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Abstract or bundled-ware containing spyware or adware. More

As malware is becoming increasingly sophisticated an

. ; . ors could contain code that performs undesired actions
stealthy, effective techniques for malware detection an

’ . X . ) . such as leaking users’ private data. For example, Google
analysis are imperative. Previous detection mechanis

. . . , esktop, a popular local file system search tool, has
are insufficient. Signature-based detection cannot dete%t P Pop y

| d watch-point based behavioral det een reported to send users’ private information back to
new maware, and watch-point based behavioral deteCe 05 servers [15]. In another example, SONY Me-

tion can be evad_ed by stealthier design. _MOSt PrevioUsia Player has been reported to send users’ listening be-
analysis mechanisms are too coarse-grained to captuge

I behavi d fail to add K llevel attack Havior such as which songs the user has listened to back
majware benaviorandtailto address kernet-levelattacksy, gony [35]. Thus, as users and computers cannot
We proposeavhole-system fine-grained taint analy&is

" e | detecti d vsi d build live in isolation from the rest of the Internet and for-
automatic maiware detection and analysis, and oul aeign code gets downloaded and installed unknowingly or

prototype ;:alle(é Tamt_(tgemu._:?,y tamtmgt(_jata_frro_rr: harOI'knowingly to the local system all the time, the users and
ware Inputs and monrtoring 1ts propagation, 1ain Qemucomputers are completely oblivious to what code is ac-

?ener?te taint grapths. Jh? taltnht grapt; represenils hovwﬁjally installed on the local system and whether they will
ormation propagates during the system execution. ave malicious or undesired behavior or consequences.

demonstrate that such whole-system fine-grained tair\PVhen a piece of code is installed and executed, how can
analysis can capture the intrinsic properties of many dif- '

ferent classes of malware and thus offer effective methy\{e detect W_hether ftwill h_ave_certain malic_ious or un_de_-
. ) . sired behavior such as violating user’s privacy? This is
ods for_automatlc mglware detection and analysis. Ou%m important open research question.
evaluation using a wide spectrum of real-world malware . . L . :
demonstrates that our system is effective in detectin% Tradltlona}l method_s are insufficient in addressmg this
many different classes of malware including keyloggers, roblem. First, previous approa}che_s on san(_jboxmg or
backdoor, etc., and offer indispensable assistance to syé‘-CCeSS control do_ _”Ot apply well in this scenario. For ex-
tem administrators and analyzers for better understand"P!e, system ut|I|ty’ programs such as Google Desk_top
ing of the behavior and consequences of malware. alsgeed to access user’s files and may need to com,mu.nlcate
used to automatically detect a wide spectrum of malware, ack to Google servers for updates, etc. Users’ privacy

by checking the violations from the normal patterns in 'S only violated when users’ private information is sent
taint graph back to Google. Thus, the traditional sandboxing or ac-

cess control model is too rigid for this scenario to be able
to detect the undesired behavior and at the same time al-
1 Introduction low Google Desktop to perform its alleged functions.
Second, previous malware detection mechanisms are
Malicious software (i.e., Malware) is becoming increas-insufficient. Previous malware detection mechanisms
ingly prevalent and sophisticated. They creep into usersinostly fall into two categories: signature-based detec-
computer systems in ever more creative ways: Theyion and watch-point based behavioral detection. The
could be mistakenly installed when a user clicks on an atfirst category, signature-based detection suffers from the
tachment containing a virus, or visits a malicious websitedrawback that it cannot detect new malware since it
which installs malicious software in the background, orneeds to know the signature first, and it can be defeated
unknowingly installed when the user installs a free-wareby polymorphic and metamorphic malware variants.

gurprisingly, even software provided by reputable ven-



The second category, watch-point based behaviorajers capture keystrokes belonging to other processes, and
detection monitors specific points in the computer syspacket sniffers monitor or intercept all incoming and out-
tem and detects malicious code based on certain heurigoing packets; (2) Access the information in an eccentric
tics. An example is Microsoft's Strider Gatekeeper [38], way, to circumvent security mechanisms enforced on the
which monitors auto-start extensibility points to deter- system. For example, to circumvent the firewall, a back-
mine surreptitious restart-surviving behavior. A main door may access incoming packets at a lower layer of the
drawback for this approach, however, is that it needsetwork stack. Thus, by monitoring taint tracking in a
to know what detection points should be watched andine-grained manner, we enable automatic detection and
what behavior at that detection point should be moni-analysis of a wide-spectrum of malware based on these
tored. Malware authors keep exploring innovative tech-insights.
niques to achieve their malicious intent and also conceal |n particular, we monitor system execution and en-
their presence without going through the previously iden-able taint tracking at the instruction level. The result
tified detection points, and thus render the existing detecfrom taint tracking forms aaint graph The taint graph
tion points useless. For example, early malware detecrepresents how information gets propagated. We then
tion monitors userland APIs and system calls to deteckhow that the taint graph can be used in three ways
malware behavior that go through these APIs and sysfor automatic malware detection and analysis. First, we
tem calls. To evade detection, more sophisticated malean build a policy engine to enforce invariants/properties
ware moves into the operating system kernel such agn the taint graph—taint flow violates these invari-
kernel rootkit. When detection also moves to the ker-ants/properties would indicate an attack. . Second, by
nel to identify malicious activities, such as detecting ker observing the taint graph over time, we can learn about
nel hooks [6] and kernel data object manipulation [31],normal patterns/profiles in the taint graph. These pro-
much stealthier malware design has recently been infiles can then be used for anomaly detection, thus we can
vented to circumvent the detection mechanisms [33]even detect attacks that we do not have specified policies
Its demonstration, a stealthy backdoor caltegepdoor for. Finally, the taint graph gives us the causal relation-
achieves the backdoor functionality by only modifying a ship which allows us to conduct diagnosis and analysis of
few DWORDs in NDIS data block, (which is supposed malware behavior. Given a detection point or a malicious
to be modified), and eventually evades all the existingaction, we can trace back to see how it happened, where
detection tools. Another recent study shows the viabil-the malware came from, and how it was installed, and we
ity of building malware completely out of the victim op- can also trace forward to see the subsequent actions that
erating system, leveraging the technique of virtual mathe malware has performed.
chines [22]. Thus, the history of the arms race between Note that even though information flow tracking has
the malware writers’ innovations and the watch-pointpeen proposed previously for intrusion analysis [21],
based behavioral detection mechanisms demonstrate thifese previous approaches such as Backtracker [21] suf-
we need a holistic approach to prevent the malware t@er from several drawbacks: first, they are at process
evade monitoring and once-for-all put such an arms racgeye| which is often too coarse grained for malware de-
to an end. tection and analysis; second, they do not apply to ker-

To address the above issues, we propose a new apel attacks such as rootkit because they monitor program
proach for automatic malware detection and analysisexecution through system calls and do not monitor op-
whole-system fine-grained taint tracking. By monitor- erating system behavior. By doing whole-system fine
ing the whole system (including the operating system)grained taint tracking, our method provides much higher
malware cannot evade our detection by avoiding previaccuracy than previous work and we can handle kernel
ously identified detection points as in the watch-pointattacks as well such as rootkit.
based behavioral detection methods. Moreover, by an- To examine this approach, we further design and im-
alyzing the common traits of malware, we identify a uni- plement a prototype called TaintQemu to analyze and de-
fied approach that enables the detection and analysis ¢éct a wide spectrum of malware in Windows, because
a wide spectrum of malware: fine-grained taint tracking.the majority of malware aims for Windows platforms.
One fundamental trait of malware lies in its data accessHence, the following discussion assumes Windows sys-
While benign software usually accesses the data of itsem, in particular, Windows 2000 and above versions,
own interest, malware is inclined to monitor, intercept, although the fundamental technique can be adapted to
and modify the data belonging to other programs andhe other operating systems. Through extensive exper-
even the operating system. Such malware may exhibitments, we demonstrate that taint graph based analysis
two types of anomalies in its data access and informaeorrectly characterizes malware behavior and also pro-
tion propagation pattern: (1) Access the information notvides unique insights, which cannot be obtained from the
supposed to be accessed. For instance, keystroke lograditional analysis approaches. By applying taint graph



based policies, we can successfully detect a wide spe@an easily understand the system behavior related to the
trum of malware. In performance evaluation, we observdainted data.
that fine-grained taint analysis suffers up to 30 times per- A PolicyDB contains policies that specify properties
formance overhead. Since TaintQemu is used for analwhich should be satisfied by taint graphs. Violations of
ysis and off-line detection, the performance overhead ishese policies will be detected by the Malware Detec-
not a crucial problem. tion Engine which detects the malicious behavior of a
malware. The policies in the PolicyDB can be manually
Contributions.  In summary, this paper makes the fol- specified by identifying intrinsic pr.operties of different
lowing contributions. We propose a novel approachdas.sfas of mglware,lor belautomaycally generated by the
Profiling Engine which builds profiles of normal execu-

for malware detection and analysis: whole-system fine-. . - X
tions during a training period.

grained taint tracking. We have designed and imple- Given an event of interest such as the detection of a

mented a system TaintQemu to demonstrate that our ap- . . . . .
. L : . “malicious behavior, the Malware Analysis Engine per-
proach provides a unified framework and is effective

against a wide spectrum of different malware. Our ap_forms backwards and forward reachability analysis to

. . . . g’dentify where the malware came from and how it was

proach has the following salient features: (1) it does no X

) stalled and the actions of the malware before and after
rely on signatures and thus can detect new attacks, ( 2 )
. . . S e detection step.
it prevents malware from evading detection by avoiding
previously identified watch points, (3) it resides com-
pletely out of the victim system, and thus resists being3 Design and Implementation of Whole-
disrupted by malware, and (4) it relies on hardware-level  gystem Fine-grained Taint Tracking
information and minimal software-level information, and
hence is resilient evasion attacks by providing mislead3 1 System Overview

ing information.
The whole-system taint analysis requires that a certain

_ kind of data from an I/O device be marked, and whole-
2 Overview system execution be monitored to find out what code re-
gions have accessed and propagated this data or the data

Whole-system fine-grained taint analysis is a novel apderived from it. Achieving this goal necessitates a whole-
proach for malware analysis and detection. Instead ogystem emulator.
performing analysis and detection within the victim sys-  Therefore, we design and implement our system, Tain-
tem, we run the victim system as a virtual machine ontQemu, based on QEMU [28, 2], a generic and open
top of this analysis and detection environment. This arsource processor emulator which achieves a good emu-
chitecture provides an excellent isolation so that analysi|ation speed by using dynamic translation. The dynamic
and detection will not be disrupted by the malware insidetranslation performs a runtime conversions of the target
the virtual machine. Figure 1 depicts our system archi-CPU instructions into the host instruction set, and the re-
tecture. sulting binary code is stored in a translation cache so that

The Taint-Tracking Engine monitors system executionit can be reused later. Hence, the emulation speed is im-
and tracks how tainted data propagates and generat@goved drastically, compared to the previous emulation
taint graphs. The taint graphs will then be used for pro-approaches (e.g. Bochs [5]).
filing, malware detection and analysis. For the case where the emulated CPU is the same

In the Taint-Tracking Engine, we selectively mark theto the host CPU, the QEMU Accelerator Module
data from the virtual devices, such as keyboard, networKKQEMU) is available to run most of the target applica-
interface, and disk, as tainted, and observe the taintetion code directly on the host processor to achieve near
data propagates in the system. During taint propaganative performance, as the other hardware-level virtual
tion, we can know which instruction access the taintedmachine monitors (e.g. Xen [1], and VMWare Worksta-
data in which register or memory location, and othertion and Server products) do. Currently, QEMU stati-
hardware-level states. With the knowledge of memorycally chooses to run in two modes: emulated mode (with
map from the victim system, we can find out which pro- KQEMU disabled), and virtualized mode (with KQEMU
cess and module an instruction comes from. Combinenabled). We have made a small modification on QEMU,
ing raw events with memory map, we can generate tainsuch that it can switch between these two modes at run-
graphs with different levels of granularity. time. This feature provides flexibility that QEMU can

A taint graph presents process and module level inforrun in virtualized mode for the best of performance, and
mation and the dependency and chronological relationswitch to emulated mode when performing analysis and
between nodes. Therefore, from a taint graph, analyzerdetection tasks.
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Figure 2: Architecture of TaintQemu

The architecture of TaintQemu is shown in Figure 2.3.3 Taint Sources

We will describe its components respectively in the re- ) ] ] )
mainder of this section. In the current design and implementation, we consider

to taint input from keyboard, network interface, and hard

disk. Although tainting a high-level abstract data object
3.2 Shadow Memory (e.g. the output of an function call, or a data structure

in a specific application or the OS kernel) is applicable,
We use a shadow memory to indicate the status of eace do not explore this area in this paper, which certainly
byte of physical memory and CPU’s general-purposedeserves investigation in future work.
registers. Each tainted byte is associated with a small Keystroke tainting simply taints bytes as they are
data structure where its data source and some other bodkad from the virtual keyboard. We only taint charac-
keeping information are stored. The shadow memory iger keys (such as letters and numbers), which are the in-
organized in a page-table-like structure to ensure that iterest of malicious programs like keyloggers and pass-
uses as little memory as possible in practice. word thieves. Moreover, since typing keyboard is a user

For simplicity, in the implementation, debug registers, interactive behavior, we let user to determine when to
control registers, SIMD(e.g. MMX and SSE) registers, tint character keystrokes. We define a hot-key (i.e.
and flags are not considered, and adding the necessafy-T+*CTRL+K), and before entering sensitive informa-
tracking for these registers would be quite straightfor-tion, such as password and credit card numbers, the
ward. user activates the keystroke tainting by pressing the hot-
Page swapping makes taint tracking more compli-KeYy- Pressing tkle hot-key again will de-activate the

cated, considering that tainted data could be swapped olfeystroke talntl_ng. We assignaunique id for the tamteo_l
to the disk and swapped in later. To accommodate paggeystroke_s during one activation. Therefore, ther_e will
swapping, we modify the virtual disk to store an on-disk be one taint graph generated for the keystrokes in one
data structure mapping the location of tainted data. |f 1TaintQemu does not forward this hot-key to the virtual maehso

datais r_e'read then the memory it is placed in is markeghaware in the virtual machine cannot evade the detectiarhbyking
appropriately. the hot-key.




activation. sions, a keystroke from the hardware is converted from
Tainting incoming network packets from the network scancode into virtual-key code, and then from a virtual-
card is slightly more complicated. We have differentkey code to unicode. These two conversion involve ta-
tainting strategies for ICMP, and TCP/UDP packets. Weble lookup. To handle this special case, we augment the
uniformly taint all ICMP packets, so that there is one propagation policy with the following rule: if any byte
taint graph for all ICMP packets. For a UDP or TCP of the index is tainted, then the result is tainted. How-
packet, we taint the whole packet, and derives its uniquever, accommodating table lookup may cause a great
id from its source and destination IP addresses and podeal of innocent data regions being tainted. We have ob-
numbers. So a taint graph is generated for one TCP corserved this phenomenon in our experiments. To retrain
nection or one UDP virtual connection. this “over-tainting” behavior, we associate a table-lopku
Tainting disk input is performed at the granularity of depth value with each tainted byte. The initial value is 0.
sector. We treat a sector as one unit and assign the sectdfthenever a tainted byte is derived from a table lookup,
number as unique id. As a result, a taint graph is generwe increase the table-lookup depth of the tainted index

ated for one sector. by one, and assign it to the destination tainted data. In
this way, we keep record of how many table lookup op-
3.4 Taint Propagation erations a tainted byte is derived from. By defining the

maximum of table-lookup depth a tainted byte can have,
After a data source is tainted, we need to track eaclwe limit the maximal number of table lookup operations,
instruction that manipulates data in order to determineand thus reduce false positives. We set the maximum of
whether the result is tainted. In QEMU, target CPU in- table-lookup depth as 2 in TaintQemu, and did not ob-
struction is split into a few micro operations, which fall serve noticeable false positives.
into three categories: data movement operations, arith-
metic operations, and those that do neither. We instrucontrol flow evasion The third situation is control
ment data movement operations and arithmetic operaiow evasion. By comparing a tainted input with a se-
tions. For data movement operations, the destination wilquence of clean data, the output data can be derived
be tainted if and only if the source is tainted. For arith-from the input from the comparison results, without be-
metic operations, the result will be tainted if and only if ing tainted. The following example illustrates this situa-
any byte of the operands is tainted. This is similar to thet!on-
taint tracking approaches_proposed recently [9, 16, 25].4r copy(char x)
There are a number of situations where the above ba{-
sic propagation policy fails to taint correct information,  char y=0;
which has also been discussed in [9]. for(char i=128; i>=0; i>>=1)

if(x>=i) y+=i, x-=i;

Constant function Some instructions or instruction _ "€turn y;
combinations always produce the same results. A quit

common example isXor eax, eax”in many IA-32 The above functiortopy copies a character to y
programs. After executing this instruction, the value ofyithout propagating the taint. Within a loop, the input
eax is always zero, regardless of its original value. If x js compared with a value in derived from a constant
the input of this kind of instructions is tainted, the output for 8 times, and the output finally obtains the value of
should not be tainted. However, the basic propagatiory with the knowledge of the eight comparison results.
policy will still taint the output. TaintQemu recognizes TaintQemu does not taint comparison flags and the out-
these special cases suchyasr eax, eax andsub  put of instructions that follow a control flow decision.
eax, eax and sets the result location to be untainted.Eyen if comparison flags are tainted, it is difficult, if not
Note that there can be more general cases of constafpossible, to correctly identify the output of which in-
functions where a sequence of instructions computes 8tryctions should be tainted, given the fact that code opti-
constance function. We do not handle these more genmjzation techniques may reorder the instructions and put
eral cases. However, such cases are fairly rare. irrelevant instructions after branches.

This situation is fairly rare in regular code, but does
Table lookup The second situation is table lookup. exist in keystroke propagation in Windows 2000 and
Sometimes a tainted value is used as index to read an eabove versions. In our experiments on Windows XP,
try in a non-tainted memory region. The basic propagathe unicode characters derived from keystrokes are not
tion policy will check the non-tainted memory region and tainted as expected. After extensive kernel code trac-
treat the output as non-tainted. This situation arises rouing under SoftICE environment with Windows XP Ser-
tinely for keystrokes. In Windows 2000 and above ver-vice Pack 2 retail symbols, we have identified that



taint tracking stops at keystroke unicode conversion in  Thus we need to maintain a virtual memory map, with
an internal function_xxxI nt er nal ToUni code in  the knowledge of what virtual memory location of which
wi n32k. sys. Chow et al. faced the same obsta- process each module is loaded into. Note that while a
cle in their implementation of TaintBochs [9], but did kernel module once loaded is shared by all processes,
not have a solution. The translation of scancode intca user module is loaded into only one process memory
unicode involves a loop, illustrating such a control- space. Hence, this memory map consists of one global
flow evasion. We workaround this problem by patch-module list for kernel modules and a number of user
ing an instruction in another internal kernel function module lists for all running processes. Maintaining this
XxxTransl at eMessage inwi n32k. sys. Thisin-  memory map requires the information from the guest op-
struction will write a translated unicode character to itserating system.
destination register EAX. We instrument this instruction To obtain necessary information, we have im-
by re-tainting EAX when the corresponding scancode isplemented a kernel module calletModule Noti-
tainted. fier, and insert it into the guest system, to push

Note that malicious code cannot exploit the controldown the updated memory map information to
flow evasion to evade detection, because it has to accesise underneath TaintQemu. Module Notifier ob-
the tainted data in the first place to launch the controkains the information by calling two kernel APIs
flow evasion, and such an access will be caught by ouPs Set Cr eat ePr ocessNot i f yRout i ne and
detection. PsSet Loadl nageNot i f yRout i ne to register two

callback functions. The first callback function tells
) _ ) which process is being created or deleted. The second

Propagating to_ /O devices T_alnts may also Propa-  callback function is called whenever a new module
gate to I/O devices, such as disk and network interfaces |,5ded, with the information which part of virtual
Propagating to disk may r_esult fro.m atainted page bgingnemory of which process it is loaded in. In addition,
SW"?‘pped outto_the_pageflle, (_)rtamted data being WHtteR1odule Notifier obtains the value of CR3 for each
to files. We malntaln an on-disk data_structure mapp'ngprocess. As CR3 contains the physical address of
the Iocatl_or_w of tamte_d qlata. If data is re-_read then thepage table of current process, CR3 is unique for each
memory it is placed in is marked appropriately. When@rocess. All the above information is submitted to the

generat?ng taintgraph;, we are only interested in taint_e nderneath TaintQemu through a predefined 1/O port.
data being written to files, because tainted pages belngy receiving the memory map information from the

swa_pp_ed O_Ut is anormal s_yste_m behavior. Th_us, we neeéiuest system, TaintQemu can reconstruct a map of all
to distinguish these two situations. In currentimplemen-. /4 jes currently loaded into the guest system. Then
tation, we configure the guest system to use page file oy ,q, observing an instruction is accessing tainted data,

a separate virtual disk to facilitate distinguishing theseWe can search the map with CS, EIP, and CR3, and find
two situations. When tainted data is written to a file, We it which module this instruction resides in.

can tell from the sector number that while file is being . . .
written to, by using disk analysis tools. We rely on the_followmg security mechanlsms to guar-
. . antee the integrity of modules loaded into memory. In

_Talnts may propagate to ne_twork mterfac_e, Whenmodern operating systems, file integrity checker is com-
tainted da_ta is sent qut. In the \(lrtugl network mterface,monIy available as a security feature, such as Win-
we check if an outgoing packet is tainted. dows File Protection (WFP) [39] for Windows and Trip-
wire [20] for UNIX family. This feature assures the in-
tegrity of critical system files. After the module is loaded
into memory, the virtual machine monitor can further
When observing that an instruction is accessing tainte@revent this module from being tampered, by leveraging
data, we need to know where this instruction comes fromthe virtual machine introspection technique [13].
The majority of instructions come from binary files on  The virtual memory map is an essential component in
the disk, each of which is mapped into a code regionour system, and the only one obtained from the target
in the memory. Such a code region is usually calledsystem. Therefore, we have to make sure the authentic-
module in Windows and UNIX-like operating systems. ity of the memory map information. To disrupt our de-
In particular, device drivers with the extensionfs,  tection, a malicious program may inject fake information
shared libraries with the extensiondaif| , and executa- to the predefined I/O port. In order to ensure the authen-
bles with the extension @fx e, are modules once loaded ticity of the messages from the target system, we check
into memory space. In unusual situations, instructionghe program counters of the instructions, and only allow
may also be dynamically generated and executed on thénose from Module Notifier to send information to the
heap. predefined I/O port.

3.5 Code Origin Resolution



4 Taint-Graph Based Detection and Anal- 4.2 Taint-Graph Based Policy for Malware
ysis Detection

Given a taint graph, we can define various security prop-
4.1 Taint Graph erties or predicates on the graph such that the violation
of the properties or predicates will indicate a malicious

) ) ) _ or suspicious behavior. We call these security properties
Taint propagation forms dependenmes among InStI’UCand predicateﬁaint-graph based policywhich will be

tions and hardware inputs and outputs (e.9., MeMOryyseq for malware detection. The taint-graph based policy
keyboard input, network interface input/output, disk). can pe specified in different logical forms. For example,
For exa_lmple, |_f mstructlon_ B read_s a tainted data w_rlt—it can be a path property, i.e., a predicate over all paths
ten by instruction A, then instruction B depends on in-jn the graph. It can also be a logical form over different

struction A. Thus, the chain of instructions that oper-taint-graphs which enables us to correlate different+aint
ated on and propagated tainted data form a graph, wheigaphs for more sophisticated attacks and detection.

the nodes represent the instructions and hardware inputs 1,4 taint-graph based policy is the heart of the mal-

and outputs, and an edge between two nodes indicate 3 e detection using taint tracking. Given the policy, the
immediate taint propagation relationship. We call this yetection is simply to evaluate the predicates to check for
graph thetaint graph The taint graph contains all the 5y yiolations. Once we detect a malicious behavior, we

information about how taint propagates during the ex-cap, then perform further analysis using the taint graph as
ecution which provides a foundation for us to perform yascribed in section 4.3.

detection, profiling, and analysis. There are two ways to generate the policy. First, by an-

However, such a fine-grained taint graph is oftenalyzing the intrinsic properties of malware, we can man-
enormous—a short-duration execution could result in aually specify policies that will capture different classes
taint graph of gigabyte size. Thus, we provide differentfor malware such as keyloggers, back-doors, password
options to reduce the taint graph by abstracting away certhieves, etc. Second, by analyzing the common proper-
tain detailed information and representing the taint grapries of normal taint graph (i.e., taint graphs that do not
at different levels of granularity. For example, instead ofcontain malicious behavior execution), we can build pro-
keeping information about each instruction propagatediles of normal behavior of taint graphs for different ap-
taint, we simply keep the information about the mod-plications, and use the deviation from the profile to detect
ule that the instruction belongs to (including the processnalware. We provide more details for these two types of
name and the module name) and collapse consecutiveolicy generation below.
nodes with the same process and module name. In this
case, the reduced taint graph represents the dependencigsjically Defining Policies Different classes of mal-
among different modules (instead of instructions) which,yare have different intrinsic properties or invariants
often prowdes sufficient Ieyel of granularity for malware | hich we can leverage to specify policies for accurate
detection and defense. Figure 3 demonstrates a smalgtection. We give a few examples here to illustrate how
part of a taint graph at the module level. However, a taintye gpecify policies for accurate detection of different
graph at the module level can still be very large, becausg|asses of malware. In Section 5, we demonstrate with
there can be many system kernel and user modules andy majware samples that these policies are truly effec-
they could appear repeatedly in the graph. tive in detecting a variety of different malware and cause

As the focus of our analysis is the untrusted c8de Nno known false positives.
we can simply treat all trusted system kernel modules as First, incoming TCP/UDP traffic or keyboard input is
one pseudo module “SYS”, and all trusted system useflways consumed by user-level applications. The data
modules as another pseudo module “USR”. This stegrom hardware goes through the OS kernel and reaches
greatly reduces the complexity of the taint graph everthe application directly. Thus, all taint graphs with the
further, without losing the dependency between the unrootas TCP or UDP or KBD should always follow such a
trusted code and system code. We demonstrate the effepattern. Any violations are highly suspicious. For exam-
tiveness of this strategy using an example of incomingple, kernel-mode keyloggers tend to intercept keystrokes
FTP traffic, shown in Figure 3. in the kernel, and break this pattern. Similarly, kernel-

mode packet sniffers and backdoors intercept incoming
network traffic, and break this pattern.

2By untrusted code, we generally mean the code that needs to be Second, ICMP is designed for network testing and di-

investigated, which can be the programs explicitly inetilior those ~ @gNOSIs purpose, and Usua||Y_0n|y the opera’Fion system
surreptitiously penetrating the system and trusted testing tools (e.gi ng. exe) use it. Un-
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Figure 3:Taint Graph Compression. The original graph contains 1624 nodes, and (a) only shogvfi$t 30 nodes.
After compression, the reduced graph only contains 9 nathesyn in (b).

trusted code that accesses incoming ICMP traffic is ofterbly the dependency and chronological relations between
suspicious. Most of packet sniffers tend to capture althem. Currently, we only consider the basic profile that
traffic, including ICMP packets, and thus will access it. includes only a list of modules and hardware nodes. For
Some stealth backdoors, such as SAdoor [34], uay [36]example, for an application, we can build a profile to see
and deepdoor [33], achieves stealthiness by sniffing thevhich modules normally would access keyboard input
incoming traffic, and thus also access it. ICMP basedor the application. We can then use this profile to detect
backdoor is another kind of stealth backdoor that usesiser-level keylogger when the keylogger (the untrusted
ICMP messages as a vehicle to carry backdoor commueode) is trying to access keyboard inputs for this applica-
nication, and therefore will access ICMP traffic. Thus,tion. For a detailed example, see Section 5.
by simply stating a policy that untrusted code should not
be on a path from an ICMP input, we can detect ICMP-
based backdoor, packet sniffers, and sniffing-based backt.3  Taint-Graph Based Analysis
door.

Third, we consider malware that tries to steal users’A f@int graph records data source, a list of modules and
sensitive file and send it over the network. In this casehardware nodes that access the data, and the dependency
users’ sensitive file will be tainted inputs, the policy will @nd chronological order between nodes. Thus, we can di-

simply be specified as untrusted code should not be on 8Jn0se and analyze the system behavior via taint graphs.
path from a sensitive file to the network in a taint graph.Given any event of interest such as a node causing the
In Section 5, we will demonstrate how we use such a poldetection of a malicious behavior (called the detection
icy to detect when a malware tried to send out a passwordt€P), We can perform backwards and forwards reacha-
file. bility analysis on the taint graph. The backwards reacha-
bility analysis can lead us to where the malware has been
downloaded and installed and reveal what other actions
Automatically Generating Policies through Profiling  have been performed by the malware before the detection
To detect new classes of malware and detect applicatiorstep; the forward reachability analysis can tell us what
specific attacks, we also enable the approach of anomalgther actions and consequences has this malicious be-
detection on taint graph. For an application, throughhavior led to. Such analysis capability can be instrumen-
a training period with no malware installed, we collect tal for system administrators and analyzers to understand
taint graphs and build profiles which holds across differ-the behavior and consequences of malware. For a simple
ent taint graphs. These profiles can then be used to dexample, we can see from Figure 3(b) that a TCP con-
tect malicious code when untrusted code deviates fronmection is received byt p. exe program and the data
the profiles. A profile can include a lists of modules andin that connection is stored into disk, and some infor-
hardware nodes that access the tainted data, and probaation is sent t@sr ss. exe for console display. This



graph correctly reflects the real behaviorfdfp. exe keylogger implemented as a filter driver. It only func-
when handling incoming TCP traffic. In Section 5.2, we tions properly for Windows NT, and we have modified
will further examine the system behavior when malwareit to enable it run properly in Windows 2000 and XP.
is involved in the taint graph. Vanqui sh [37] is a user-mode keylogger, which is au-
tomatically loaded into each process that is receiving

5 Evaluation keyboard input.

In this section we present an experimental evaluation of@ssword thievessteal passwords and potentially other

our TaintQemu system. Our evaluation consists of thre§€NSitive information, which are usually derived from
parts. First, we test the effectiveness of taint graph baselfeyPoard input. G NA Spy [14] replaces Win-
detection against some common malware instances. SeBoWs Msgi na. di'1 with a maliciousmscad. di 1,
ond, we evaluate the effectiveness of taint graph basefyich steals Windows username and password in
analysis. The third part evaluates the performance overV Nl 0gon. exe. BHO Spy is a synthetic malicious

head. Note that since TaintQemu is used for analysis anBHO (i-€ Browser Helper Object) written by one of the
off-line detection for now, the performance is not a IorOb_authors to steal passwords that the user enters into the
’ web documents within Internet ExplorePasswor d

lem.
Logger [26] is a standalone application running in the
. background. It scans for password fieRla all GUI
5.1 Malware Detection applications, and saves the content into a file.
int Policyl(vector<Node> &graph) Packet sniffers eavesdrop incoming and possibly out-
i f(graph[0].mod in {"UDP", "TCP", "KBD'}){ going network tra_ffic to capture sensitive informat!on.
i f(graph[1].mod! ="SYS") return error; They can reside in both user and kernel space, inter-
i f(graph[2].nod! ="USR') return error; posing every possible point in the network stackP
ieturn ok: sni f f er [18] demonstrates a driverless userland im-

} plementation of IP sniffer using raw socket.
int Policy2(vector<Node> &graph)

_ . ) Stealth backdoors attempt to communicate with re-
'fggraph[o.] smod=="ICVT){ mote attackers, but at the same time evade detection
or(int i=1; i<graph.size(); i++) . . .
if(graph[i].mod not in {"SYS', "USR'}) by the host security mechanlsm_s such as personal fire-

return error; walls. To achieve the stealthiness, some backdoors
like Back Orifice [4] inject code into trusted ap-

) return ok; plications that are allowed to access network by the
int Policy3(vector<Node> &gr aph) system policy. Some others avoid opening ports.
{ ICMP backdoors utilize non-port-based ICMP proto-
for(int i=3; i<graph.size(); i++) { col as a vehicle to convey backdoor communication.

lfég(r)?iplh([al(]g.rggﬂ[gft p'rgc graph[ 0] . mod)) | CMP_backdoor [17] demonstrates such an ICMP

return error: ' ' ' backdoor. UAY backdoor [36] is a portless kernel-

} mode backdoor. It hooks on the network stack and inter-
return ok; cepts all incoming TCP packets with a specified destina-

) tion port number (the default port is 9929). After receiv-
ing a command from a remote attacker, it executes the

Figure 4: Sample Policies command in the context of a system kernel thread.

Rootkits intend to conceal the presence of malicious ac-
5.1.1 Sample Malware Instances tivities, such as files, registry entries, processes, mod-

) ) ) ules, and other system states, which helps an intruder
To extensively evaluate the effectiveness of TaintQemuy, aintain access to a system without the user's knowl-

we choose to run a wide spectrum of malware, incIud—edge_ CFSD [8] is a kernel-mode rootkit that hides
ing keyloggers, password thieves, packet sniffers, $tealt girectories and files. Beside a userland keylogger,
backdoor, and rootkits, as described below. Vanqui sh [37] is also a userland rootkit that hides di-

Keyloggers capture keystrokes and attempt to extract©Ctornes, files, and registry entries.

sensitive information from them. They can reside in 3A password field is an input window that characters in it are
both user and kernel spadd. og [23] is a kernel-mode  masked.




Name Description Detected Module POL1 | POL2 | POL3
klog kernel-mode keylogger kl og. sys O

Vanquish keylogger and userland rootkit vanqui sh. dl | ad
GINA Spy Windows account password thief nscad. dl | ad
BHO Spy BHO stealing password in IE BHGCspy. dl | ad
Password logger password thief Passwor dLogger . exe ad
uay kernel-mode backdoor uay. sys O ad
ICMP_backdoor | backdoor communicating via ICMP nt krnl . exe ad

IP sniffer userland packet sniffer using raw socket pt ool s. exe ad ad
CFSD kernel-mode rootkit cfsd. sys ad

Table 1: Detection results against sample malware inssance
5.1.2 Detection Results 5.1.3 False Positive Analysis

We also evaluated the false positive rate of our detec-
] ) ] tion policies by running the detection system on a clean
We first run a clean system with Window XP Profes- gystem over an extended period of time while we run dif-

sional SP2 installed on top of TaintQemu, and perforMerent applications. Our detection policies did not trigge
some normal operations on it. These operations mcludgny false positives.

entering password for Windows authentication, enumer-
ating files and directories in console, using IE to visit
website and check email, using ftp to download files, and
some others. In these period, we build profiles for those
applications that are involved in taint graphs. Then we
install the above malware samples, and perform the same
operations. Then we use the sample policies in Figure 4
to check the taint graphs.

The experiment shows that the policies have success-
fully detected all malware sampleskl og and uay
attempt to intercept the path that the data from hard-
ware passes through kernel and reaches the applica-
tion in user space, and thus violate Policy liay,
| P sniffer,andl CMP_backdoor violate Policy 2,
because they access the incoming ICMP traffic. Note -
that althoughuay does not use ICMP, but it has to
check the ICMP header to determine if it wants the
packet. | P sni f f er also violates Policy 3, because
it has accessed incoming TCP traffic for IE and ftp, vi-
olating their TCP profiles. Vanqui sh violates Pol-
icy 3, because it accesses the keystrokes belonging to
other applications. We have observed that for those ap
plications receiving keyboard input, their KBD profiles
are violated. G NA Spy and Password Logger
steal the password W nl ogon. exe, and thus vi-
olate the KBD profile ofW nl ogn. exe. BHO Spy
steals the password in IE, violating the KBD profile of
| EXPLORE. exe. Vanqui sh and CFSD violate the
DISK profile of cnd. exe. When we enumerate files
and directories irtnd. exe, they check the filesystem

explorer.exe!lUSR:1Q

Isass.exe!lUSR:6,

meta data from disk, and tamper it to hide files and di- Figure 5: Taint Graph for Analysis
rectories. In summary, we list the detection results in
Table 1.
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5.2 Malware Analysis KQEMU disabled, emulating all target instructions. The
) _functionality of data flow probing is not included in this

To evaluate the effectiveness of our malware analysigonfiguration. In taint analysis mode, the system emu-
using taint graphs, we setup the following att"f‘Ck SC€1ates all target instructions, propagates tainted dat, an
nario. We installed GINA spy [14] to steal user's Win- generate taint graphs. The host system is a Dell work-
dows password and store it into a file, and Back Orificegiation with two 3.2 GHz Pentium 4 CPUs and 1GB of
2000 (bo2k) [4] as a backdoor to send the file to the regan unning Windows XP Professional with Service
mote attacker. We tainted the keystroke input when typp,ck 2. We allocate 256M of RAM for the guest system,
ing password for Windows authentication. We kept the\,hich also runs Windows XP with SP2.

system running for a while (about 1 hour). Then we be-  igre 6 shows the performance results. We normal-
haved as a remote attacker to retrieve the file containing,q the results using the performance of native execution
password from another machine, using the bo2k clientyg paseline. The first bar gives the performance of full

The taint graph recording the whole procedure is ShowR;ir5jization, showing that its CPU integer and floating

in Figure 5. _ . point speed and serial memory access speed are compa-
‘We have several observations from the taint graphrapje with those of native execution. Due to the overhead
First, there are two untrusted modulesscad. dl I, of emulating disk device, its disk read and write speeds

which resides in the procesd nl ogon. exe, and @  grop 10-17%. The memory random access speed drops
module from unknown source loaded into the processhe most, probably because of the overhead of software
spy, and the second is the code injected by bo2k to thyemu. The second bar shows the performance of full

heap ofexpl orer. exe. ~ emulation. Full emulation incurs 7 and 10 times slow-
Second, when we trace back and forward the tainjown for integer and floating point operations respec-
graph formscad. dl | , we can see thatscad. dl | tjvely, coinciding the result presented in [2]. Its diskdea

obtained the password from winlogon and then stored iind write speeds further drop a little, and its memory ac-

into disk. In more detail, we actually know the sector cess Speeds (both random and Seria|) drop to 20% of the

number containing the password. Therefore, using a diskative execution speeds.

analyzing tool, we can eventually find out which file the  The final bar gives the performance of taint analysis.

password is stored in. Understandably, due to the cost of taint tracking, taint
Third, when we trace back and forward the taint analysis suffers 30 times slowdown for CPU integer op-

graph for ‘unknown” injected by bo2k, we can see erations, and 20 times slowdown for memory random
that “unknown” read the password cached in the kerneland serial accesses.

buffer and then sent it out of network. Certainly, we can
analyze the packet header of the tainted outgoing pack
and obtain the destination IP address and port number.

Thus we can know where the remote attacker is. o . . .
. . . . Application Scenarios The current implementation of
Note that previous information-flow tracking methods

whole-system fine-grained taint tracking incurs consider-

such as Backtracker [21] cannot provide such analys'?;1b|e execution overhead. Thus, we envision that our sys-

information because it was too coarse-grained (e.qg., 0n|¥em is used for off-line detection and analysis for now.
at process level).

Several application scenarios are applicable. First; anti
virus companies and analyzers can use it as an analysis
5.3 Performance environment for evaluating and testing malware or un-
trusted code in general. Second, the end system runs as
We measure TaintQemu’s performance using a benchisual most of time and its system image is loaded peri-
mark tool called Nbench [24]. Nbench measures perforodically into our system to perform malware detection,
mance with respect to CPU, main memory and disk. Foin a manner similar to periodical virus scanning. Third,
CPU, it measures integer and floating point operationsve can leverage the technique of virtual-machine logging
speed (in MOP/s); for main memory, it measures theand replay [12]. The end system is loaded in virtual ma-
throughputs of random and serial access (in MB/s); forchine and runs in fully virtualized mode, with necessary
disk, it measures the read and write speeds (in MB/s). Wevents being logged. At a later time, the virtual machine
run Nbench in four configurations: native execution, full switches to taint-tracking mode and replays the execution
virtualization, full emulation, and taint analysis mode. for malware detection and analysis.
Full virtualization refers to TaintQemu with support of  Some research has been done to explore more efficient
KQEMU, running most of target instructions directly on means for dynamic taint analysis. Ho et. al. propd3ed
the host system. Full emulation refers to TaintQemu withmand Emulationin which a running system dynamically

Discussion
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Figure 6: Speed Slowdown of TaintQemu

switches between virtualized and emulated executionhy comparing two views of the system: the upper-level
and emulation is only used when tainted data is beingiew is derived from calling common APIs to enumerate
processed by CPU [16]. Exploring finer-grained hard-key system elements, such as files, processes, registry
ware protection provided by ECC may further improve keys, and so on, while the low-level view is obtained
the performance greatly [29]. Therefore, with more effi- from system states in the kernel or from hardware if ap-
cient implementation of whole-system fine-grained taintplicable.
tracking, our technique will be practical to be deployed Behavior based detection can be defeated, either by
for online malware detection and analysis. exploring stealthier methods to evade the known detec-
tion points, or by providing misleading information to
cheat detection tools. In addition, current detectiongool
usually reside together with malicious programs, and
Other malware detection approaches Signature therefore expose to complete subversion. In contra_st,
our system overcomes these three weaknesses. First,

based malware detection has been in use for years tl? does not rely on detection points, and thus cannot

scan files on disk and even memory for known.S|gna- e easily evaded. Second, it detects malware based on
tures. Although semantic-aware signature checking [10 he hardware-level knowledge and makes very few as-

IMproves Its r(_eS|I|ence t_o polymorph|_c and met""morph'csumption at software level, and hence cannot be cheated.
variants, the inherent limitation of signature based ap-

proach is its incapability of detecting previously unseenThlrd, itis implemented completely outside of the victim

. : L system, and so strongly protected from being subverted.
malware instances. Its usefulness is also limited by they gyp 9

rootkits that hide files on disk and, as demonstrated in
Shadow Walker [7], may even hide malware footprintsOther virtual machine based approaches Virtual
in memory. machines have been used to enhance security. Re-
Behavior based malware detection identifies malicioussearchers have used virtual machines to detect intru-
programs by observing their behaviors and system stategions [13, 19], and analyze intrusions [12, 21]. These
(i.e. detection points). By recognizing deviations from approaches build security services within the virtual ma-
“normal” system states and behaviors, behavior basedhine monitor, which is isolated from the system to
detection may identify entire classes of malware, in-be monitored. This architecture prevents the intrusions
cluding previously unseen instances. There are a variwithin the target system from disrupting the security ser-
ety of detections that examine different detection pointsvices in the virtual machine monitor. The same tech-
Strider GateKeeper [38] checks auto-start extensibilitynique can also be exploited for malicious intent. VMBR
points in the registry to determine surreptitious restart-builds malicious functionalities within the virtual ma-
surviving behaviors. VICE [6] and System Virginity Ver- chine monitor and hides from the operating system run-
ifier [32] search for user- and kernel-level hooks in IAT ning within a virtual machine [22], which calls for the
(Imported Address Table), EAT (Exported Address Ta-detection to be performed at an even lower level.
ble), SSDT (System Service Descriptor Table), IDT (In-  Virtual machine based malware detection is a promis-
terrupt Descriptor Table), IRP major function table, etc.,ing approach, due to the isolation provided by the vir-
which are usually used by rootkits and the other malwaretual machine monitor. By directly observing hardware
Rootkit Revealer [30] and Blacklight [3] detect rootkits state and events and using this information to extrapolate

7 Related Work
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the software state in the target system, virtual machind Conclusion
based detection can achieve the functionality comparable _ o _ o
to that of behavior based detection running in the targeA\s malware is becoming increasingly sophisticated and

system. However, its power of detection still relies onstealthy, existing techniques for malware detection and
the selection of detection points. analysis become ineffective. In this paper, we have pro-

posedwhole-system fine-grained taint analyfis mal-

Our system is also based on virtual machine techniqueyare detection and analysis. We demonstrate that such
and thus malware within the virtual machine cannot diS-Wh0|e_system ﬁne_grained taint ana|ysis can capture the
rupt and hide from our detection. A distinct feature of jntrinsic properties of many different classes of malware
our system is that it explores a novel virtual machineand thus offer effective methods for automatic malware
based arChiteCtUre, in which the virtual machine monitordetection and ana|ysis_ Our evaluation using awide spec-
can sometimes switch to emulated mode and enable fingrum of real-world malware demonstrate that our system
grained (|e instruction-level) analysis and detection. is effective in detecting many different classes of mal-

ware including keyloggers, backdoor, etc., and offer in-
dispensable assistance to system administrators and ana-
lyzers for better understanding of the behavior and con-
sequences of malware.
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