least k
valid, distinct tags for a bit or, (b) finding the t one-show tags with the smallest hash values to
approximate how many valid, distinct tags there are for a bit. Note that these protocols can be
executed in parallel for each bit of the global filters.

We give an efficient, robust protocol for (a), the t-collection task in Figure 3. Each player
maintains a set of at most t valid tags which have hash values at most (1 + γ) t2

ω

k . Upon learning
a new tag that will be added to his set, a player sends the new tag to all of his neighbors. When
a player has collected t tags with hash values of at most (1 + γ) t2

ω

k , and sent each of these tags
to his neighbors, he ends his participation in the t-collection protocol. If there do not exist t such
small-hash-value tags, the protocol must continue until it converges. The players must ensure that
information travels from one side of the network to the other; this requires D rounds, where D is
the diameter of the network.

We give an efficient, robust protocol for (b), the t-minimum task in Figure 4. Like the t-
collection protocol, each player passes on small-valued valid tags to his neighbors, retaining the t
tags with the smallest hash values. This process continues until it converges (at D rounds) and all
players have learned the t tags with the smallest hash values. This protocol is based on that of [29].
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Protocol: t-Minimum Aggregation
Input: All n players know H, t, and the diameter of the network D. Each player i (1 ≤ i ≤ n) holds a set
U ′

i,0 = Ui,0 of one-show tags for some specific bit.
Output: Each player learns the set U ′, those t tags with the smallest hashes of their one-show values.

1. For ` = 1, . . . , D, each player i (1 ≤ i ≤ n):

(a) Sends the set of new small tags Ui,`−1 ∩ U ′
i,`−1 to all of his neighbors.

(b) Receives a set of tags as a result of Step 1a – let those which are valid one-show tags for the
correct bit form the set Ui,`.

(c) Calculates U ′
i,` to be those t tags with one-show values v1, . . . , vt such that H(v1) < · · · < H(vt)

and ∀
w∈(Ui,`∪U′

i,`−1)∩U′
i,`

H(w) > H(vt).

2. Each player i (1 ≤ i ≤ n) outputs the set U ′ = U ′
i,D.

Figure 4: t-minimum value aggregation protocol

Protocol: HotItem-ID
Input: There are n players, λ maliciously colluding, each with a private input set Si. Each player i ∈ {1, . . . , n}
holds a secret key ski allowing him to construct one-show tags, as well as a common public key pk for tag
verification. These keys can be chosen by a trusted administrator or by a distrustful collective [3]. h1, . . . , hT

are independently chosen cryptographic hash functions with range {1, . . . , b}. H is a cryptographic hash function
with range {0, 1}ω. ρ, b, T, t, α, γ are parameters known to all participants.
Output: Each player i (1 ≤ i ≤ n) obtains the set Pi ⊆ Si, such that each element a ∈ Pi is a hot item. All
players hold the approximate heavy-hitter filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ).

1. Each player i (1 ≤ i ≤ n) constructs T local approximate heavy-hitter identification filters {wi,q,j}j∈{1,...,b}
(1 ≤ q ≤ T ) from their private input set Si: ∃a∈Sihq(a) = j ⇒ wi,q,j = 1. wi,q,j = 0, otherwise.

2. Each player i (1 ≤ i ≤ n), for each bit j of filter q (1 ≤ j ≤ b, 1 ≤ q ≤ T ) s.t. wi,q,j = 1:

(a) constructs a one-show tag OST(pk, ski, q||j, one-show-value)
(b) player i anonymously routes the tag to ρ randomly chosen players (if the players will be utilizing

t-collection in Step 3, do not send the tag unless H of the one-show value is ≤ (1 + γ) t2ω

k
)

3. For each bit j of filter q (1 ≤ j ≤ b, 1 ≤ q ≤ T ) , all players 1, . . . , n, perform exactly one of the following
tasks:

• perform t-collection, with α independent hash functions, on the tags received in Step 2, attempting to
collect, for each hash function H, t valid one-show tags such that each one-show value v ≤ (1+γ) t2ω

k
.

If t-collection was successfully performed for the majority of hash functions, set xq,j = 1. Otherwise,
xq,j = 0.

• perform t-minimum value aggregation, with α independent hash functions, on the tags received in
Step 2. If v is the tth minimum hash value, approximate that there are t2ω

v
total tags; the median of

each such approximation forms the final approximation. If this process determines that there were
at least k tags, set xq,j = 1. Otherwise, xq,j = 0.

4. Each player calculates his output set Pi: for each element a ∈ Si, if ∀q∈{1,...,T} xq,hq(a) = 1, then a ∈ Pi.

Figure 5: HotItem-ID protocol, for identifying the hot items in each players’ private input.

3.6 Putting HotItem-ID to Work

We can now outline our HotItem-ID protocol, given in Figure 5. Let ski be player i’s (1 ≤ i ≤ n)
private key, allowing him to construct one-show tags. These keys can be distributed by a trusted
‘group manager’, by a distrustful group of players acting as such, or by all players acting in concert
(see Appendix C).
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In Step 1, each player i (1 ≤ i ≤ n) constructs T local heavy-hitter identification filters
{wi,q,j}j∈{1,...,b} (1 ≤ q ≤ T ) from their private input sets. They then construct a one-show tag for
each bit in the filters marked as hit (wi,q,j = 1); for a specific construction of the one-show value,
see Appendix C. In Step 2, player i anonymously sends the tags for counting to ρ randomly chosen
players. (If the players will be utilizing t-collection for counting, they may save bandwidth by only
sending those tags where the hash (H) of the one-show value is at most (1 + γ) t2

ω

k .)
To construct the global filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ), the players must determine, for

each bit in the global filters, whether at least k players hit that bit in their local filters. In
Step 3, to efficiently and securely perform this task, the players utilize either the t-collection
protocol (Figure 3) or t-minimum aggregation protocol (Figure 4). Using one of these protocols,
the players approximate whether there were at least k valid, distinct tags constructed for each bit
(for greater accuracy, the players perform this approximation α times. taking the median of the
approximations). If the players conclude that there were at least k valid, distinct tags constructed
for bit j of filter q (1 ≤ j ≤ b, 1 ≤ q ≤ T ), then they set xq,j := 1; else, set xq,j := 0.

Once they have constructed the global filters {xq,j}j∈{1,...,b} (1 ≤ q ≤ T ), each player can utilize
these filters, as shown in Step 4, to determine whether each element of his input is a hot item. If,
for an element a, ∀q∈{1,...T} xq,H(a) = 1, then a is a hot item with high probability.

4 Hot Item Publication Protocol

In this section, we present our protocol for HotItem-Pub. This protocol utilizes the HotItem-
ID protocol, so that each player may identify his hot items, but also ensures that the players may
securely end efficiently publish their common hot items.

4.1 Our Approach

When players publish hot items, we must prevent two attacks by malicious players: (1) suppressing
hot items, so players do not learn them; (2) fooling honest players into accepting cold items as
hot. As we have shown, our HotItem-ID protocol (see Section 3) effectively allows all players to
identify the hot items in their private input sets, even in the presence of malicious players. By using
the HotItem-ID protocol to identify hot items, we must only address attacks on the publication
process itself.

Common Protocol Outline. Each of the variants of our HotItem-Pub protocol prevents both
item suppression and fooling attacks; however, they achieve different levels of owner privacy. For
clarity, we will first describe the basic outline for the protocol, which is common between all variants.
In the HotItem-Pub protocol, the players follow four steps:

1. Commitment. Each player constructs a computationally-binding and computationally-hiding
commitment to their private input set [26]; the exact form of the commitment varies according
to the level of owner-privacy desired. This is later used to prove (by opening the commitment)
that a published hot item was held by some player before the filters were constructed, without
revealing any information at this stage of the protocol. If owner-privacy is desired, the
players then send each of these commitments to ρ random players. This commitment is then
distributed to all players.

10



2. HotItem-ID. The players then execute the HotItem-ID protocol, described in Section 3.
Each player learns, with high probability, which of the elements of his private input set are
hot, even in the presence of malicious players. In addition, each player also obtains the filters
{xq,j}j∈{1,...,b} (1 ≤ q ≤ T ) used to identify their hot items.

3. Publication. Each player, for each hot item in his input, constructs an opening for the
commitment to that element (see the Commitment step). If owner-privacy is desired, the
players then send each of these element/opened commitment pairs to ρ random players. All
players the use a redundant element distribution protocol, ElementDist, to efficiently and
robustly publish the element/opened commitment pairs. Such a protocol follows from the
following rule: when a player receives a previously-unseen hot item, he: (1) using the opened
commitment attached to the hot item, checks that he received a valid commitment to that
item during the commitment phase of the protocol; (2) if it passes the check, sends the hot
item (and associated commitment opening) to each of his neighbors and retains it himself in
the set P . By following this simple protocol, duplicate publications of hot items are efficiently
suppressed, while ensuring that all players receive each hot item in their provisional set P .

4. Verification. As a result of publication, each player obtains a provisional set of elements P ,
each of which is possibly hot. For each such item a ∈ P , the player checks that it passes the
hot item identification filters; if ∀q∈{1,...,T} xq,hq(a) = 1, then it is truly a hot item.

In the remainder of this section, we will describe the details of each variant of owner privacy,
as well as the commitments and openings used to meet each definition. Note that to increase the
level of owner privacy provided, the players must utilize more bandwidth. We formally describe
the HotItem-Pub protocol in Figure 6.

No Owner Privacy. If the players are not concerned about owner privacy, they may simply
commit to their private input sets using Merkle hash trees. A Merkle hash tree is a data structure
allowing a player to produce a constant-sized commitment to an ordered set S. Later any player
holding S may produce a commitment opening: a verifiable proof (given the committment) that
an element a ∈ S [27].

Correlated Owner Privacy. In correlated owner privacy, the players wish to ensure that the
elements of their private input sets cannot be traced to them, but do not care if an adversary can
determine that some pair of elements came from the same player. To achieve this level of privacy,
the players may also use Merkle hash tree commitments [27]. The protocol only differs from the
non-owner private version in that the players anonymously send their commitments and hot items
to random players before they are distributed in the commitment and publication phases of the
protocol. This ensures that the elements can not be associated with any player.

Uncorrelated Owner Privacy. In uncorrelated owner privacy, the players wish to ensure that
the elements of their private input sets cannot be traced to them, and also care if an adversary
can determine that some pair of elements came from the same player. When the players desire this
level of privacy, we cannot utilize the efficient Merkle commmitments, but instead must commit to
each element separately. As the commitments, as well as the hot items, are sent anonymously to
random players before publication, they cannot be linked with the player who constructed them. In
addition, as elements have independent commitments, no player can gain advantage in determining
whether one player held both elements.
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Protocol: HotItem-Pub

Input: There are n players, λmaliciously colluding, each with a private input set Si. Each player i ∈ [n] holds
a private key ski, allowing him to construct one-show tags. h1, ,̇hT are independently chosen cryptographic
hash functions. ρ, b, T, t are parameters known to all participants.
Output: The set P of hot items published by honest players.

1. Each player i (1 ≤ i ≤ n) commits to their private input set Si:

• If the players are not concerned with Owner-Privacy, each player constructs a hash tree from his
randomly-permuted private input set Si, with root hash-value yi; then sends yi to all players

• If the players wish to ensure Correlated Owner-Privacy, each player constructs a hash tree from
his randomly-permuted private input set Si, with root hash-value yi; then anonymously routes
yi to all players

• If the players wish to ensure Uncorrelated Owner-Privacy, for each element a ∈ Si, he constructs
a commitment to a, and anonymously routes it to every other player

2. All players 1, . . . , n execute the HotItem-ID protocol (Figure 5), so that each player i (1 ≤ i ≤ n)
obtains: (a) the set Pi ⊆ Si of hot items in that player’s private input set and (b) approximate
heavy-hitter filters {xq,j}j∈{1,...,b}{1,...,b} (1 ≤ q ≤ T )

3. All players 1, . . . , n publish the hot items in their private input sets:

• If the players are not concerned with Owner-Privacy:
(a) for each element a ∈ Pi, constructs a proof of inclusion in Si, showing the path from the

leaf a to the root value yi

(b) distributes the elements of the set Pi to all other players, along with their proofs of correct-
ness, using the ElementDist protocol, such that all connected honest players learn the set
P = P1 ∪ · · · ∪ Pn.

• If the players wish to ensure Correlated Owner-Privacy:
(a) for each element a ∈ Pi, constructs a proof of inclusion in Si, showing the path from the

leaf a to the root value yi and anonymously routes it to ρ randomly chosen players.
(b) the players distribute all the elements and proofs received in Step 3a using the ElementDist

protocol, such that all connected honest players learn the set P = P1 ∪ · · · ∪ Pn.
• If the players wish to ensure Uncorrelated Owner-Privacy:

(a) for each element a ∈ Pi, opens his commitment to a, and anonymously routes it to ρ
randomly chosen players.

(b) the players distribute all the elements and proofs received in Step 3a using the ElementDist
protocol, such that all connected honest players learn the set P = P1 ∪ · · · ∪ Pn.

4. Each player i = 1, . . . , n verifies that each element a ∈ P :

• was committed to with a valid committment by some player in Step 1
• passes the filter – ∀q∈[T ] xq,hq(a) = 1

Figure 6: HotItem-Pub protocol, for publishing the hot items in each players’ private input.

5 Analysis

Now we proceed to analyze the security and performance of our HotItem-ID protocol.
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5.1 Correctness

In Theorem 1 we prove that our HotItem-ID protocol functions correctly: hot items are identified
as hot and cold items are identified as cold with high probability. Note that the filter sizes b, T
must be chosen as described in the theorem for our guarantees to hold, though they may be smaller
in practice.

Theorem 1. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε and β,
the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the following:
t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b× T , and at the same

time, satisfy

(
mb n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1 − δ+, every element a that appears in
fa < βk players’ private input sets is not identified as a k-threshold hot item.

In the HotItem-ID protocol, with probability at least 1 − δ−, every element a that appears in
fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

We defer the proof of Theorem 1 to Appendix B.1.

5.2 Privacy in HotItem-ID

In these theorems, we prove the owner and data privacy of our HotItem-ID protocol.

Theorem 2. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the HotItem-ID protocol, for any element a, no coalition of at most λ malicious players can gain
more than a negligible advantage in determining if a ∈ Si, for any given honest player i (1 ≤ i ≤ n).

When considering data privacy, we wish to prove that the cold elements in S1 ∪ · · · ∪Sn remain
hidden from adversaries. For example, in the HotItem-ID protocol, no player or coalition of at
most λ malicious players may gain more than an expected I = tnm

k lg b bits of information about
all players’ inputs

⋃n
i=1 Si. We prove a tighter bound on the degree to which each element is

hidden in a crowd of indistinguishable elements. Two elements are indistinguishable if an attacker
cannot distinguish which one was in players’ private input sets based on the information gained in
HotItem-ID. For an element a, its indistinguishable set consists of all elements indistinguishable
from it by an adversary who has no prior knowledge. To provide data privacy, we wish for cold
items to have large indistinguishable sets; we compromise perfect (semantic) security, in which all
items are indistinguishable, to achieve much greater efficiency.

Theorem 3. In the HotItem-ID protocol, each element a, which appears in fa dis-
tinct players’ private input sets, has an indistinguishable set of expected size Φ(fa) =∑T

`=1

(
T
`

) (
1− t

k

)fa(T−`)
(
1−

(
1− t

k

)fa
)` |M |

b`
.

We defer the proofs of Theorems 2 and 3 to Appendices B.2 and B.3, respectively.
We graph the fraction of the indistinguishable set size to the domain size, Φ(x)

|M | in Figure 7.

When an item a appears in fa players’ private datasets, the higher Φ(fa)
|M | indicates that it is harder
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for adversaries to distinguish a from other items in the domain |M |. Note that if a appears in
only a few players’ private input sets, a very large proportion of the domain is indistinguishable
from a. As fa approaches k

t , the size of the indistinguishable set decreases; this character ensures
that truly rare elements are highly protected. In many applications, there is a big gap between the
frequency of hot items and cold items. In this case, our protocol guarantees that the cold items
will be extremely well protected, as their fequency will be much smaller than k

t .

5.2.1 Privacy in HotItem-Pub

We now consider the degree of owner privacy conferred by each version of our HotItem-Pub
protocol. Correlated owner privacy allows adversaries to link the items published by each player,
while uncorrelated owner privacy prevents this.

Theorem 4. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the Correlated Owner-Private HotItem-Pub protocol, for any element a, no coalition of at most
λ malicious players can gain more than a negligible advantage in determining if a ∈ Si, for any
given honest player i (1 ≤ i ≤ n), assuming that the adversary is given the set of hot items P , and
the frequency of each hot item.

Theorem 5. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the Uncorrelated Owner-Private HotItem-Pub protocol, for any element a, no coalition of at most
λ malicious players can gain more than a negligible advantage in determining if a ∈ Si for any given
honest player i (1 ≤ i ≤ n), assuming that the adversary is given the set of hot items P , and the
frequency of each hot item.

Additionally, given two elements a, a′ ∈ P , no coalition of at most λ malicious players can gain
more than a negligable advantage in determining if there exists a honest player i (1 ≤ i ≤ n) such
that a, a′ ∈ Si, assuming that the adversary is given the set of hot items P , and the frequency of
each hot item.

We prove these theorems is given in Appendix B.3.

5.3 Performance

By utilizing a novel combination of approximation counting algorithms, our protocol represents a
clear gain in efficiency over exact counting. In particular, aside from the cost of anonymous routing
messages, which vary according to the scheme employed, our protocol achieves a multiplicitive
factor of Tt/k more efficiency than the exact-counting based non-privacy-preserving protocol using
the same message propagation abilities. (A network with improved capability for routing messages
will increase the performance of both protocols.) Note that this improvement in performance is
significant, especially considering that the baseline protocol provides no privacy at all, where our
protocols enforce principled guarantees of privacy while retaining efficiency. In particular, if k is
a fraction of n, our protocol achieves constant per player communication overhead. We present
experimental results to validate the efficiency of our protocols in distributed networks in Section 7.
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Figure 7: The degree of data privacy for an element with frequency fa is Φ(fa)
|M | . Ideally, the degree of data

privacy would be 1 for all frequencies, but by compromising this strong definition of security, we obtain more
efficient and robust protocols. We graph the degree of data privacy (a), showing the increase in protection
for rare elements. The same function is graphed in (b) on a logarithmic scale, for increased detail.

6 Extensions

In this section, we briefly describe several extensions to our HotItem-ID and HotItem-Pub
protocols.

Private Input Multisets. Instead of identifying hot items as those that appear in at least k
players’ private input sets, we may identify those items that appear at least k times in the players’
private input multisets. In the modified protocol, we associate γ one-show values with a single
(filter,bucket) pair so that up to γ hits to a single bucket by a single player can be counted as
distinct elements. The constants b, T may be chosen by adjusting the analysis given in the proof
of Theorem 1.

Using Bloom Filters. Bloom filters provide a compact probabilistic representation of set mem-
bership [5]. Instead of using T filters, we can use a combined Bloom filter. This achieves the
asymptotic communication complexity, however, in practice the Bloom filter approach can have
smaller constants. We describe our approach using T filters in this paper in the interests of clarity.
Our scheme can be easily adapted to use Bloom filters. The choices of the constants b, T can
be adjusted to give an acceptable false-positive rate, given the domain M ; the analysis may be
performed similarly to that of [5] and the analysis of the HotItem-ID protocol given in this paper.

Theorem 6. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε and β,
the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the following:
t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b× T , and at the same

time, satisfy

(
mT b n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1 − δ+, every element a that appears in
fa < βk players’ private input sets is not identified as a k-threshold hot item.
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In the HotItem-ID protocol, with probability at least 1 − δ−, every element a that appears in
fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

We defer the proof of Theorem 6 is given in Appendix B.4. As the properties of owner and data
privacy are unchanged by this variant, we do not perform a separate analysis.

Top-k. The Top-k problem is identifying those k elements that appear most often in the players’
private input sets. An efficient non-private solution to this problem is given in [7]. In their protocol,
a trusted authority calculates an estimated threshold value τ ; every element in the top k appears
at least τ times.

We now briefly describe how to calculate the top k values without use of a central authority and
while preserving each players privately. Like in HotItem-ID, the players calculate global filters,
but by using t-minimum value aggregation instead of t-collection. In this way, each player may
estimate the number of players who hit each (filter,bucket) pair. Using these estimates, the players
may approximate τ , marking each (filter,bucket) pair hit by at least τ players as 1. The global
filters may then be used to identify the top-k.

7 Experimental Results

In order to experimentally evaluate the efficiency and accuracy of our protocol, we implemented
our HotItem-ID protocol with t-collection and applied it to distributed worm signature detection.
As we describe in Section 7.3, our experimental results support the efficiency and accuracy of our
protocol.

7.1 Distributed Worm Signature Detection

A widely utilized tactic for detecting worms is to search for byte strings that appear with unusually
high frequency in network traffic [22, 34]. By distributing the execution of this strategy over a large
number of hosts, players can increase the accuracy of their results [22]. However, as network traffic
often contains sensitive information such as email or information that could aid a network attack,
it is imperative to protect the privacy of participants.

In a distributed network monitoring scenario, each monitor attempts to detect malicious traffic
on his own network. As anomaly detection is imperfect, this process will often identify innocuous
traffic as malicious. Thus, monitors must take further steps to improve the accuracy of their results;
comparing the results with other monitors. If the malicious traffic belongs to a worm, there will be
other monitors that observed similar traffic; an effective heuristic for identifying possibly malicious
traffic is that worms often send a large volume of repetitive data as they attempt to infect other
computers. We use our HotItem-ID protocol to perform this comparison while protecting the
privacy of non-worm network traffic.

Because polymorphic worms often change their form, players must compare many small pieces of
a possible worm payload instead of the entire payload. We use a content-based payload partitioning
technique (proposed in [22]) to split a payload into many small segments. In this section, we call
such segments content blocks. The payload partitioning technique is robust against small payload
byte changes and generates the same content blocks for different forms of a worm. Once monitors
have identified possible worms and split them into content blocks, they then perform hot item
identification over the sets of content blocks. Content blocks generated from innocuous, private
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Figure 8: Number of hosts (players) that have generated each content block (item) from observed suspicious
flows.

network traffic appear only in the sets from a few monitors. Hot content blocks indicate that the
traffic has been seen at an unusually large number of hosts; it is therefore almost certainly part of
a worm attacking those hosts and can be used as a signature of the worm.

7.2 Real-world Data and Experiment Method

We performed simulated distributed network monitoring on traces captured on a campus network
that uses one third of a class B IP address space. HTTP-tr1, HTTP-tr2, and HTTP-tr3 are one-
hour long traces containing all HTTP (tcp port 80) packets and payloads addressed to hosts in
the monitored network. Similarly, SMTP-tr1, SMTP-tr2, and SMTP-tr3 contain SMTP (tcp port
25) packets captured for an one-hour time period. During the trace collection periods, a total of
5246 IP addresses received at least one packet. Our trace does not contain any known worm traffic
and does not contain hot items (threshold k = 100). We graph the number of hosts who generate
each innocuous content block (by identification of possible worm traffic) in Figure 8. Only at most
2.2% (HTTP) or 1.4% (SMTP) of content blocks appear at more than one host. Through manual
examination, we determined that content blocks that appeared at more than one host indicated
web crawler (HTTP) or spamming (SMTP) activity, and never appeared at more than 45 hosts.

We injected simulated worm traffic into the input of 200 of 1024 monitors in the network. Each
monitor generates a set of content blocks from captured anomalous traffic. Note that all the sets
generated from those 200 attacked monitors include the content blocks from the worm traffic. We
ran our HotItem-ID protocol in the overlay network of 1024 monitors and measured the number
of messages and the required bandwidth per monitor, while varying the t-collection parameters
t and γ, and the average number of neighbors ψ in the overlay network. We also computed the
false positive and false negative rates at the end of the HotItem-ID execution by counting the
innocuous content blocks identifed as to be hot (false positives), and the worm content blocks that
are not identified (false negatives). In our experiment, we utilized the parameters b := 606, T := 5
for HTTP traces, and b := 4545, T := 5 for SMTP traces, chosen according to the guidelines in
Section 5.1. We compared our protocol to a non-private näıve protocol, in which all content blocks
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HTTP-tr3 SMTP-tr1

# of messages bandwidth # of messages bandwidth
t=3 t=5 t=10 t=3 t=5 t=10 t=3 t=5 t=10 t=3 t=5 t=10

ψ=5 näıve 1 (11,399msgs) 1 (228KB) 1 (300,757msgs) 1 (6015KB)
γ=0 0.044 0.075 0.151 0.412 0.708 1.422 0.026 0.039 0.073 0.248 0.364 0.687
γ=0.2 0.048 0.081 0.162 0.455 0.764 1.524 0.032 0.048 0.088 0.306 0.448 0.825
γ=0.5 0.052 0.088 0.177 0.493 0.831 1.664 0.042 0.062 0.117 0.395 0.583 1.100

ψ=10 näıve 1 (25,643msgs) 1 (513KB) 1 (676,612msgs) 1 (13,532KB)
γ=0 0.038 0.068 0.141 0.363 0.638 1.331 0.017 0.021 0.065 0.162 0.199 0.611
γ=0.2 0.042 0.071 0.146 0.394 0.665 1.372 0.022 0.028 0.068 0.208 0.261 0.638
γ=0.5 0.044 0.074 0.149 0.414 0.695 1.402 0.036 0.062 0.124 0.341 0.584 1.169

Figure 9: Normalized bandwidth consumption per player in performing hot item identification (k = 100).
Underline indicate that there were false positives or false negatives.

are forwarded to all participating 1024 monitors, using the same network topology and the same
communication model for both the näıve protocol and the HotItem-ID protocol.

7.3 Bandwidth Consumption and Accuracy

Our HotItem-ID protocol efficiently identified every simulated worm injected into the network
traces, while generating no false positives; no innocuous data was mistakenly categorized as ma-
licious except when we use SMTP-tr1 with t ≤ 3 and γ ≥ 0.5. We present our comparison of the
required bandwidth and messages in Figure 9. HTTP-tr3 contains 724 unique content blocks, while
SMTP-tr1 contains 46,120 unique ones. Gray boxes in the figure indicate there were false negatives
(failed to identify worm content blocks). Our HotItem-ID protocol scales better than the näıve
protocol (Section 5.2); as problems increase in size, our protocol becomes more attractive. Even at
small problem sizes, the overhead required to protect the privacy of participants is not high. Our
experiments show that to ensure correctness while retaining efficiency, we may set γ := 0.2, t := 3
(HTTP) and γ := 0.5, t := 5 (SMTP). Our HotItem-ID implementation, based on an efficient
group signature scheme [6], requires 193 bytes per message (Appendix C) while the näıve protocol
utilizes only 20 bytes per message. 3 However, our protocol requires only a small number of message
transmissions; as a result, HotItem-ID used only 39% and 58% of the bandwidth used by the näıve
protocol in the HTTP-tr3 and SMTP-tr1 experiments, respectively. Note that the performance gain
from our HotItem-ID protocol increases as the more monitors participate. For example, when
10240 monitors participate in worm signature generation and we need only 10% of them to catch
worm traffic (k = 1000), our HotItem-ID protocol uses less than 6% of the bandwidth used by
näıve protocol.

8 Related Work

In a non-distributed context, [4, 17, 21] examine the identification of elements that appear often in
a data stream, through the use of approximate counting. We generalize this task to a distributed
setting, as well as enforcing important privacy-preserving properties.

Previous work also includes many protocols cryptographically secure against semi-honest play-
ers for related problems, including set-intersection [2, 1, 15, 40], equijoin [2, 1], association rule

3To save bandwidth and give a trivial measure of privacy against casual attacks [24], we hash each content block
with SHA-1 in the näıve protocol.
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mining [36, 20], classification [12, 25], statistical analysis [11], and top-k queries [37]. Several of
these protocols are also secure against malicious players [15, 40].In our work, we achieve more ef-
ficient and flexible results, secure against malicious players, by designing our protocols to achieve
more restricted notions of privacy.

Previous work in cryptographically secure protocols includes techniques on privacy-preserving
set operations, which can be applied to distributed hot item identification and publication [23]; this
work is secure under a very strict notion of privacy [18], but is insufficient for many applications.
For example, it requires the players to share a decryption key and perform joint decryption. We
do not believe that such an assumption is tenable in all situations. In our work, we achieve more
efficient and flexible results by designing our protocols to achieve more restricted notions of privacy
that we believe are sufficient for many applications.

Several applications of privacy-preserving hot item identification and publishing have been con-
sidered in previous work. Certain privacy-breaching attacks against distributed network monitoring
nodes were described in [24]. They did not, however, give a concrete definition of security for their
attempts to defeat such attacks, and their techniques require trusted central servers. Additionally,
in many cases, significant breaches in privacy occur when outlier elements, that appear in very few
other players’ servers, are revealed; they do not assuage such concerns. Privacy-preserving collec-
tion of statistics about computer configurations has also been considered in previous work [39, 19].
Like the work in [24], they do not give a concrete definition of security, but instead a technique for
heuristically confusing attackers. Their approach also relies on chains of trust between friends, un-
like our approach, in which nodes may be arbitrarily malicious. It is nearly impossible to evaluate
the claims of privacy of these works, without a formal definition of security. We also believe some
of the assumptions made in these works are untenable in many scenarios.

Our work avoids the strong impossibility results of the Byzantine agreement problem by utilizing
one-show tags, a cryptographic construction related to group signatures.

9 Conclusion

In this paper, we design protocols for efficient, secure, and robust privacy-preserving distributed hot
item identification. In this paper, we define the problem of privacy-preserving hot item identification
(HotItem-ID), using novel definitions of privacy specific to this scenario. We design an efficient
owner- and data-private protocol for HotItem-ID, robust against malicious players and unreliable
networks. We also experimentally validate the efficiency and accuracy of our protocol on real-world
data; we efficiently perform worm signature detection on real-world data and successfully identify
worm payloads without false positives.
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A Notation

Notation.

• a||a′ - a and a′ concatenated
• a := a′ - the value of a′ is assigned to a

Variable List.

• a - an item, member of a private input set
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• b - number of buckets per filter
• d - d(x) = Φ(x)

|M | , a measure of data privacy which varies by the number of players holding any
particular item

• ei - group certificate for player i (1 ≤ i ≤ n) in group signature for one-show tags scheme
• fa - number of players’ private input sets in which an element a appears
• g1, g2 - group elements in one-show tag scheme
• gq,j - group element for producing one-show value (1 ≤ q ≤ T , 1 ≤ j ≤ b)
• H(·) - a cryptographic hash function with range {0, 1}κ
• h1(·), . . . , hT (·) - independent cryptographic hash functions with range [b]
• i - index over players (1 ≤ i ≤ n)
• I - expected number of bits of information that any coalition can learn about players’ private

input sets
• j - index over buckets (1 ≤ j ≤ b)
• k - minimum number of players that must hold an alert for it to be published
• ` - index
• m - maximum size of Si
• M - domain of elements (

⋃n
i=1 Si ⊆M)

• n - the number of players
• o - a secret value used in constructing one-show tags
• pe - probability of edge existence in a random network graph
• pt - probability that an anonymously routed message is traced to its source
• Pi - each player’s set of alerts for publication
• P =

⋃n
i=1 Pi

• q - index over filters (1 ≤ q ≤ T )
• r1, r2, r′1, r′2 - prime numbers used in one-show tags
• s - group manager’s secret element in group signature scheme
• si - each player’s secret element in group signature scheme (1 ≤ i ≤ n)
• Si - each player’s private input set (1 ≤ i ≤ n)
• S =

⋃n
i=1 Si

• t - number of values collected to estimate the number of distinct elements in a set
• T - number of filters
• u - estimated set size
• Ui - the tags collected during a t-collection or t-minimum value aggregation protocol by player
i (1 ≤ i ≤ n)

• v - a one-show value
• [wi,q,j ]j∈[b] - local filter q (1 ≤ q ≤ T ) for player i (1 ≤ i ≤ n)
• [xq,j ]j∈[b] - global filter q (1 ≤ q ≤ T )
• yi - the root of a Merkle hash tree, a commitment to the input set Si of player i (1 ≤ i ≤ n)
• z0, z1, z2 - elements of the group signature public key for one-show tags
• Zn - the ring of integers modulo n
• α - number of separate approximate distinct element counting estimations that must be

combined to obtain the desired confidence probability δ1
• β - secret value for ZK proof in one-show tags scheme
• γ - ”gap” factor in approximate distinct element counting
• δ1 - confidence probability for the approximate distinct element counting algorithm
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• δ+ - maximum probability of false positive
• δ− - maximum probability of false negative
• ε - allowed error bound for the approximate distinct element counting algorithm is between

(1− ε) times the actual value and (1 + ε) times the actual value
• κ - security parameter for modified unpredictable-value group signature scheme
• λ - number of malicious players
• µ - secret value for ZK proof in one-show tags scheme
• η - part of public key for one-show scheme η = r1r2
• φ - secret value for ZK proof in one-show tags scheme
• ϕ - maximum number of duplicates of each element allowed in a private input multiset (see

Section 6)
• ρ - number of randomly chosen players chosen to receive anonymous messages in HotItem-

ID and HotItem-Pub, so that, with high probability, at least one message reaches an honest
player
• τ - threshold value for top-k protocol extension to HotItem-ID (see Section 6)
• σ - seed for pseudo-random number generator
• σ` - the `th member of Zν output by a pseudo-random number generator on input σ
• Φ(fa) - expected size of indistinguishable set, if element a appears in fa players’ private inputs
• ψ - average number of neighbors per node
• χ - part of group signature public key for one-show tags scheme
• ζ - secret value for ZK proof in one-show tags scheme

B Detailed Analysis

B.1 Correctness

In this section, we analyze our HotItem-ID protocol to ensure that, given certain choices of the
parameters b, T , our protocol correctly identifies hot items with high probability. In analyzing this
protocol, we must consider both false positives (in which cold items are identified as hot), and false
negatives. Errors may be caused by inaccurate approximate distinct element counting, a badly
constructed filter, or a combination of the two.

Recall that h1, . . . , hT : {0, 1}κ → {1, . . . , b} are polynomial-wise independent hash function
with uniformly distributed output, such as cryptographic hash functions, and that H is a collision-
resistant cryptographic hash function [26].

Error from Approximate Distinct-Element Counting. To begin, we state a simple lemma
that shows the t-collection and t-minimum value aggregation protocols (Figures 3 and 4) obtain
the information needed for approximating the number of ‘hits’ to any particular bucket.

Lemma 1. Each participant in the t-collection protocol of Figure 3 collects t ‘small-value’ one-show
tags created by distinct players, if such tags exist.

Each participant in the t-minimum value aggregation protocol of Figure 4 obtains the t one-show
tags created by distinct players with the smallest hash values.

Proof. The proof of this theorem relies on the proof of information distribution in [29], which uses a
closely related information distribution mechanism. We can thus observe that all information held
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by connected honest players is distributed to all connected players unless it is specifically filtered
by an honest player. In the t-minimum value aggregation protocol, the only tags filtered are those
which do not appear in the final result; that is, they are not one of the t one-show tags with smallest
hash value. Note also that the one-show value of a tag is unique per player, and that each player
cannot construct tags with different, valid one-show values with overwhelming probability. Thus,
in the t-minimum value aggregation protocol, all players obtain the t one-show tags with smallest
values created by distinct players.

We may reason similarly about our t-collection protocol. Each player only filters tags (by
terminating his involvement in the protocol) if he has collected t tags and sent them on to all
neighbors. Thus, the player has ensured that if t small hash-value tags exist, each of his neighbors
collect them as well. By induction, all connected honest players thus collect t small-value tags
created by distinct players, if such tags exist.

As detailed in [4], if H(v) is the tth smallest hash value in a set S, where H : {0, 1}∗ → {0, 1}κ,
then the estimate of |S| is t2κ

H(v) . By computing the median of O
(
lg 1

δ1

)
such estimates, with

computationally independent hash functions, we obtain |S|, an (ε, δ1)-approximation of |S|:

Lemma 2. This algorithm, for any ε, δ1 > 0, (ε, δ1)-approximates |S|. That is,

Pr
[
|S| > (1 + ε)|S| ∨ |S| < (1− ε)|S|

]
≤ δ1

Proof. Proof of this theorem is given in [4].

As this is an (ε, δ1)-approximation algorithm, we may note that we are concerned with elements
that appear fewer than k

1+ε times, when computing false positives, and elements that appear at
least k

1−ε times, when computing false negatives. Based on this algorithm, we may conclude that,
if there exist at least t elements with hash values at most t2κ

k , our estimate of |S| is at least k:

Corollary 7. If there exist t values v1, . . . , vt ∈ S such that ∀`∈[t] H(v`) ≤ t2κ

k , then the approximate
distinct element counting algorithm of [4] will estimate that |S| ≥ k.

Proof. Let w = max`∈[t]{H(v`)}. The approximation algorithm specifies that |S| = t2κ

w . As w ≤
t2κ

k , then |S| ≥ k.

Error from Filters. We now calculate the probability that an element a, which appears in
fa < k′ players’ private input sets, is identified as a k′-threshold hot item. We set k′ := k

1+ε , so as
to account for the allowed inaccuracy in the approximate counting algorithm.

As illustrated in Figure 10, we may bound the probability that a is erroneously identified as
k′-hot by one filter j′ (1 ≤ j′ ≤ T ) by determining the maximum number of filter buckets that
were hit by k′ − fa distinct players4. If a bucket j (1 ≤ j ≤ b) was hit by k′ − fa players who do
not hold a, then if hj′(a) = j, then a will be identified by filter j′ as a k′-threshold hot item. As
malicious players may claim to hit all buckets, a minimum of k′ − fa − λ honest players must hit
any given bucket for it to cause any possibility of error.

4Note that the fa signatures related to the element a will raise the total number of signatures to k′; if there are
at least k′ signatures, error in the approximate counting algorithm may cause a to be identified as a k-hot item.
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Figure 10: Buckets that are unsafe for hj′(a) (1 ≤ j′ ≤ T ) are those that have been marked as hit by a
sufficient number of players to allow the possibility that a might be erroneously identified as a k′-threshold
hot item. In (1), a is mapped to a sufficiently full bucket, causing a to be erroneously identified as a k′-hot
item. In (2), a is mapped to a safe bucket.

Each honest player has a maximum of m items in their private input set. Thus, using every
element of each players’ private input set, each group of k′− fa−λ honest players may hit at most
m buckets a sufficient number of times to introduce any danger of error5. There are n − fa − λ
honest players who do not hold a as an element of their private input set, and thus b n−fa−λ

k′−fa−λc groups
of players that can hit m buckets per group enough times to allow danger of an error. Note that
any group of fewer than k′− fa− λ players cannot hit any particular bucket a sufficient number of
times to cause a total of k′ − fa hits; each player may only hit any particular bucket at most once.

Thus, at most mb n−fa−λ
k′−fa−λc buckets of each filter can be ‘unsafe’; if a is not mapped to one of

those buckets, then there is no possibility of error from the malfunctioning of the filter. As hj′(a)
is distributed computationally indistinguishably from uniformly over [b], we may thus bound the
probability that bucket hj′(a) is erroneously designated as ‘hot’:

Pr
[
a is identified as k′-hot by one filter

]
≤

mb n−fa−λ
k′−fa−λc
b

Combined Error. We may now consider the two sources of error together. There are two possible
error types: false positives (in which cold items are identified as hot), and false negatives (in which
hot items are not identified as hot).

Theorem 1. Given the false positive rate δ+ and the false negative rate δ−, error bounds ε
and β, the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the
following: t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b × T , and

at the same time, satisfy

(
mb n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1 − δ+, every element a that appears in
fa < βk players’ private input sets is not identified as a k-threshold hot item.

5Note that, with high probability, more that one element of an honest players’ private input set will hash to the
same bucket, and thus this is a conservative analysis.
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In the HotItem-ID protocol, with probability at least 1 − δ−, every element a that appears in
fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

Proof. The probability that an element a, which appears in fa < k
1−ε players’ private input sets, is

not identified as a k-threshold hot item can be bounded as follows (recall that we have set k′ = k
1+ε ,

to account for the allowed tolerance in approximate counting):

Pr [a is identified as k-hot] ≤ Pr[in all filters, element a is identified as k′-hot ∨
set of size < k′ approximated as ≥ k]

=
T∏

j′=1

Pr[in filter j′, element a is identified as k′-hot ∨

set of size < k′ =
k

1 + ε
approximated as ≥ k]

≤
T∏

j′=1

(
mb n−fa−λ

k′−fa−λc
b

+ δ1

)

=

(
mb n−fa−λ

k′−fa−λc
b

+ δ1

)T

=

mb n−fa−λ
k

1+ε
−fa−λ

c

b
+ δ1

T

If an element a, which appears in fa ≥ k
1−ε players’ private input sets, is not identified as a

k-threshold hot item, it is due to error in the set-counting approximation. When the number of
hits for every bucket in a filter is counted exactly, there can be no false negatives. Thus, we may
bound the probability of a false negative as follows:

Pr [a is not identified as k-hot] = Pr
[
in at least one filter, a set of size ≥ k

1− ε
approximated as < k

]
≤

T∑
j′=1

Pr
[
in filter j′, a set of size ≥ k

1− ε
approximated as < k

]

≤
T∑

j′=1

δ1

= δ1T

Choice of Constants. Given our analysis, we may outline how to choose the constants δ1, t, b, T
based on the parameters ε, δ−, λ, n,m, δd, β.

δ1. Recall that the probability of a false negative, for an element a which appears in at least
fa ≥ k

1−ε players’ private input sets, is required to be at most δ−. We may then choose δ1 as
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follows:

Pr [a is not identified as k-hot] = δ−

≤ δ1T

δ1 :=
δ−
T

b, T . Given this assignment of δ1, we may simplify our bound on the probability of a false positive
on an element a, which appears in βk < k

1+ε players’ private input sets, as follows:

Pr [a is identified as k-hot] ≤

mb n−fa−λ
k

1+ε
−fa−λ

c

b
+ δ1

T

≤

mb n−βk−λ
k

1+ε
−βk−λc

b
+
δ−
T

T

We choose b, T so as to minimize b× T , while satisfying the above constraint.
t, α. In the approximate distinct element counting algorithm in [4], t := d96

ε2
e, α := O

(
lg 2

δ−

)
. In

practice, one may safely choose to retain t < d96
ε2
e smallest values per parallel execution, and

run only one parallel execution, while retaining a confidence bound of δ1. We found that
t := 25 was sufficient.
Note that, when running very small examples, or with very high accuracy requirements, one
may obtain an assignment for t that is ≥ k. In this case, simply set t := k, and note that
ε, δ1 = 0; each player is now collecting a sufficient number of signatures so as to determine,
without error, whether any particular bucket was hit by at least k distinct players.

ρ. The choice of ρ must be based on the choice of anonymous message system. We provide here
an analysis based upon the scheme of [28], in which each node, upon receipt of a message
to be anonymously routed, sends it to a random neighbor with probability pf > .5, and to
its intended destination with probability 1 − pf . Note that the probability that a message
will, somewhere along its anonymously routed path, encounter a malicious node is at most
λ
n + λ

npf + λ
np

2
f + · · · ≤ λ

n . As we cannot ensure that a message is delivered if it encounters
a malicious node, we wish to choose ρ such that at least one message will be delivered to its
destination, with probability at least δd. Thus, ρ := O

(
lg 1

δd

)
.

B.2 Owner Privacy

Theorem 2. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the HotItem-ID protocol, for any element a, no coalition of at most λ malicious players can
gain more than a negligible advantage in determining if a ∈ Si, for any given honest player i
(1 ≤ i ≤ n).

Proof. The proof of this theorem is straightforward.
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Figure 11: Players collect one-show tags for each filter bucket during the HotItem-ID protocol. Given
a complete set of filters for some element, one may still not determine which element produced the filters.
However, each tag has a probability of 1− t

k −
1
2κ of having too high a value for the t-collection phase, and

thus of being hidden. When all tags for an element in a specific filter are removed, as in (2), an even larger
number of elements could have produced the observed filters.

Theorem 4. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the Correlated Owner-Private HotItem-Pub protocol, for any element a, no coalition of at most
λ malicious players can gain more than a negligible advantage in determining if a ∈ Si, for any
given honest player i (1 ≤ i ≤ n), assuming that the adversary is given the set of hot items P , and
the frequency of each hot item.

Proof. The proof of this theorem is straightforward.

Theorem 5. Assume that one-show tags are unlinkable and that the anonymous communication
system is secure such that no coalition of adversaries can distinguish which honest player sent any
given anonymous message with probability more than negligibly different from a random guess. In
the Uncorrelated Owner-Private HotItem-Pub protocol, for any element a, no coalition of at most
λ malicious players can gain more than a negligible advantage in determining if a ∈ Si for any given
honest player i (1 ≤ i ≤ n), assuming that the adversary is given the set of hot items P , and the
frequency of each hot item.

Additionally, given two elements a, a′ ∈ P , no coalition of at most λ malicious players can gain
more than a negligable advantage in determining if there exists a honest player i (1 ≤ i ≤ n) such
that a, a′ ∈ Si, assuming that the adversary is given the set of hot items P , and the frequency of
each hot item.

Proof. The proof of this theorem is straightforward.

B.3 Data Privacy

Theorem 3. In the HotItem-ID protocol, each element a, which appears in fa dis-
tinct players’ private input sets, has an indistinguishable set of expected size Φ(fa) =∑T

`=1

(
T
`

) (
1− t

k

)fa(T−`)
(
1−

(
1− t

k

)fa
)` |M |

b`
.
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Proof. Let M be the domain of possible private input set elements, such that ∀i∈[n] Si ⊆M . Given
knowledge of h1(a), . . . , hT (a), we may infer that approximately |M |

bT
possible elements a ∈ M

could have produced that filter pattern, as there are bT total possible filter patterns caused by one
element and h1, . . . , hT are cryptographically secure hash functions. As illustrated in Figure 11, if
information about one or more filters has been elided, a correspondingly larger number of elements
could have produced that filter pattern. We may use Bernoulli trials to calculate the expected size
of the indistinguishable set for element a, which appears in fa players’ private input sets:

E [size of indis. set] =
T∑
`=1

Pr [` filters are elided]
|M |
b`

=
T∑
`=1

(
T

`

)(
1− t

k

)fa(T−`)
(

1−
(

1− t

k

)fa
)`
|M |
b`

We graph in Figure 7 the expected proportion of the total domain M of the indistinguishable
set, as fa increases. Note that if a appears in only a few players’ private input sets, a very large
proportion of the domain is indistinguishable from a. As fa approaches k

t , less and less of the
domain is indistinguishable; this character ensures that truly rare elements are highly protected.
As t is a constant, independent of n, while k will often grow with the size of the network, we see
that protection for rare elements generally increases as the network increases in size.

B.4 Analysis for Bloom Filters

Theorem 6: Given the false positive rate δ+ and the false negative rate δ−, error bounds ε and β,
the upper limit of the number of malicious participants λ. Let b, t, T, ρ be chosen as the following:
t := d96

ε2
e, ρ := O

(
lg 2

δ−

)
, α := O

(
lg 2

δ−

)
, b and T are chosen to minimize b× T , and at the same

time, satisfy

(
mT b n−βk−λ

k
1+ε−βk−λ

c

b + δ−
T

)T
< δ+.

In the HotItem-ID protocol, with probability at least 1 − δ+, every element a that appears in
fa < βk players’ private input sets is not identified as a k-threshold hot item.

In the HotItem-ID protocol, with probability at least 1 − δ−, every element a that appears in
fa ≥ k

1−ε players’ private input sets is identified as a k-threshold hot item.

Proof. The proof of this theorem very closely follows the proof of Theorem 1.

C Details of One-Show Tags

In this section, we describe a one-show tag scheme obtained through the modification of the group
signature scheme of Boneh and Shacham [6]. One one-show tag is lightweight, requiring only 1539
bits. Using the same techniques, similar constructions can be obtained from other group signature
schemes.

A group signature scheme allows each member of group of players to sign messages on behalf
of the group. Given these signatures, no player or coalition of players (except the trusted group
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manager) can distinguish the player that produced any signature, nor can they determine if two
signatures were produced by the same group member.

In the Boneh/Shacham group signature scheme, the group public key is pk = {g1, g2, w}, where
g1 ∈ G1, g2 ∈ G2, and w = gγ2 for γ ← Z∗

p . (p can be taken to be a 170-bit prime, and the elements
of G1, G2 can be represented in 171 bits [6].) The trusted group manager holds the group secret
key γ. Each user i (1 ≤ i ≤ n) has a private key si = {Ai, xi}, where xi ∈ Z∗

p , Ai ∈ G1. Using his
private key, each player may sign a message, using a variant of the Fiat-Shamir heuristic [14], by
proving knowledge of a pair {Ai, xi} such that Axi+γ

i = g1.
We may modify this group signature scheme to include provably correct one-show values, making

each signature a one-show tag. Each user i (1 ≤ i ≤ n) may construct a one-show tag for bucket j of
filter q (1 ≤ q ≤ T , 1 ≤ j ≤ b) by: (1) signing the message q||j essentially as in the original signature
scheme; (2) computing two additional values to enable the recipient to compute the one-show value.

Each user generates gq,j ∈ G2 by an agreed-on scheme; we discuss this element later in the
section. We utilize the same bilinear mapping e as in the computation of the main signature,
as well as the intermediate values v, α, rα computed as intermediate values utilized in the main
signature. User i computes these additional elements for a one-show tag:

T3 = e(v, gq,j)rα

T4 = e(v, gq,j)α

The sole change to the original signature scheme is that the challenge value c is computed as
c = H(pk, q||j, r, T1, T2, T3, T4, R1, R2, R3).

The recipient conducts all the validity checks specified in the Boneh/Shacham signature scheme,
as well as the following additional check, derived from a proof of discrete logarithm equality [9]:

e(v, gq,j)sα = T c4T3

We define the one-show value as e(Ai, gq,j); note that this value cannot be constructed by any
player other than i and that player i can construct exactly one such value. To compute this value,
the signature recipient computes: (

e(T2, gq,j)ce(v, gq,j)−sαT3

) 1
c

The additional zero-knowledge proof required for the one-show tag construction is efficient,
and thus our one-show tag construction and verification is nearly as efficient as the original group
signature scheme. Note that these one-show tags are unlinkable, anonymous, and can be verified
by all players who hold the group public key.

The parameter gq,j , used to construct a one-show value associated with bucket j of filter q
(1 ≤ q ≤ T , 1 ≤ j ≤ b), can be efficiently constructed in a variety of ways such that no player
knows its discrete logarithm. In this section, we briefly describe one such approach.

Let PRNG be a pseudo-random number generator with range G2 [26]. Let HPRNG be a hash
function that takes bit strings as input and outputs data suitable for input into PRNG. Let σ =
HPRNG(g||q). Let the `th element output from this PRNG on seed σ be denoted σ`. Each player
calculates the element σ`′ , the first generator of G2 in the sequence σ1, σ2, . . . . Set gq,j = σ`′ .
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