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Abstract

As malware is becoming increasingly sophisticated and
stealthy, effective techniques for malware detection and
analysis are imperative. Previous detection mechanisms
are insufficient. Signature-based detection cannot detect
new malware, and watch-point based behavioral detec-
tion can be evaded by stealthier design. Most previous
analysis mechanisms are too coarse-grained to capture
malware behavior and fail to address kernel-level attacks.
We proposewhole-system fine-grained taint analysisfor
automatic malware detection and analysis, and build a
prototype called TaintQemu. By tainting data from hard-
ware inputs and monitoring its propagation, TaintQemu
generate taint graphs. The taint graph represents how in-
formation propagates during the system execution. We
demonstrate that such whole-system fine-grained taint
analysis can capture the intrinsic properties of many dif-
ferent classes of malware and thus offer effective meth-
ods for automatic malware detection and analysis. Our
evaluation using a wide spectrum of real-world malware
demonstrates that our system is effective in detecting
many different classes of malware including keyloggers,
backdoor, etc., and offer indispensable assistance to sys-
tem administrators and analyzers for better understand-
ing of the behavior and consequences of malware. also
used to automatically detect a wide spectrum of malware,
by checking the violations from the normal patterns in
taint graph.

1 Introduction

Malicious software (i.e., Malware) is becoming increas-
ingly prevalent and sophisticated. They creep into users’
computer systems in ever more creative ways: They
could be mistakenly installed when a user clicks on an at-
tachment containing a virus, or visits a malicious website
which installs malicious software in the background, or
unknowingly installed when the user installs a free-ware

or bundled-ware containing spyware or adware. More
surprisingly, even software provided by reputable ven-
dors could contain code that performs undesired actions
such as leaking users’ private data. For example, Google
Desktop, a popular local file system search tool, has
been reported to send users’ private information back to
Google’s servers [15]. In another example, SONY Me-
dia Player has been reported to send users’ listening be-
havior such as which songs the user has listened to back
to SONY [35]. Thus, as users and computers cannot
live in isolation from the rest of the Internet and for-
eign code gets downloaded and installed unknowingly or
knowingly to the local system all the time, the users and
computers are completely oblivious to what code is ac-
tually installed on the local system and whether they will
have malicious or undesired behavior or consequences.
When a piece of code is installed and executed, how can
we detect whether it will have certain malicious or unde-
sired behavior such as violating user’s privacy? This is
an important open research question.

Traditional methods are insufficient in addressing this
problem. First, previous approaches on sandboxing or
access control do not apply well in this scenario. For ex-
ample, system utility programs such as Google Desktop
need to access user’s files and may need to communicate
back to Google servers for updates, etc. Users’ privacy
is only violated when users’ private information is sent
back to Google. Thus, the traditional sandboxing or ac-
cess control model is too rigid for this scenario to be able
to detect the undesired behavior and at the same time al-
low Google Desktop to perform its alleged functions.

Second, previous malware detection mechanisms are
insufficient. Previous malware detection mechanisms
mostly fall into two categories: signature-based detec-
tion and watch-point based behavioral detection. The
first category, signature-based detection suffers from the
drawback that it cannot detect new malware since it
needs to know the signature first, and it can be defeated
by polymorphic and metamorphic malware variants.
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The second category, watch-point based behavioral
detection monitors specific points in the computer sys-
tem and detects malicious code based on certain heuris-
tics. An example is Microsoft’s Strider Gatekeeper [38],
which monitors auto-start extensibility points to deter-
mine surreptitious restart-surviving behavior. A main
drawback for this approach, however, is that it needs
to know what detection points should be watched and
what behavior at that detection point should be moni-
tored. Malware authors keep exploring innovative tech-
niques to achieve their malicious intent and also conceal
their presence without going through the previously iden-
tified detection points, and thus render the existing detec-
tion points useless. For example, early malware detec-
tion monitors userland APIs and system calls to detect
malware behavior that go through these APIs and sys-
tem calls. To evade detection, more sophisticated mal-
ware moves into the operating system kernel such as
kernel rootkit. When detection also moves to the ker-
nel to identify malicious activities, such as detecting ker-
nel hooks [6] and kernel data object manipulation [31],
much stealthier malware design has recently been in-
vented to circumvent the detection mechanisms [33].
Its demonstration, a stealthy backdoor calleddeepdoor
achieves the backdoor functionality by only modifying a
few DWORDs in NDIS data block, (which is supposed
to be modified), and eventually evades all the existing
detection tools. Another recent study shows the viabil-
ity of building malware completely out of the victim op-
erating system, leveraging the technique of virtual ma-
chines [22]. Thus, the history of the arms race between
the malware writers’ innovations and the watch-point
based behavioral detection mechanisms demonstrate that
we need a holistic approach to prevent the malware to
evade monitoring and once-for-all put such an arms race
to an end.

To address the above issues, we propose a new ap-
proach for automatic malware detection and analysis:
whole-system fine-grained taint tracking. By monitor-
ing the whole system (including the operating system),
malware cannot evade our detection by avoiding previ-
ously identified detection points as in the watch-point
based behavioral detection methods. Moreover, by an-
alyzing the common traits of malware, we identify a uni-
fied approach that enables the detection and analysis of
a wide spectrum of malware: fine-grained taint tracking.
One fundamental trait of malware lies in its data access.
While benign software usually accesses the data of its
own interest, malware is inclined to monitor, intercept,
and modify the data belonging to other programs and
even the operating system. Such malware may exhibit
two types of anomalies in its data access and informa-
tion propagation pattern: (1) Access the information not
supposed to be accessed. For instance, keystroke log-

gers capture keystrokes belonging to other processes, and
packet sniffers monitor or intercept all incoming and out-
going packets; (2) Access the information in an eccentric
way, to circumvent security mechanisms enforced on the
system. For example, to circumvent the firewall, a back-
door may access incoming packets at a lower layer of the
network stack. Thus, by monitoring taint tracking in a
fine-grained manner, we enable automatic detection and
analysis of a wide-spectrum of malware based on these
insights.

In particular, we monitor system execution and en-
able taint tracking at the instruction level. The result
from taint tracking forms ataint graph. The taint graph
represents how information gets propagated. We then
show that the taint graph can be used in three ways
for automatic malware detection and analysis. First, we
can build a policy engine to enforce invariants/properties
on the taint graph—taint flow violates these invari-
ants/properties would indicate an attack. . Second, by
observing the taint graph over time, we can learn about
normal patterns/profiles in the taint graph. These pro-
files can then be used for anomaly detection, thus we can
even detect attacks that we do not have specified policies
for. Finally, the taint graph gives us the causal relation-
ship which allows us to conduct diagnosis and analysis of
malware behavior. Given a detection point or a malicious
action, we can trace back to see how it happened, where
the malware came from, and how it was installed, and we
can also trace forward to see the subsequent actions that
the malware has performed.

Note that even though information flow tracking has
been proposed previously for intrusion analysis [21],
these previous approaches such as Backtracker [21] suf-
fer from several drawbacks: first, they are at process
level which is often too coarse grained for malware de-
tection and analysis; second, they do not apply to ker-
nel attacks such as rootkit because they monitor program
execution through system calls and do not monitor op-
erating system behavior. By doing whole-system fine
grained taint tracking, our method provides much higher
accuracy than previous work and we can handle kernel
attacks as well such as rootkit.

To examine this approach, we further design and im-
plement a prototype called TaintQemu to analyze and de-
tect a wide spectrum of malware in Windows, because
the majority of malware aims for Windows platforms.
Hence, the following discussion assumes Windows sys-
tem, in particular, Windows 2000 and above versions,
although the fundamental technique can be adapted to
the other operating systems. Through extensive exper-
iments, we demonstrate that taint graph based analysis
correctly characterizes malware behavior and also pro-
vides unique insights, which cannot be obtained from the
traditional analysis approaches. By applying taint graph
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based policies, we can successfully detect a wide spec-
trum of malware. In performance evaluation, we observe
that fine-grained taint analysis suffers up to 30 times per-
formance overhead. Since TaintQemu is used for anal-
ysis and off-line detection, the performance overhead is
not a crucial problem.

Contributions. In summary, this paper makes the fol-
lowing contributions. We propose a novel approach
for malware detection and analysis: whole-system fine-
grained taint tracking. We have designed and imple-
mented a system TaintQemu to demonstrate that our ap-
proach provides a unified framework and is effective
against a wide spectrum of different malware. Our ap-
proach has the following salient features: (1) it does not
rely on signatures and thus can detect new attacks, (2)
it prevents malware from evading detection by avoiding
previously identified watch points, (3) it resides com-
pletely out of the victim system, and thus resists being
disrupted by malware, and (4) it relies on hardware-level
information and minimal software-level information, and
hence is resilient evasion attacks by providing mislead-
ing information.

2 Overview

Whole-system fine-grained taint analysis is a novel ap-
proach for malware analysis and detection. Instead of
performing analysis and detection within the victim sys-
tem, we run the victim system as a virtual machine on
top of this analysis and detection environment. This ar-
chitecture provides an excellent isolation so that analysis
and detection will not be disrupted by the malware inside
the virtual machine. Figure 1 depicts our system archi-
tecture.

The Taint-Tracking Engine monitors system execution
and tracks how tainted data propagates and generates
taint graphs. The taint graphs will then be used for pro-
filing, malware detection and analysis.

In the Taint-Tracking Engine, we selectively mark the
data from the virtual devices, such as keyboard, network
interface, and disk, as tainted, and observe the tainted
data propagates in the system. During taint propaga-
tion, we can know which instruction access the tainted
data in which register or memory location, and other
hardware-level states. With the knowledge of memory
map from the victim system, we can find out which pro-
cess and module an instruction comes from. Combin-
ing raw events with memory map, we can generate taint
graphs with different levels of granularity.

A taint graph presents process and module level infor-
mation and the dependency and chronological relations
between nodes. Therefore, from a taint graph, analyzers

can easily understand the system behavior related to the
tainted data.

A PolicyDB contains policies that specify properties
which should be satisfied by taint graphs. Violations of
these policies will be detected by the Malware Detec-
tion Engine which detects the malicious behavior of a
malware. The policies in the PolicyDB can be manually
specified by identifying intrinsic properties of different
classes of malware, or be automatically generated by the
Profiling Engine which builds profiles of normal execu-
tions during a training period.

Given an event of interest such as the detection of a
malicious behavior, the Malware Analysis Engine per-
forms backwards and forward reachability analysis to
identify where the malware came from and how it was
installed and the actions of the malware before and after
the detection step.

3 Design and Implementation of Whole-
system Fine-grained Taint Tracking

3.1 System Overview

The whole-system taint analysis requires that a certain
kind of data from an I/O device be marked, and whole-
system execution be monitored to find out what code re-
gions have accessed and propagated this data or the data
derived from it. Achieving this goal necessitates a whole-
system emulator.

Therefore, we design and implement our system, Tain-
tQemu, based on QEMU [28, 2], a generic and open
source processor emulator which achieves a good emu-
lation speed by using dynamic translation. The dynamic
translation performs a runtime conversions of the target
CPU instructions into the host instruction set, and the re-
sulting binary code is stored in a translation cache so that
it can be reused later. Hence, the emulation speed is im-
proved drastically, compared to the previous emulation
approaches (e.g. Bochs [5]).

For the case where the emulated CPU is the same
to the host CPU, the QEMU Accelerator Module
(KQEMU) is available to run most of the target applica-
tion code directly on the host processor to achieve near
native performance, as the other hardware-level virtual
machine monitors (e.g. Xen [1], and VMWare Worksta-
tion and Server products) do. Currently, QEMU stati-
cally chooses to run in two modes: emulated mode (with
KQEMU disabled), and virtualized mode (with KQEMU
enabled). We have made a small modification on QEMU,
such that it can switch between these two modes at run-
time. This feature provides flexibility that QEMU can
run in virtualized mode for the best of performance, and
switch to emulated mode when performing analysis and
detection tasks.
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Figure 2: Architecture of TaintQemu

The architecture of TaintQemu is shown in Figure 2.
We will describe its components respectively in the re-
mainder of this section.

3.2 Shadow Memory

We use a shadow memory to indicate the status of each
byte of physical memory and CPU’s general-purpose
registers. Each tainted byte is associated with a small
data structure where its data source and some other book
keeping information are stored. The shadow memory is
organized in a page-table-like structure to ensure that it
uses as little memory as possible in practice.

For simplicity, in the implementation, debug registers,
control registers, SIMD(e.g. MMX and SSE) registers,
and flags are not considered, and adding the necessary
tracking for these registers would be quite straightfor-
ward.

Page swapping makes taint tracking more compli-
cated, considering that tainted data could be swapped out
to the disk and swapped in later. To accommodate page
swapping, we modify the virtual disk to store an on-disk
data structure mapping the location of tainted data. If
data is re-read then the memory it is placed in is marked
appropriately.

3.3 Taint Sources

In the current design and implementation, we consider
to taint input from keyboard, network interface, and hard
disk. Although tainting a high-level abstract data object
(e.g. the output of an function call, or a data structure
in a specific application or the OS kernel) is applicable,
we do not explore this area in this paper, which certainly
deserves investigation in future work.

Keystroke tainting simply taints bytes as they are
read from the virtual keyboard. We only taint charac-
ter keys (such as letters and numbers), which are the in-
terest of malicious programs like keyloggers and pass-
word thieves. Moreover, since typing keyboard is a user
interactive behavior, we let user to determine when to
taint character keystrokes. We define a hot-key (i.e.
ALT+CTRL+K), and before entering sensitive informa-
tion, such as password and credit card numbers, the
user activates the keystroke tainting by pressing the hot-
key. Pressing the hot-key again will de-activate the
keystroke tainting.1 We assign a unique id for the tainted
keystrokes during one activation. Therefore, there will
be one taint graph generated for the keystrokes in one

1TaintQemu does not forward this hot-key to the virtual machine, so
malware in the virtual machine cannot evade the detection bychecking
the hot-key.
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activation.
Tainting incoming network packets from the network

card is slightly more complicated. We have different
tainting strategies for ICMP, and TCP/UDP packets. We
uniformly taint all ICMP packets, so that there is one
taint graph for all ICMP packets. For a UDP or TCP
packet, we taint the whole packet, and derives its unique
id from its source and destination IP addresses and port
numbers. So a taint graph is generated for one TCP con-
nection or one UDP virtual connection.

Tainting disk input is performed at the granularity of
sector. We treat a sector as one unit and assign the sector
number as unique id. As a result, a taint graph is gener-
ated for one sector.

3.4 Taint Propagation

After a data source is tainted, we need to track each
instruction that manipulates data in order to determine
whether the result is tainted. In QEMU, target CPU in-
struction is split into a few micro operations, which fall
into three categories: data movement operations, arith-
metic operations, and those that do neither. We instru-
ment data movement operations and arithmetic opera-
tions. For data movement operations, the destination will
be tainted if and only if the source is tainted. For arith-
metic operations, the result will be tainted if and only if
any byte of the operands is tainted. This is similar to the
taint tracking approaches proposed recently [9, 16, 25].
There are a number of situations where the above ba-
sic propagation policy fails to taint correct information,
which has also been discussed in [9].

Constant function Some instructions or instruction
combinations always produce the same results. A quite
common example is “xor eax, eax” in many IA-32
programs. After executing this instruction, the value of
eax is always zero, regardless of its original value. If
the input of this kind of instructions is tainted, the output
should not be tainted. However, the basic propagation
policy will still taint the output. TaintQemu recognizes
these special cases such asxor eax, eax andsub
eax, eax and sets the result location to be untainted.
Note that there can be more general cases of constant
functions where a sequence of instructions computes a
constance function. We do not handle these more gen-
eral cases. However, such cases are fairly rare.

Table lookup The second situation is table lookup.
Sometimes a tainted value is used as index to read an en-
try in a non-tainted memory region. The basic propaga-
tion policy will check the non-tainted memory region and
treat the output as non-tainted. This situation arises rou-
tinely for keystrokes. In Windows 2000 and above ver-

sions, a keystroke from the hardware is converted from
scancode into virtual-key code, and then from a virtual-
key code to unicode. These two conversion involve ta-
ble lookup. To handle this special case, we augment the
propagation policy with the following rule: if any byte
of the index is tainted, then the result is tainted. How-
ever, accommodating table lookup may cause a great
deal of innocent data regions being tainted. We have ob-
served this phenomenon in our experiments. To retrain
this “over-tainting” behavior, we associate a table-lookup
depth value with each tainted byte. The initial value is 0.
Whenever a tainted byte is derived from a table lookup,
we increase the table-lookup depth of the tainted index
by one, and assign it to the destination tainted data. In
this way, we keep record of how many table lookup op-
erations a tainted byte is derived from. By defining the
maximum of table-lookup depth a tainted byte can have,
we limit the maximal number of table lookup operations,
and thus reduce false positives. We set the maximum of
table-lookup depth as 2 in TaintQemu, and did not ob-
serve noticeable false positives.

Control flow evasion The third situation is control
flow evasion. By comparing a tainted input with a se-
quence of clean data, the output data can be derived
from the input from the comparison results, without be-
ing tainted. The following example illustrates this situa-
tion.

char copy(char x)
{

char y=0;
for(char i=128; i>=0; i>>=1)
if(x>=i) y+=i, x-=i;

return y;
}

The above functioncopy copies a characterx to y
without propagating the taint. Within a loop, the input
x is compared with a value ini derived from a constant
for 8 times, and the outputy finally obtains the value of
x with the knowledge of the eight comparison results.
TaintQemu does not taint comparison flags and the out-
put of instructions that follow a control flow decision.
Even if comparison flags are tainted, it is difficult, if not
impossible, to correctly identify the output of which in-
structions should be tainted, given the fact that code opti-
mization techniques may reorder the instructions and put
irrelevant instructions after branches.

This situation is fairly rare in regular code, but does
exist in keystroke propagation in Windows 2000 and
above versions. In our experiments on Windows XP,
the unicode characters derived from keystrokes are not
tainted as expected. After extensive kernel code trac-
ing under SoftICE environment with Windows XP Ser-
vice Pack 2 retail symbols, we have identified that
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taint tracking stops at keystroke unicode conversion in
an internal function xxxInternalToUnicode in
win32k.sys. Chow et al. faced the same obsta-
cle in their implementation of TaintBochs [9], but did
not have a solution. The translation of scancode into
unicode involves a loop, illustrating such a control-
flow evasion. We workaround this problem by patch-
ing an instruction in another internal kernel function
xxxTranslateMessage in win32k.sys. This in-

struction will write a translated unicode character to its
destination register EAX. We instrument this instruction
by re-tainting EAX when the corresponding scancode is
tainted.

Note that malicious code cannot exploit the control
flow evasion to evade detection, because it has to access
the tainted data in the first place to launch the control
flow evasion, and such an access will be caught by our
detection.

Propagating to I/O devices Taints may also propa-
gate to I/O devices, such as disk and network interface.
Propagating to disk may result from a tainted page being
swapped out to the page file, or tainted data being written
to files. We maintain an on-disk data structure mapping
the location of tainted data. If data is re-read then the
memory it is placed in is marked appropriately. When
generating taint graphs, we are only interested in tainted
data being written to files, because tainted pages being
swapped out is a normal system behavior. Thus, we need
to distinguish these two situations. In current implemen-
tation, we configure the guest system to use page file on
a separate virtual disk to facilitate distinguishing these
two situations. When tainted data is written to a file, we
can tell from the sector number that while file is being
written to, by using disk analysis tools.

Taints may propagate to network interface, when
tainted data is sent out. In the virtual network interface,
we check if an outgoing packet is tainted.

3.5 Code Origin Resolution

When observing that an instruction is accessing tainted
data, we need to know where this instruction comes from.
The majority of instructions come from binary files on
the disk, each of which is mapped into a code region
in the memory. Such a code region is usually called
module, in Windows and UNIX-like operating systems.
In particular, device drivers with the extension ofsys,
shared libraries with the extension ofdll, and executa-
bles with the extension ofexe, are modules once loaded
into memory space. In unusual situations, instructions
may also be dynamically generated and executed on the
heap.

Thus we need to maintain a virtual memory map, with
the knowledge of what virtual memory location of which
process each module is loaded into. Note that while a
kernel module once loaded is shared by all processes,
a user module is loaded into only one process memory
space. Hence, this memory map consists of one global
module list for kernel modules and a number of user
module lists for all running processes. Maintaining this
memory map requires the information from the guest op-
erating system.

To obtain necessary information, we have im-
plemented a kernel module calledModule Noti-
fier, and insert it into the guest system, to push
down the updated memory map information to
the underneath TaintQemu. Module Notifier ob-
tains the information by calling two kernel APIs
PsSetCreateProcessNotifyRoutine and
PsSetLoadImageNotifyRoutine to register two
callback functions. The first callback function tells
which process is being created or deleted. The second
callback function is called whenever a new module
is loaded, with the information which part of virtual
memory of which process it is loaded in. In addition,
Module Notifier obtains the value of CR3 for each
process. As CR3 contains the physical address of
page table of current process, CR3 is unique for each
process. All the above information is submitted to the
underneath TaintQemu through a predefined I/O port.
By receiving the memory map information from the
guest system, TaintQemu can reconstruct a map of all
modules currently loaded into the guest system. Then
when observing an instruction is accessing tainted data,
we can search the map with CS, EIP, and CR3, and find
out which module this instruction resides in.

We rely on the following security mechanisms to guar-
antee the integrity of modules loaded into memory. In
modern operating systems, file integrity checker is com-
monly available as a security feature, such as Win-
dows File Protection (WFP) [39] for Windows and Trip-
wire [20] for UNIX family. This feature assures the in-
tegrity of critical system files. After the module is loaded
into memory, the virtual machine monitor can further
prevent this module from being tampered, by leveraging
the virtual machine introspection technique [13].

The virtual memory map is an essential component in
our system, and the only one obtained from the target
system. Therefore, we have to make sure the authentic-
ity of the memory map information. To disrupt our de-
tection, a malicious program may inject fake information
to the predefined I/O port. In order to ensure the authen-
ticity of the messages from the target system, we check
the program counters of the instructions, and only allow
those from Module Notifier to send information to the
predefined I/O port.
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4 Taint-Graph Based Detection and Anal-
ysis

4.1 Taint Graph

Taint propagation forms dependencies among instruc-
tions and hardware inputs and outputs (e.g., memory,
keyboard input, network interface input/output, disk).
For example, if instruction B reads a tainted data writ-
ten by instruction A, then instruction B depends on in-
struction A. Thus, the chain of instructions that oper-
ated on and propagated tainted data form a graph, where
the nodes represent the instructions and hardware inputs
and outputs, and an edge between two nodes indicate an
immediate taint propagation relationship. We call this
graph thetaint graph. The taint graph contains all the
information about how taint propagates during the ex-
ecution which provides a foundation for us to perform
detection, profiling, and analysis.

However, such a fine-grained taint graph is often
enormous—a short-duration execution could result in a
taint graph of gigabyte size. Thus, we provide different
options to reduce the taint graph by abstracting away cer-
tain detailed information and representing the taint graph
at different levels of granularity. For example, instead of
keeping information about each instruction propagated
taint, we simply keep the information about the mod-
ule that the instruction belongs to (including the process
name and the module name) and collapse consecutive
nodes with the same process and module name. In this
case, the reduced taint graph represents the dependencies
among different modules (instead of instructions) which
often provides sufficient level of granularity for malware
detection and defense. Figure 3 demonstrates a small
part of a taint graph at the module level. However, a taint
graph at the module level can still be very large, because
there can be many system kernel and user modules and
they could appear repeatedly in the graph.

As the focus of our analysis is the untrusted code2,
we can simply treat all trusted system kernel modules as
one pseudo module “SYS”, and all trusted system user
modules as another pseudo module “USR”. This step
greatly reduces the complexity of the taint graph even
further, without losing the dependency between the un-
trusted code and system code. We demonstrate the effec-
tiveness of this strategy using an example of incoming
FTP traffic, shown in Figure 3.

2By untrusted code, we generally mean the code that needs to be
investigated, which can be the programs explicitly installed, or those
surreptitiously penetrating the system

4.2 Taint-Graph Based Policy for Malware
Detection

Given a taint graph, we can define various security prop-
erties or predicates on the graph such that the violation
of the properties or predicates will indicate a malicious
or suspicious behavior. We call these security properties
and predicatestaint-graph based policy, which will be
used for malware detection. The taint-graph based policy
can be specified in different logical forms. For example,
it can be a path property, i.e., a predicate over all paths
in the graph. It can also be a logical form over different
taint-graphs which enables us to correlate different taint-
graphs for more sophisticated attacks and detection.

The taint-graph based policy is the heart of the mal-
ware detection using taint tracking. Given the policy, the
detection is simply to evaluate the predicates to check for
any violations. Once we detect a malicious behavior, we
can then perform further analysis using the taint graph as
described in section 4.3.

There are two ways to generate the policy. First, by an-
alyzing the intrinsic properties of malware, we can man-
ually specify policies that will capture different classes
for malware such as keyloggers, back-doors, password
thieves, etc. Second, by analyzing the common proper-
ties of normal taint graph (i.e., taint graphs that do not
contain malicious behavior execution), we can build pro-
files of normal behavior of taint graphs for different ap-
plications, and use the deviation from the profile to detect
malware. We provide more details for these two types of
policy generation below.

Statically Defining Policies Different classes of mal-
ware have different intrinsic properties or invariants
which we can leverage to specify policies for accurate
detection. We give a few examples here to illustrate how
we specify policies for accurate detection of different
classes of malware. In Section 5, we demonstrate with
real malware samples that these policies are truly effec-
tive in detecting a variety of different malware and cause
no known false positives.

First, incoming TCP/UDP traffic or keyboard input is
always consumed by user-level applications. The data
from hardware goes through the OS kernel and reaches
the application directly. Thus, all taint graphs with the
root as TCP or UDP or KBD should always follow such a
pattern. Any violations are highly suspicious. For exam-
ple, kernel-mode keyloggers tend to intercept keystrokes
in the kernel, and break this pattern. Similarly, kernel-
mode packet sniffers and backdoors intercept incoming
network traffic, and break this pattern.

Second, ICMP is designed for network testing and di-
agnosis purpose, and usually only the operation system
and trusted testing tools (e.g.ping.exe) use it. Un-
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(a) Small part of original graph (b) Compressed graph

Figure 3:Taint Graph Compression. The original graph contains 1624 nodes, and (a) only shows the first 30 nodes.
After compression, the reduced graph only contains 9 nodes,shown in (b).

trusted code that accesses incoming ICMP traffic is often
suspicious. Most of packet sniffers tend to capture all
traffic, including ICMP packets, and thus will access it.
Some stealth backdoors, such as SAdoor [34], uay [36],
and deepdoor [33], achieves stealthiness by sniffing the
incoming traffic, and thus also access it. ICMP based
backdoor is another kind of stealth backdoor that uses
ICMP messages as a vehicle to carry backdoor commu-
nication, and therefore will access ICMP traffic. Thus,
by simply stating a policy that untrusted code should not
be on a path from an ICMP input, we can detect ICMP-
based backdoor, packet sniffers, and sniffing-based back-
door.

Third, we consider malware that tries to steal users’
sensitive file and send it over the network. In this case,
users’ sensitive file will be tainted inputs, the policy will
simply be specified as untrusted code should not be on a
path from a sensitive file to the network in a taint graph.
In Section 5, we will demonstrate how we use such a pol-
icy to detect when a malware tried to send out a password
file.

Automatically Generating Policies through Profiling
To detect new classes of malware and detect application-
specific attacks, we also enable the approach of anomaly
detection on taint graph. For an application, through
a training period with no malware installed, we collect
taint graphs and build profiles which holds across differ-
ent taint graphs. These profiles can then be used to de-
tect malicious code when untrusted code deviates from
the profiles. A profile can include a lists of modules and
hardware nodes that access the tainted data, and proba-

bly the dependency and chronological relations between
them. Currently, we only consider the basic profile that
includes only a list of modules and hardware nodes. For
example, for an application, we can build a profile to see
which modules normally would access keyboard input
for the application. We can then use this profile to detect
user-level keylogger when the keylogger (the untrusted
code) is trying to access keyboard inputs for this applica-
tion. For a detailed example, see Section 5.

4.3 Taint-Graph Based Analysis

A taint graph records data source, a list of modules and
hardware nodes that access the data, and the dependency
and chronological order between nodes. Thus, we can di-
agnose and analyze the system behavior via taint graphs.
Given any event of interest such as a node causing the
detection of a malicious behavior (called the detection
step), we can perform backwards and forwards reacha-
bility analysis on the taint graph. The backwards reacha-
bility analysis can lead us to where the malware has been
downloaded and installed and reveal what other actions
have been performed by the malware before the detection
step; the forward reachability analysis can tell us what
other actions and consequences has this malicious be-
havior led to. Such analysis capability can be instrumen-
tal for system administrators and analyzers to understand
the behavior and consequences of malware. For a simple
example, we can see from Figure 3(b) that a TCP con-
nection is received byftp.exe program and the data
in that connection is stored into disk, and some infor-
mation is sent tocsrss.exe for console display. This
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graph correctly reflects the real behavior offtp.exe
when handling incoming TCP traffic. In Section 5.2, we
will further examine the system behavior when malware
is involved in the taint graph.

5 Evaluation

In this section we present an experimental evaluation of
our TaintQemu system. Our evaluation consists of three
parts. First, we test the effectiveness of taint graph based
detection against some common malware instances. Sec-
ond, we evaluate the effectiveness of taint graph based
analysis. The third part evaluates the performance over-
head. Note that since TaintQemu is used for analysis and
off-line detection for now, the performance is not a prob-
lem.

5.1 Malware Detection

int Policy1(vector<Node> &graph)
{

if(graph[0].mod in {"UDP", "TCP", "KBD"}){
if(graph[1].mod!="SYS") return error;
if(graph[2].mod!="USR") return error;

}
return ok;

}
int Policy2(vector<Node> &graph)
{

if(graph[0].mod=="ICMP"}){
for(int i=1; i<graph.size(); i++)
if(graph[i].mod not in {"SYS", "USR"})

return error;
}
return ok;

}
int Policy3(vector<Node> &graph)
{

for(int i=3; i<graph.size(); i++) {
if(graph[i].mod not in

Profile(graph[2].proc, graph[0].mod))
return error;

}
return ok;

}

Figure 4: Sample Policies

5.1.1 Sample Malware Instances

To extensively evaluate the effectiveness of TaintQemu,
we choose to run a wide spectrum of malware, includ-
ing keyloggers, password thieves, packet sniffers, stealth
backdoor, and rootkits, as described below.

Keyloggers capture keystrokes and attempt to extract
sensitive information from them. They can reside in
both user and kernel space.klog [23] is a kernel-mode

keylogger implemented as a filter driver. It only func-
tions properly for Windows NT, and we have modified
it to enable it run properly in Windows 2000 and XP.
Vanquish [37] is a user-mode keylogger, which is au-
tomatically loaded into each process that is receiving
keyboard input.

Password thievessteal passwords and potentially other
sensitive information, which are usually derived from
keyboard input. GINA Spy [14] replaces Win-
dows msgina.dll with a maliciousmscad.dll,
which steals Windows username and password in
Winlogon.exe. BHO Spy is a synthetic malicious
BHO (i.e Browser Helper Object) written by one of the
authors to steal passwords that the user enters into the
web documents within Internet Explorer.Password
Logger [26] is a standalone application running in the
background. It scans for password fields3 in all GUI
applications, and saves the content into a file.

Packet sniffers eavesdrop incoming and possibly out-
going network traffic to capture sensitive information.
They can reside in both user and kernel space, inter-
posing every possible point in the network stack.IP
sniffer [18] demonstrates a driverless userland im-
plementation of IP sniffer using raw socket.

Stealth backdoors attempt to communicate with re-
mote attackers, but at the same time evade detection
by the host security mechanisms such as personal fire-
walls. To achieve the stealthiness, some backdoors
like Back Orifice [4] inject code into trusted ap-
plications that are allowed to access network by the
system policy. Some others avoid opening ports.
ICMP backdoors utilize non-port-based ICMP proto-
col as a vehicle to convey backdoor communication.
ICMP backdoor [17] demonstrates such an ICMP
backdoor. UAY backdoor [36] is a portless kernel-
mode backdoor. It hooks on the network stack and inter-
cepts all incoming TCP packets with a specified destina-
tion port number (the default port is 9929). After receiv-
ing a command from a remote attacker, it executes the
command in the context of a system kernel thread.

Rootkits intend to conceal the presence of malicious ac-
tivities, such as files, registry entries, processes, mod-
ules, and other system states, which helps an intruder
maintain access to a system without the user’s knowl-
edge. CFSD [8] is a kernel-mode rootkit that hides
directories and files. Beside a userland keylogger,
Vanquish [37] is also a userland rootkit that hides di-
rectories, files, and registry entries.

3A password field is an input window that characters in it are
masked.
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Name Description Detected Module POL1 POL2 POL3
klog kernel-mode keylogger klog.sys ✔

Vanquish keylogger and userland rootkit vanquish.dll ✔

GINA Spy Windows account password thief mscad.dll ✔

BHO Spy BHO stealing password in IE BHOspy.dll ✔

Password logger password thief PasswordLogger.exe ✔

uay kernel-mode backdoor uay.sys ✔ ✔

ICMP backdoor backdoor communicating via ICMP ntkrnl.exe ✔

IP sniffer userland packet sniffer using raw socketiptools.exe ✔ ✔

CFSD kernel-mode rootkit cfsd.sys ✔

Table 1: Detection results against sample malware instances.

5.1.2 Detection Results

We first run a clean system with Window XP Profes-
sional SP2 installed on top of TaintQemu, and perform
some normal operations on it. These operations include
entering password for Windows authentication, enumer-
ating files and directories in console, using IE to visit
website and check email, using ftp to download files, and
some others. In these period, we build profiles for those
applications that are involved in taint graphs. Then we
install the above malware samples, and perform the same
operations. Then we use the sample policies in Figure 4
to check the taint graphs.

The experiment shows that the policies have success-
fully detected all malware samples.klog and uay
attempt to intercept the path that the data from hard-
ware passes through kernel and reaches the applica-
tion in user space, and thus violate Policy 1.uay,
IP sniffer, andICMP backdoor violate Policy 2,
because they access the incoming ICMP traffic. Note
that althoughuay does not use ICMP, but it has to
check the ICMP header to determine if it wants the
packet. IP sniffer also violates Policy 3, because
it has accessed incoming TCP traffic for IE and ftp, vi-
olating their TCP profiles. Vanquish violates Pol-
icy 3, because it accesses the keystrokes belonging to
other applications. We have observed that for those ap-
plications receiving keyboard input, their KBD profiles
are violated. GINA Spy and Password Logger
steal the password inWinlogon.exe, and thus vi-
olate the KBD profile ofWinlogn.exe. BHO Spy
steals the password in IE, violating the KBD profile of
IEXPLORE.exe. Vanquish and CFSD violate the
DISK profile of cmd.exe. When we enumerate files
and directories incmd.exe, they check the filesystem
meta data from disk, and tamper it to hide files and di-
rectories. In summary, we list the detection results in
Table 1.

5.1.3 False Positive Analysis

We also evaluated the false positive rate of our detec-
tion policies by running the detection system on a clean
system over an extended period of time while we run dif-
ferent applications. Our detection policies did not trigger
any false positives.

!KBD:0

!SYS:1

winlogon.exe!USR:2

!SYS:3 winlogon.exe!mscad.dll:7

lsass.exe!USR:4

!SYS:5

lsass.exe!USR:6

!SYS:8

!DISK:9 explorer.exe!USR:10

!SYS:11 explorer:unknown:12

!SYS:13

!NIC:14

Figure 5: Taint Graph for Analysis
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5.2 Malware Analysis

To evaluate the effectiveness of our malware analysis
using taint graphs, we setup the following attack sce-
nario. We installed GINA spy [14] to steal user’s Win-
dows password and store it into a file, and Back Orifice
2000 (bo2k) [4] as a backdoor to send the file to the re-
mote attacker. We tainted the keystroke input when typ-
ing password for Windows authentication. We kept the
system running for a while (about 1 hour). Then we be-
haved as a remote attacker to retrieve the file containing
password from another machine, using the bo2k client.
The taint graph recording the whole procedure is shown
in Figure 5.

We have several observations from the taint graph.
First, there are two untrusted modules:mscad.dll,
which resides in the processwinlogon.exe, and a
module from unknown source loaded into the process
explorer.exe. The first one is the module for GINA
spy, and the second is the code injected by bo2k to the
heap ofexplorer.exe.

Second, when we trace back and forward the taint
graph formscad.dll, we can see thatmscad.dll
obtained the password from winlogon and then stored it
into disk. In more detail, we actually know the sector
number containing the password. Therefore, using a disk
analyzing tool, we can eventually find out which file the
password is stored in.

Third, when we trace back and forward the taint
graph for “unknown” injected by bo2k, we can see
that “unknown” read the password cached in the kernel
buffer and then sent it out of network. Certainly, we can
analyze the packet header of the tainted outgoing packet
and obtain the destination IP address and port number.
Thus we can know where the remote attacker is.

Note that previous information-flow tracking methods
such as Backtracker [21] cannot provide such analysis
information because it was too coarse-grained (e.g., only
at process level).

5.3 Performance

We measure TaintQemu’s performance using a bench-
mark tool called Nbench [24]. Nbench measures perfor-
mance with respect to CPU, main memory and disk. For
CPU, it measures integer and floating point operations
speed (in MOP/s); for main memory, it measures the
throughputs of random and serial access (in MB/s); for
disk, it measures the read and write speeds (in MB/s). We
run Nbench in four configurations: native execution, full
virtualization, full emulation, and taint analysis mode.
Full virtualization refers to TaintQemu with support of
KQEMU, running most of target instructions directly on
the host system. Full emulation refers to TaintQemu with

KQEMU disabled, emulating all target instructions. The
functionality of data flow probing is not included in this
configuration. In taint analysis mode, the system emu-
lates all target instructions, propagates tainted data, and
generate taint graphs. The host system is a Dell work-
station with two 3.2 GHz Pentium 4 CPUs and 1GB of
RAM, running Windows XP Professional with Service
Pack 2. We allocate 256M of RAM for the guest system,
which also runs Windows XP with SP2.

Figure 6 shows the performance results. We normal-
ize the results using the performance of native execution
as baseline. The first bar gives the performance of full
virtualization, showing that its CPU integer and floating
point speed and serial memory access speed are compa-
rable with those of native execution. Due to the overhead
of emulating disk device, its disk read and write speeds
drop 10-17%. The memory random access speed drops
the most, probably because of the overhead of software
MMU (Memory Management Unit) implementation in
QEMU. The second bar shows the performance of full
emulation. Full emulation incurs 7 and 10 times slow-
down for integer and floating point operations respec-
tively, coinciding the result presented in [2]. Its disk read
and write speeds further drop a little, and its memory ac-
cess speeds (both random and serial) drop to 20% of the
native execution speeds.

The final bar gives the performance of taint analysis.
Understandably, due to the cost of taint tracking, taint
analysis suffers 30 times slowdown for CPU integer op-
erations, and 20 times slowdown for memory random
and serial accesses.

6 Discussion

Application Scenarios The current implementation of
whole-system fine-grained taint tracking incurs consider-
able execution overhead. Thus, we envision that our sys-
tem is used for off-line detection and analysis for now.
Several application scenarios are applicable. First, anti-
virus companies and analyzers can use it as an analysis
environment for evaluating and testing malware or un-
trusted code in general. Second, the end system runs as
usual most of time and its system image is loaded peri-
odically into our system to perform malware detection,
in a manner similar to periodical virus scanning. Third,
we can leverage the technique of virtual-machine logging
and replay [12]. The end system is loaded in virtual ma-
chine and runs in fully virtualized mode, with necessary
events being logged. At a later time, the virtual machine
switches to taint-tracking mode and replays the execution
for malware detection and analysis.

Some research has been done to explore more efficient
means for dynamic taint analysis. Ho et. al. proposedDe-
mand Emulation, in which a running system dynamically
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Figure 6: Speed Slowdown of TaintQemu

switches between virtualized and emulated execution,
and emulation is only used when tainted data is being
processed by CPU [16]. Exploring finer-grained hard-
ware protection provided by ECC may further improve
the performance greatly [29]. Therefore, with more effi-
cient implementation of whole-system fine-grained taint
tracking, our technique will be practical to be deployed
for online malware detection and analysis.

7 Related Work

Other malware detection approaches Signature
based malware detection has been in use for years to
scan files on disk and even memory for known signa-
tures. Although semantic-aware signature checking [10]
improves its resilience to polymorphic and metamorphic
variants, the inherent limitation of signature based ap-
proach is its incapability of detecting previously unseen
malware instances. Its usefulness is also limited by the
rootkits that hide files on disk and, as demonstrated in
Shadow Walker [7], may even hide malware footprints
in memory.

Behavior based malware detection identifies malicious
programs by observing their behaviors and system states
(i.e. detection points). By recognizing deviations from
“normal” system states and behaviors, behavior based
detection may identify entire classes of malware, in-
cluding previously unseen instances. There are a vari-
ety of detections that examine different detection points.
Strider GateKeeper [38] checks auto-start extensibility
points in the registry to determine surreptitious restart-
surviving behaviors. VICE [6] and System Virginity Ver-
ifier [32] search for user- and kernel-level hooks in IAT
(Imported Address Table), EAT (Exported Address Ta-
ble), SSDT (System Service Descriptor Table), IDT (In-
terrupt Descriptor Table), IRP major function table, etc.,
which are usually used by rootkits and the other malware.
Rootkit Revealer [30] and Blacklight [3] detect rootkits

by comparing two views of the system: the upper-level
view is derived from calling common APIs to enumerate
key system elements, such as files, processes, registry
keys, and so on, while the low-level view is obtained
from system states in the kernel or from hardware if ap-
plicable.

Behavior based detection can be defeated, either by
exploring stealthier methods to evade the known detec-
tion points, or by providing misleading information to
cheat detection tools. In addition, current detection tools
usually reside together with malicious programs, and
therefore expose to complete subversion. In contrast,
our system overcomes these three weaknesses. First,
it does not rely on detection points, and thus cannot
be easily evaded. Second, it detects malware based on
the hardware-level knowledge and makes very few as-
sumption at software level, and hence cannot be cheated.
Third, it is implemented completely outside of the victim
system, and so strongly protected from being subverted.

Other virtual machine based approaches Virtual
machines have been used to enhance security. Re-
searchers have used virtual machines to detect intru-
sions [13, 19], and analyze intrusions [12, 21]. These
approaches build security services within the virtual ma-
chine monitor, which is isolated from the system to
be monitored. This architecture prevents the intrusions
within the target system from disrupting the security ser-
vices in the virtual machine monitor. The same tech-
nique can also be exploited for malicious intent. VMBR
builds malicious functionalities within the virtual ma-
chine monitor and hides from the operating system run-
ning within a virtual machine [22], which calls for the
detection to be performed at an even lower level.

Virtual machine based malware detection is a promis-
ing approach, due to the isolation provided by the vir-
tual machine monitor. By directly observing hardware
state and events and using this information to extrapolate
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the software state in the target system, virtual machine
based detection can achieve the functionality comparable
to that of behavior based detection running in the target
system. However, its power of detection still relies on
the selection of detection points.

Our system is also based on virtual machine technique,
and thus malware within the virtual machine cannot dis-
rupt and hide from our detection. A distinct feature of
our system is that it explores a novel virtual machine
based architecture, in which the virtual machine monitor
can sometimes switch to emulated mode and enable fine-
grained (i.e. instruction-level) analysis and detection.

Other taint based approaches Dynamic taint analy-
sis has been applied to solve and analyze other security
related problems, such as worm detection and data life-
time analysis. Several approaches have been proposed to
detect Internet worms. Newsome et.al. implemented a
TaintCheck system by instrumenting Ring-3 instructions
to detect and analyze worms, and automatically generate
signatures [25]. Minos proposed a whole-system taint
tracking to perform Biba-like data integrity check of con-
trol flow to detect exploits at runtime [11]. These sys-
tems detect exploits by tracking the data from untrusted
sources such as the network being misused to alter the
control flow. Chow et. al. made use of whole-system em-
ulation with taint analysis to analyze how sensitive data
are handled in operation systems and large programs [9].
The major analysis was conducted in Linux, with source
code support of the kernel and the applications. Recently,
Portokalidis et. al. proposed a QEMU-based taint track-
ing system for worm detection similar to the previous
approaches [27]. Their work does not propagate taint to
disk and is only for detecting overflow attacks as previ-
ous approaches. Our system is independently developed
and provides a different machinery for malware detec-
tion. Note that malware detection and overflow attack
detection require completely different methods.

Our system is the first work to use dynamic taint analy-
sis for malware detection. Unlike [9], we cannot assume
the availability of source code for the operating system
and applications, since the majority of malware instances
work on Windows systems. In contrast to the above sys-
tems, which can only be used as honeypot or absolutely
for analysis purpose, due to the huge performance over-
head of taint analysis, our system is practical to run on
end systems by running in virtualized mode most of time
and only switching to emulated mode to perform detec-
tion tasks infrequently.

8 Conclusion

As malware is becoming increasingly sophisticated and
stealthy, existing techniques for malware detection and
analysis become ineffective. In this paper, we have pro-
posedwhole-system fine-grained taint analysisfor mal-
ware detection and analysis. We demonstrate that such
whole-system fine-grained taint analysis can capture the
intrinsic properties of many different classes of malware
and thus offer effective methods for automatic malware
detection and analysis. Our evaluation using a wide spec-
trum of real-world malware demonstrate that our system
is effective in detecting many different classes of mal-
ware including keyloggers, backdoor, etc., and offer in-
dispensable assistance to system administrators and ana-
lyzers for better understanding of the behavior and con-
sequences of malware.
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