Vulnerability-Specific Execution Filtering
for Exploit Prevention on Commodity Software

James Newsome David Brumley Dawn Song
Carnegie Mellon University = Carnegie Mellon University Carnegie Mellon University
jnewsome@ece.cmu.edu dbrumley@cs.cmu.edu dawnsong@cmu.edu
Abstract be turned into worms which compromise hundreds of thou-

sands of machines within only a few minutes [22, 35]. Thus,
after a vulnerability is discovered it is important to quick
Exploits for new vulnerabilities, especially when incor- develop effective mechanisms to protect vulnerable hasts s
porated within a fast spreading worm, can compromise that (1) they will not be compromised by exploits of the vul-
nearly all vulnerable hosts within a short amount of time. nerability, and (2) provide service without disruption.
This problem demonstrates the need for fast defenses which The speed at which new vulnerabilities are discovered
can react to a new vulnerability quickly. In addition, areal and exploits created necessitates new defenses that meet
istic defense system should (a) not require source code sinc several goals simultaneously: @#ast defense development
in practice most vulnerable systems do not have source codeand deploymentthere is often very little reaction time, es-
access nor is there adequate time to involve the softwarepecially when the exploit comes in the form of a fast prop-
vendor, (b) be accurate, i.e., have a negligible false pasit agating worm. Thus, we need to be able to develop and
rate and low false negative rate, and (c) be efficient, i.e., deploy defense mechanisms extremely quickly after the de-
add little overhead to normal program execution. tection of a vulnerability. (2)No requirement for source
We propose vulnerability-specific execution-based filter- code many vulnerable programs are commodity software
ing (VSEF) — a new approach for automatic defense which for which the source code is proprietary. To respond quickly
achieves a lower error rate and wider applicability than in- to new vulnerabilities, we need to be able to develop a de-
put filters and has better performance than full execution fense mechanism without access to source code, so we do
monitoring. VSEF is amxecution-based filtewhich filters not rely on the cooperation of the software vendor.H&)h
out attacks on a specific vulnerability based on the vulnera- accuracy and effectiveneshe defense mechanism should
ble program’s execution trace. We present VSEF, along with protect against the vulnerability and should not have any un
a system for automatically creating VSEF filters and a hard- desirable side effect on normal execution. It should have a
ened program without access to source code. In our system]ow false positive rate (not blocking legitimate requeats)
the time it takes to create the filter and generate the hard- a low false negative rate (even effective against polymiarph
ened program is negligible. The overhead of the hardenedattacks). (4)-.ow performance overheathe defense mech-
program is only a few percent in most cases. The false pos-anism should have low performance overhead, so a vulnera-
itive rate is zero in most cases, and the hardened programble host deploying the defense mechanism can still provide
is resilient against polymorphic variants of exploits oeth critical services with little performance degradation.
same vulnerability. VSEF therefore achieves the required Many defense mechanisms have been proposed to pro-
performance, accuracy, and response speed requirements teect a vulnerable host after a vulnerability has been discov
defend against current fast-spreading exploits. ered. Previous work has various drawbacks and do not sat-
isfy all the above requirements. One popular approach is to
automatically generate network-badagut filtersto filter
1. Introduction out known exploits [16, 34, 18, 27, 26]. However, the accu-
racy and effectiveness of the network-based input filtering
The number of new vulnerabilities reported each year approach is fundamentally limited to syntactic propenties
continues to grow. According to CERT/CC, in 1995 171 the input string and cannot take into account application-
new vulnerabilities were reported, while less than a decadespecific semantic and context information. In particular,
later in 2004 over 3700 new vulnerabilities were discov- there may be no syntax-based classifier to correctly distin-
ered [9]. A new exploit for a single vulnerability can readil guish between malicious and innocuous traffic for certain

applications or vulnerabilities due to polymorphic attsick program. The hardened program introduces very little over-
and the lack of context information in network-based input head and for normal requests performs just as the original
filtering can have high false positive rate for certain aggpli ~ program. On the other hand, the hardened program detects
tions. Input filters also have difficulty recognizing seman- and filters out attacks against the same vulnerability. Thus
tically equivalent inputs, such as alternate URL encodings VSEF protects vulnerable hosts from attacks and allow the
which leads to false negatives. In the extreme case where awulnerable hosts to continue providing critical services.

input filter is used on an encrypted protocol, it must some-
how be supplied with the decryption key, which is awkward
and application-specific. Costa et. al. propose autonitica
generatechost-basednput filters [11], which has greater
accuracy than network-based input filters, and can coyrectl
recognize some semantically equivalent inputs. Howeve
the approach still suffers difficulty when the correct cikss
cation rule is complex and needs program state information
or when input is encrypted. Therefore the input filtering ap-
proach is not a complete solution.

On the other hand, various host-based approaches have ® Our VSEF is an extremely fast defense. In general, it

Contributions. The central contribution of this paper is a
new approach for automatic defense against known vulnera-
bilities, called vulnerability-specific execution-baddtbr-

ing. Using the execution trace of an exploit of a vulner-
ability, our VSEF automatically generates a hardened pro-
r’gram which can defend against further (polymorphic) ex-
ploits of the same vulnerability. VSEF achieves three im-
‘portant goals: low performance overhead, fast generation,
and a low error rate. Specifically:

been proposed which are more accurate, but fail to meet
the other requirements. For example, previous approaches
have focused on: (Ipatching patching a new vulnerabil-

ity can be a time-consuming task—generating high qual-
ity patches often require source code, manual effort, and
extensive testing. Applying patches to an existing system
also often requires extensive testing to ensure that the new
patches do not lead to any undesirable side effects on the
whole system. (2Binary-based full execution monitoring
many approaches have been proposed to add protection to
a binary program. However, these previous approaches are
either inaccurate and only defend against a small classes of
attacks [6, 31, 17, 23] or require hardware modification or
incur high performance overhead when used to protect the
entire program execution [14, 27, 36, 11].

In this paper, we propose a new approach for auto-
matic defensevulnerability-specific execution-based filter-
ing (VSEF). At a high-level, VSEF filters out exploits based
on the program’s execution, as opposed to filtering based
solely upon the input string. However, instead of instru-
menting and monitoring the full execution, VSEF only mon-
itors and instruments the part of program execution which
is relevant to the specific vulnerability. VSEF therefore
takes the best of both input-based filtering and full execu-
tion monitoring: it is much more accurate than input-based
filtering and much more efficient than full execution moni-
toring.

We also develop the first system for automatically creat-
ing a VSEF filter for a known vulnerabilityiven only a pro-
gram binary and a sample input that exploits that vulnera-

2.

takes a few milliseconds for our VSEF to generate the
hardened program from an exploit execution trace.

Our VSEF filtering techniques provide a way of de-
tecting exploits of a vulnerability more accurately than
input-based filters and more efficiently than full execu-
tion monitoring.

Our techniques do not require access to source code,
and are thus applicable in realistic environments.

We provide two VSEF filtering mechanisms for de-
tecting overwrite attacks, including buffer overflows,
double-free attacks, and format string vulnerabilities.
The first mechanism, taint-based VSEF, is the most
accurate and requires potentially a longer filter. The
second mechanism, destination-based VSEF, is more
efficient and is still highly accurate. Both mechanisms
have zero false positives in most cases, and are effec-
tive against polymorphic variants of the exploit of the
vulnerability. Note that our approach is general, and
could potentially be applied to other faults such as in-
teger overflow, divide-by-zerefc.

e Our experiments show that the performance overhead

of the hardened program is usually only a few percent.

These properties make VSEF an attractive approach to-
ward building an automatic worm defense system that can
react to extremely fast worms.

Approach: Vulnerability-Specific

Execution-based Filtering

bility. Our VSEF Filter Generator automatically generates Overview. We propose a nhew approach for automatically
a VSEF filter which encodes the information needed to de- defending against just-discovered attacksinerability-

tect future attacks against the vulnerability. Using th&e¥S

specific execution-based filterilgSEF). VSEF is based on

filter, the vulnerable host can use our VSEF Binary Instru- the observation that for a specific vulnerability only thetpa
mentation Engine to automatically add instrumentation to of the program execution that is relevant to the exploit of
the vulnerable binary program to obtain a hardened binarythe vulnerability need be monitored. VSEF monitoring has

full context and semantic information, as opposed to input- e Efficient generation of VSEF filters. Once a vulner-

based filters which are limited to syntactic properties. In- ability is discovered, it often takes days or months to
strumenting the binary to perform the vulnerability-siieci prepare a suitable patch. However, fast worms may be
execution filtering results in a hardened binary. As a re- able to infect the entire Internetin under a few minutes.
sult, VSEF is much more accurate than network-based filter- We should be able to generate filters quickly enough to
ing, and much more efficient than full execution monitoring. allow an effective response to such flash events.

The combination of accuracy and low overhead makes the e Efficient detection. The vulnerability-specific execu-
VSEF approach very attractive for automatic deployment tion filtering should add as little overhead as possible
schemes. to program execution.

The main research questions for enabling VSEF include
(1) what part of the program should we monitor/instrument, 3. Taint-based and Stack-based VSEF
(2) how can we detect and filter out the attack when we only

o In this section, we present two concrete examples of our
monitor/instrument part of the program, and (3) how can we o X s
minimize the overhead of the VSEF defense. In this paperVSEF system: the taint-based VSEF and the destination-

we address these questions. In particular, we propose ar}?a_‘sed VISE_F' Tr:jehtainr'c;bﬁsed VSEF ';'Sh b‘zseq on dyerl;amic
architecture that will automatically create VSEF filterglan taint analysis and has high accuracy. The destinationebase

harden the vulnerable program given an exploit executionVSE.F IS an op-tlmlst|c. version of taint-based that usually
trace. requires fewer instructions instrumented.

VSEF Architecture. Figure 1 shows the overall architec- 3.1. Taint-based VSEF
ture. Our architecture contains two main components: the
VSEF Filter Generator and the VSEF Binary Instrumenta-
tion Engine. To enable VSEF, we assume that a sample One effective method recently proposed to detect
exploit has been detected by some exploit detector whichmemory-safety based attacks is dynamic taint analysis [14,
outputs an exploit execution trace. The exploit execution 27 36, 11]. Dynamic taint analysis marks data coming from
trace contains the information about the program executionuntrusted sources (such as the netwadiited and then
up to the detected exploit of the vulnerability. The exploit keeps track of what data becomes tainted by untrusted input
execution trace can be a simple instruction trace dump ofdata by insertingnstrumentatiorinstructions to propagate
the program execution or some more intelligent output from the taint attribute. For example, it adds instrumentation t
the exploit detector. The VSEF Filter Generator uses the ex-each data movement instructiomoy, push, pop, etc),
ploit execution trace to create a VSEF filter which encodes and data arithmetic instructiomdd, sub, xor , etc), so
the information needed for the monitoring to detect future that the result of the instruction will be marked taintedritia
attacks on the vulnerability. The VSEF filter can then be only if any operand of the instruction is tainted. Dynamic
disseminated. taint analysis also inserts extra instrumentation befoeeye
Vulnerable hosts use the VSEF Binary Instrumentation point where data is used in a sensitive way (such as return
Engine to apply a VSEF filter to a binary. The result is a addresses, function pointers, and format strings) to ensur
hardened binary program. The hardened program functionghat the data is not tainted. Dynamic taint analysis has been
like the original program for normal requests and introduce shown to accurately detect a wide range of exploit attacks
very little overhead. The hardened program, however, de-including buffer overrun, format string, and double free at
tects and filters out attacks against the same vulnerability tacks [14, 27, 36, 11], making it one of the most compre-
Thus, VSEF protects vulnerable hosts from attacks and al-hensive protection mechanisms that does not require access
lows the vulnerable hosts to continue to provide critical se to source code.
vices. However, dynamic taint analysis requires instrumenting
many instructions. Every data movement, arithmetic, and
control transfer instructions that could potentially tbue
tainted memory location must be instrumented in order to
e Robust VSEF filters. A VSEF filter should be accurately propagate the taint attribute and detect when
vulnerability-specific but exploit agnostic. For exam- tainted data is misused. Such extensive instrumentation ca
ple, it should be able to detect the sample exploit even add significant performance overhead — up to a factor of
when a polymorphic engine has been used to encrypt30 or more in some cases [27].
the payload [37]. Note that input filters are particu- We observe that when exploiting a particular vulnerabil-
larly vulnerable to polymorphism, as there may not be ity, only a handful of instructions are involved in propagat
enough syntactic information in the input to reliably ing the tainted input to the sensitive location that is over-
detect polymorphic variants. written. When we know what those instructions are, we

3.1.1. Overview

VSEF Requirements.The vulnerability-specific execution
filtering architecture should have the following propestie

Exploit

Execution
f VSEF filter ; Hardened
sample)—__gu < EXPlOl _Trace | VSEF Filter | VSEF Binary
Exploit Detector Generator :;strymentanon
ngine
A /‘V
1

Vulnerable
Binary
Progral

Figure 1. VSEF architecture. Once an exploit is detected, an execution log is produced. The VSEF
Filter Generator produces a filter that recognizes executio n patterns that exploit the vulnerability.

These filters can then be disseminated. The VSEF Filter Gener ator takes the filter and instruments
the binary to recognize execution sequences that exploit th e vulnerability, the result being a hardened

binary.

can instrumenonly thosdnstructions to propagate the taint support [7, 32]. The VSEF Filter Generator examines the
attribute, and the instruction that unsafely uses theddint trace in a backward manner to determine which instructions
data, and still successfully detect attacks against thit vu propagated tainted data that reached the vulnerabiligceet
nerability. tion point. It begins at the end of the trace, called the explo
Thus, in taint-based VSEF, we automatically identify point, where the exploit was detected. The source operand
and instrument the instruction positions that need to be in-to this instruction must have been tainted by some previous
strumented to propagate the taint attribute and to detect th instruction in the trace (since this is an overwrite attask u
misuse of tainted data to detect exploits of a particular vul ing tainted data); and the source operand of that instnuctio
nerability. As a result, taint-based VSEF can detect exploi must have been tainted by some other previous instruction,
of the same vulnerability much more efficiently than full etc.. The VSEF Filter Generator continues performing the

execution monitoring. analysis recursively until it reaches the initial instioos
for reading the original untrusted input in the sample ex-
3.1.2. Taint-based VSEF Filter Generation ploit.

A taint-based VSEF filter includes two parts: (1) the list BY following the chain of tainted operations backwards,
of instruction positions that we need to add instrumentatio the VSEF Filter Generator can identify the list of instruc-
to for taint propagation, and (2) the instruction position t tions in the execution trace which were involved in propa-
which we need to add instrumentation to detect the misuse9ting the taint attribute from the original untrusted ibfmu
of tainted data. Instruction positions can be expressed adhe exploit point. This list of instructions is used in theel

absolute addresses, or as the name of a shared library an@S the list of instructions to be instrumented to propadrege t
offset into that library for increased portability. taint attribute. This calculation is an instance of flowback

The instruction position that we need to add instrumen- 2nalysis [5], a well studied and efficient procedure [38].

tation to to detect the misuse of tainted data is simply the An obvious choice for the exploit detector is a taint-
instruction position where tainted data was detected beingbased exploit detector [14, 27, 36, 11]. In particular,
misused. The list of instruction positions that we need to TaintCheck [27] already keeps a directed acyclic graph
add instrumentation to for taint propagation is the listrefi ~ (DAG) of where tainted data was propagated from, and at
structions that propagated the taint attribute from thgieri at what instruction points. That is, each time tainted data
nal malicious input to the point where it was detected being is propagated, a node is generated that contains the posi-
misused in the exploit execution trace. tion of the currently executing instruction, and pointers t

The VSEF Filter Generator can identify this list using nodes corresponding to each tainted operand. In this ap-
1) any exploit detector that can identify the tainted data proach all the information needed to calculate the filter is
that was misused and what instruction misused it, and 2)already on hand. The VSEF Filter Generator simply follows
a log of instructions that have been executed, and the val-the DAG from the point(s) where tainted data was misused
ues of dynamically calculated addresses. The latter can bdo the point(s) where it was originally input, and records al
logged in software, or generated efficiently using hardware the instruction positions on that path.

C source IA-32 assembly Taint propagation
struct dummyt {
char buf[16];
void (*fnptr)(void);

void vuln(struct dummyt *dummy)
{
char bigbuf[100];
inti=0;
10 int count = 0;
11 void (*fnptr)(void) = NULL;

O©CoO~NOULA WNPE

13 fgets(bigbuf, 100, stdin); A int $0x80 0x3a966016— stdin

B repz movsb %ds:(%esi),%es:(%ediPxafefea80— 0x3a966010
14 strepy(dummy- >buf, bigbuf); | C movzbl (%edx),%eax al — Oxafefea80

D mov %al,(%ecx,%edx,1) 0x80ad1b0— al
15 fnptr = dummy- >fnptr; E mov 0x10(%eax),%eax eax« 0x80ad1b0

F mov %eax,0xffffffcc(Yoebp) Oxafefeab4— eax
16 fnptr(); G mov Oxffffffcc(%ebp),%eax eax«— Oxafefea64

H call *%eax illegal use of tainted eax
17 }

Table 1. Overwrite example: A piece of vulnerable code, andt he instructions that propagated and
misused the tainted data when the vulnerability was exploit ed. Instruction position D is the overwrite
point, where tainted data overwrites a function pointer. In struction position H is the exploit point,
where the tainted data is misused.

Table 1 shows an example of code that is vulnerable tothe destination as also tainted. The Taint-based VSEFR Filte
an overwrite attack, in this case a buffer overflow that over- Generator inserts instrumentation at the exploit pointgto d
writes a function pointer. The second column shows the as-tect if the sensitive value being used is tainted, signgyan
sembly instructions that are involved in propagating &dnt attack, and if so to take appropriate action. Here, we assume
data to the point where it is misused. The third column the appropriate action is exiting the program. Others have
shows the actual propagation, with the data addresses as r@nvestigated other actions, such as returning an error code
solved at run time. In this example, the exploit is detected and continuing execution [30, 33]. The resulting program
at instructionH, where tainted data ieax is misused. The with the added instrumentation is the hardened binary.
VSEF Filter Generator traces backwards in the execution \When the hardened binary is run, the instrumentation
log (or the DAG if using TaintCheck) and finds that instruc- propagates the taint attribute throughout the program as
tion G was the last instruction to write ®ax, and so on, would have been done by a full taint-based exploit detector.

back to instructiorA which performed & ead system call. |f the exploit point is reached, and the data being used in a
Hence, the taint-based VSEF filter consists of positthn sensitive way has been marked tainted, execution is aborted
where tainted data was misused, and positianthrough Since the VSEF Filter Generator does not instrument
G, which propagated the tainted data to that point. all data movement and arithmetic instructions, tainted lo-

cations are not marked untainted when overwritten with un-
tainted data by uninstrumented instructions. This could po
The Taint-based VSEF Filter Generator instruments eachtentially lead to false positives in some cases. For example
instruction in the taint-based VSEF filter to propagatettain Suppose a stack-based buffer marked as tainted is popped off
information, and inserts the appropriate safety checket th the stack, and is later overwritten with a (legitimate) retu
exploit point. The instrumentation conceptually keepsta li address, without being marked untainted.
of tainted memory locations. When an instruction listed in ~ We address this problem by having the hardened binary
the VSEF executes, the added instrumentation checks to segecord the value that a location takes on when it is marked as
if any source operand is a tainted location. If so, it marks tainted. When another instrumented instruction later kbec

3.1.3. Taint-based VSEF Binary Instrumentation

to see if that location is tainted, it also checks to seefflits monly used data movement function suchsas cpy or
has the same value. If not, then it has been overwritten bynentpy, and hence the instrumentation will be executed
an uninstrumented instruction, and is marked as no longerany time that function is called. In our evaluation this was
tainted. This approach adds little overhead, but therelis st true, though we did not find it to be a performance problem.
some potential for false positives. If an uninstrumented in If it were, we could use the techniques described in Sec-
struction overwrites tainted data withe same valu¢hat tion 3.2 so that the instrumentation is only executed when
was already there, this heuristic will not correctly untain the function is called in the vulnerable context.
that location.

An alternative approach is to use existing memory
watch-point techniques to monitor tainted locations, amd u

Accuracy. The VSEF-hardened binary has no false posi-
tives when memory watchpoint techniques are used to en-
sure locations are correctly marked untainted when written

taint them when other instructions write to them. On the |A- _ .) . .
32 architecture the debug registers can be used to monitoFO by uninstrumented instructions. There is nothing marked
as tainted by the instrumentation that was not actually de-

up to 4 memory locations (up to 4 bytes each). We can also”. qf trusted inout. and during detecti read
use page-protection techniques (e.g., setting tainted-mem''€¢ rom untrustedinput, and during detection we already

ory pages to be read-only) to be notified of writes to tainted ?heterm|n_(§d thatl thebaFtacker s(;]ocljJIdNnc:t tt)ﬁ ?blgﬂfo v;/rlte. o
memory. Moreover, when available, we can also use ECC € sensilive value being guarded. INote that without using

memory to be notified of writes to tainted memory similar memory watc_hpoint s_u_pport, the untaint heuristic Wi". hot
to techniques used in [28]. All of these techniques generateCorreCtIy untaint data if it has been overwritten by untedht

a trap when the watched memory is accessed (or memor)gata W:h the same \t/1alue, Wth'Ch COUltd Iegd to false p?.sr
near the watched memory), allowing our code to untaint the IVES. However, we have not encountered any In practice

watched location if it has been rewritten by untainted data. and expect them to be rare.

The cost of generating traps when data is untainted can be A false negative is when the same vulnerability is ex-
reduced by reducing the amount of data that gets tainted Ploited without being reported. This can occur if the taihte
One way to achieve this is to modify the instrumentation of iNput is propagated along a different code path than in the
each of the data propagation instruction in the VSEF filter, Sample exploit, or if the overwritten sensitive value is-mis
so that it will only taint the destination when executing in used at a different location. Note polymorphic variants cre
the same call-stack context as during the original exploit. ated by tools such as MetaSploit [3] will be detected from
This technique comes with a trade-off of false negatives @ single filter. The reason is such polymorphic variants dif-
when data is tainted by the same instructions, but in a differ fer in the payload, which would be executed strictly after
ent context, until the alternate contexts are discovered an the exploit point. Only an exploit that is polymorphic in the
added to the VSEF filter. While we are unaware of existing €xecution path exploited could be missed. Specifically, it
mechanisms to watch for writes to processor registers, wewould be missed if and only if different instructions propa-
expect that a processor register will not remain tainted for 9ate the tainted data to the exploit point, or there is a diffe
long before being overwritten with untainted data. Hence, €nt exploit point. We expect that there is a relatively small
when a register becomes tainted, we can switch to moni-number of such pOSSible variants for a partiCUlar vulnérabi
toring all instructions until it becomes untainted agaire W ity, and that the attacker must identify them manually or by
show how to efficiently turn full taint analysis on and off at Static analysis of the vulnerable binary. Naturally, we can

run time in [25]. apply the same static analysis techniques to preemptively
identify the other paths that should be instrumented. Fhis i
3.1.4. Analysis and Combining Filters discussed further in Section 3.3.

Performance. By design the taint-based VSEF filter can be Combining filters. We may want to combine several differ-
created with information already on hand to a Taint-based €Nt taint-based VSEF filters. For example, a single binary
detector. As a result, filter generation is almost instanta- May have several vulnerabilities that are not all discadere
neous. The length of the filter is proportional to the number Simultaneously. We want to harden the binary as each new
of instructions that propagate tainted data from the input t vulnerability is discovered. Another example is vulnelabi
the exploit point. Similarly, the execution overhead of the ities that can be exercised via several different code paths
hardened program is proportional to this number of instruc- YWe want to be able to re-harden the binary as each new code
tions. By design, most programs attempt to minimize un- Path is discovered by the detector.
necessary data copying, so this will intuitively be a small We combine taint-based VSEF filters by a simple union:
set of instructions. We verify this in our experimental re- any instruction listed in either of the filters should beinst
sults. mented. The simplicity and efficiency of combining filters
Note that it is likely that one or more of the instructions is a nice property for defense systems using our approach
that propagate tainted data in the attack belong to a com-since it means the system does not become complex as new

vulnerabilities and attackers are discovered. tion immediately available.
To identify the data movementinstruction that performed
3.2. Destination-based VSEF the illegitimate write, the VSEF Filter Generator first iden
tifies the chain of instructions that propagated the tainted
Overview. We next consider an optimistic filter that focuses data to the exploit point, in the same manner as to generate
on instrumenting the point where sensitive data was ille- a taint-based VSEF filter. The VSEF Filter Generator then
gitimately overwritten, rather than the point where taihte identifies which of the instructions in that taint propagati
data was illegitimately used. Conceptually, a taint-based chain is the overwrite point.
VSEF filter consists of a chain of data movement opera- When available, the VSEF Filter Generator can use de-
tions, and the instruction at the exploit point, which mis- bug information compiled into the program to help iden-
uses the tainted data. The taint-based VSEF filter detectdify the overwrite point. Debug information can be used to
when the tainted data is misused, which is a very accu-determine the allocated size of a buffer. Hence, for buffer
rate detection method. However, the actual security vio- overflows, the VSEF Filter Generator can identify the over-
lation is the data movement instruction in the chain that write point as a data movement instruction that calculates
wrote to an illegitimate destination, copying the taintetbd an address as a base plus an offset, where the offset causes
to the overwrite target. We refer to this instruction as the the calculated address to point outside of the buffer that th
overwrite point. Therefore, we propose destination-basedbase pointer points to.
VSEF, which monitors only the overwrite poirite., the Debug information also provides information about the
specific instruction that illegitimately wrote to a specific typeof each memory object. Hence, the VSEF Filter Gener-
destination (such as a specific function pointer). We use theator can use this information to identify the overwrite fioin
term optimistic because of cases where destination-basegs the the data movement instruction that caused a type vio-
VSEF may have false positives. Destination-based VSEF is|ation, e.g, a string copied over a function pointer. For pro-
based on the idea that an overwrite attack results in the in-grams that have not been compiled with debug information,
struction at the overwrite point writing to a destinatioatth type information can sometimes be inferred at run time. For
it would not normally write to. This idea is supported by example, return addresses can be identified for programs
Zhouet. al.[44], who built a system that successfully de- that obey normal stack conventions. It is possible to infer
tects many memory faults (and overwrite attacks) by detect-the types of other locations based on how the data is used
ing when an instruction writes to a destination that it hesn’ during normal execution [8].
written to during normal execution. When neither debug information nor type information is
It is not enough to specify the overwrite point only by available, the VSEF Filter Generator identifies the ovetwri
the position of the instruction that performed the overarit point as the last instruction in the propagation chain that
For example, suppose that the instruction that performed th yrites to a dynamically calculated memory address. Heuris-
overwrite was arov insidementpy. Because of abugin tjcally this will usually be true, given the assumptionsttha
the waynencpy was called, it wrote past the end of a buffer overwrite attacks are the result of such a memory address
and overwrote a sensitive value, such as a function pointertaking on an unintended value, and that there are not any
However, a different call toemcpy in another part of the other such copies that occur between the overwrite point
program may be used to intentionally copy legitimate data and the exploit point.
to the same location. Therefore, we specify the overwrite Using our previous example in Table 1, any of these tech-
point as the position of the instruction that performed the pjqes correctly identifies the overwrite point as instiarct
overwrite, plus theontextin which it was executed, which b "ysing buffer size information: While the base address
we call thevulnerable contextWe specify the contextto be ,sed at that point points tunmy- >buf , the offset causes
the list of return anresses on the stack, Which.indicates th the calculated address to pointdanmy- >f npt r . Using
sequence of function calls that led to the exploit. type information: Instructiol is the first instruction in the
Destination-based VSEF Filter Generation.To generate chain where tainted data is written to a data type that should
a destination-based VSEF filter, the VSEF Filter Genera- not be tainted. Using neither: Instructi@nis the last in-
tor needs to determine (1) which data movement instructionstruction in the chain to write to a dynamically calculated
illegitimately wrote to a sensitive location (the ovenerit address. Instructiors andG write to processor registers.
point), (2) the vulnerable stack configuration when thaadat InstructionF writes to a hard-coded offset within the current
movement takes place (the vulnerable context), and (3) whatstack frame.
destination(s) should not be overwritten by that instircti Once the overwrite point has been identified, the vul-
in that context. The VSEF Filter Generator can extract this nerable context in which it was executed can be found by
information from an execution log of a general purpose de- examining the calls and returns up to that point in the ex-
tector, or use a specialized detector that makes this irdorm ploit execution trace. Alternatively, a specialized d&tec

such as TaintCheck can log the call-stack state along withble stack context. At that point, the instrumentation distec
each tainted data propagation, so that the call-stack is althat the destination address is illegitimate, signallingat
ready on-hand when the overwrite point is reached in thetack.
backwards trace of the exploit execution trace. In our previ As with taint-based VSEF filters, exploits that automat-
ous example from Table 1, the stack context at the overwriteically alter their content while using the same attack vecto
point (instructiorD) is [main+47, vuln+ 68, strepy+25). will still be caught. However, it is possible that an attacke
That is, the instruction at offset 47 from the startnafi n could alter the exploit so that the vulnerability is exphoit
calledvul n, the instruction at offset 68 from the start of in a different vulnerable context¢. there may be multi-
vul n calledst r cpy, and the instruction at offset 25 from ple functions that call the vulnerable function), or so that
the start ofst r cpy is themov that overwrote the function it overwrites a different sensitive value. There are urjike
pointer. This example demonstrates why we need to keepto be many such possible variations, and we may be able
track of the vulnerable context, and not just the overwrite to find some of them automatically using static analysis.
point instruction. Here, as in many cases, there is nothingFor example, manual analysis of the vulnerable ATPhttpd
wrong with the instruction at the overwrite point, or even shows that there are only two contexts in which the vulner-
the function it is in t r cpy). The problem is thatul n able function is called in an exploitable way.
calledst r cpy in an unsafe way. We expect that most destination-based VSEF filters will
The sensitive value overwritten is the destination have zero false positives. There are a few cases where a

operand of the data movement instruction at the overwrite destination-based VSEF filter may have false positives, all
point. We express this location in a robust way in our fil- of which we expect to be very rare. A destination-based
ter. For example, this can be done by denoting as an offsetYSEF could have false positives if 1) The VSEF Filter

from an activation record for stack-based locations, omas a Generator identified the wrong instruction as the overwrite
offset from a buffer allocated in a certain stack-context fo point, and hence the write to that address occurs in normal
heap-based locations. In the example from Table 1, the lo-usage. This problem should be straight-forward to detect
cation is offset 16 inlummy. This is expressed as offset 16 and fix after using the filter. 2) The instruction at the over-

from the buffer allocated at contetain + 14]. write point canlegitimatelywrite to the monitored location
In the case of buffer overruns, we would ideally like to in the vulnerable context. This can be true if the source is

specify that the write does not continue past the end of thesometl_me,s 5} Iegltlmatz _(non-tam_t_ed) value, or if the destl
buffer, so that future exploits against the vulnerabilitg a nation isn't always usedin qsensﬂwe wqu, aCuni on)
not able to overwrite data in between the end of the buffer that could be a function pointer or a string buffer). In this

and the data that was detected as being misused. The VSEE2se a low-false-positive destination-based VSEF filter fo

Filter Generator can do this if the binary was compiled t_hat vulnerability is not possible, and a taint-based VSEF
with debug information (hence the length of the buffer is filter should be used instead.

known). When this information is not available, the VSEF Combining Filters. It is straightforward to instrument a
Filter Generator can still sometimes create a tighter boundprogram with multiple destination-based VSEF filters. The
for what area should not be overwritten. For example, it rec- instrumentation for each filter can be added independently
ognizes when the value overwritten was the return addressof the other instrumentation. In some cases multiple filters
Instead of only protecting the return address, it also ptete will instrument the same instruction. Each filter can add
the savecbp, which is adjacent to the return address, and its own instrumentation independently, without intenfigri
could be overwritten without overwriting the return addres with the other.

Destination-based VSEF Binary Instrumentation. We Performance. Destination-based VSEF allows the filter to

instrument the binary program to check that the data move_be created almost instantaneously. The Iength of the filter
ment instruction at the overwrite point does not write to the (as well as the total number of instructions instrumented),
sensitive destination when it is in the vulnerable stack con however, is bound by the depth of the call stack at the over-
text. Our experiments in Section 4.2 show that this can beWrite point of sample exploit, plus the address of the over-
done by instrumenting a small number of instructions- the Write point, plus the identifier of the sensitive data to be
data movement instruction, and the call instruction corre- guarded. In Section 4.2 we describe how we can instrument
sponding to each activation record in the vulnerable cantex €ven fewer instructions, further improving performance.

We also show how this could be reduced to only instrument-

ing the data movementinstruction by making copies of each3.3. Static analysis extensions

function in the vulnerable context. . . '
Our adversarial model requires filters be generated

Accuracy. When the program is run with the sample ex- quickly, and requires them to be small enough to distribute
ploit, it will again reach the overwrite point, in the vul@er rapidly. As a result, filter creation for both schemes relies

only on information already on-hand when the exploit s de- | | Avg Time (s) | Overhead]

tected. However, if we relax the speed requirement we may [Native 121.4 -
be able to generate more accurate filters by performing more| DynamoRIO 135.05 11%
analysis. + Taint-based VSEF filte 138.35 14%

Backward slicing. The filter we create recognizes the sam-
ple exploit along with variants polymorphic in the exploit
payload. However, an exploit may be polymorphic in the

Table 2. SQL taint-based VSEF benchmark.

execution path followed. For example, the ATPhttpd web- : Latency (ms)| Overhead
server vulnerability we investigate can be exploited along Native 566 -

two different code paths: one where the requested file is | Valgrind 1.279 126%
found but not readable and one if the file is not found at | * Taint-based VSEF filte 1.360 140%
all. The destination-based VSEF filter generated from one | Full TaintCheck 9.797 1631%
will not detect the other, because the overwrite occurs in | Destination-based VSEF] .585 | 3% |

a different vulnerable context. In this case, the taintebas
VSEF filter for onewill detect the other because the samein- Table 3. ATPhttpd taint-based VSEF and
structions are involved in copying the tainted data in eithe ~ destination-based VSEF benchmark. (1 KB
case. However, if ATPhttpd had been implemented to use Pages)

nmentpy to copy the tainted data on one path, anda cpy

to copy the tainted data on the other path, then the taint-
based VSEF filter generated from one path would not detect

plemented the taint-based VSEF Filter Generator by mod-
the other.

o ‘ . vsi e th | ifying TaintCheck to save the set of instruction addresses
ne can perform static analysis to recognize these al-f 4 part of the DAG into a separate file, along with

t(ra]rnate cigde p;\thst; qnd identify tge ?jdd't'onr?l instrunstio dthe instruction address where the tainted data was misused.
that would need to be instrumented to detect the correspon This file is the taint-based VSEF filter.

ing attacks. That is, alternate data propagation pathsean b
identified and instrumented in taint-based VSEF filters, and
alternate vulnerable contexts can be identified and instru-
mented in destination-based VSEF filters. Note the static
analysis is sound but imprecise, so it is possible that more
instructions will be instrumented than necessary. How
ever, including instrumentation for potential alternate e
ploit paths, will result in a filter that detects future exifdo
polymorphic both in the path taken and in the exploit pay-
load.

We also implemented the taint-based VSEF Binary In-
strumentation Engine as an extension to TaintCheck. Nor-
mally TaintCheck adds taint-propagation instrumentatioon
every instruction that propagates data, which is most in-
structions. It also adds taint-assertions to every instsac
" that could potentially misuse tainted data. In our extemsio
TaintCheck accepts a taint-based VSEF filter as input, and
then only adds taint-propagation to the propagation ikstru
tions listed in the VSEF filter, and taint-assertion insteumn
tation to the misuse instruction listed in the VSEF filter.

)) Note that our current implementation of the taint-based
4. Implementation & Evaluation VSEF Binary Instrumentation Engine is intended only as
a prototype to show the relative difference between mon-
itoring nearly every instruction, and monitoring only the
instructions in the taint-based VSEF filter. However,
TaintCheck is currently implemented on Valgrind [24] (for
Linux), and DynamoRIO [1] (for Windows). Both of these
tools are well suited for when the entire program needs to

In this section we present our implementation and exper-
imental evaluation of the taint-based and destinatiorethas
VSEF Filter Generators and VSEF Binary Instrumentation
Engines. In our experiments we use TaintCheck [27] as the
Exploit Detector, and to record the exploit execution trace

4.1. Taint-based VSEF be monitored, but they each add substantial overhead even
o when no instrumentation is added. A more efficient imple-
4.1.1. Implementation mentation could be done using a tool such as Dyninst [2],

] . . . which is better suited for adding instrumentation to specifi
As discussed in Section 2, TaintCheck already recordspoims of a program. (We use Dyninst to implement the

the information needed to produce a taint-based VSEF filter. yastination-based VSEF Binary Instrumentation Engine).
As the monitored program is executing it keeps a directed

acyclic graph (DAG) that represents how tainted data was4 1 2. Evaluation

propagated, and what instructions propagated it. When an

exploit is detected, part of the output is the part of the DAG ~ We evaluate the quality and efficiency of our taint-based
showing how the misused tainted data was derived. We im-VSEF using real world exploits. We have tested the ef-

fectiveness of our taint-based VSEF approach on Windowsened ATPhttpd and Microsoft SQL server were able to suc-
against the SQL Slammer attack [22], and on Linux against cessfully defend against the original exploit. For ATPHitp
the ATPhttpd exploit [29]. we also created synthetic polymorphic variants of the ex-

Taint-based VSEF Filter Size.The filter generated for the ploit byt rgpga;:mg t\?ve COd.? '2 :Eet rtiquﬁStdW'th J?‘I('jlgtrwrtltlyd
ATPhttpd exploit contains only 10 instructions that must be generated byles. Ve verified tat the nardene P

instrumented. The filter for the vulnerability exploited by tsrl:CSC%Zs;uglr{s(:re;?ﬁte?hgeserr?;?]'tf_'sgsveedrs\'/osnés];thergzglﬁ'.s
the SQL Slammer worm contains 200 instructionsthatmusteﬁuectivea ainstl (?I mor rleicv;riants of the sam f)ep olo '
be instrumented. Note that our Windows implementation 9 polymorp ple exp

of taint-based VSEF Filter Generator, which is based on]c IDurlng_t_our b?/Cchrrarks, ?iz;]the'Ar\Tr;irt?eged Server hadl
the less mature DynamoRIO implementation of TaintCheck, aise positives. We aiso sent the ATFIpd Server severa
currently addseveryinstruction that operates on the mis- anomalous requests that exercise similar code paths as the

used tainted data to the VSEF filter, rather than refining it exploit, without actually e_xplonmg thp server. The hard-
to only the instructions that actually propagate the tainte ened ATPhttpd correctly did not identify these as attacks.
data to the point where it is misused. This refinement is o
straight-forward to implement, and should reduce the filter 4.2. Destination-based VSEF

size by an order of magnitude. For comparison, the AT- 4 5 1 Implementation

Phttpd VSEF filter contains 83 instructions without this re-

finement. We implemented the destination-based VSEF Binary In-
strumentation Engine using Dyninst[2], a binary instrumen
tation tool. Unlike Valgrind and DynamoRIO, Dyninst per-
forms static rewriting of the target binary. Instructions a

Taint-based VSEF Performance. The time to generate a
VSEF and use it to harden a binary is very small. For AT-
Phttpd it was 186 microseconds to generate a VSEF from. . o

TaintCheck’s DAG, and 195 ms to use the VSEF to harden mstrumented by overwntlng them wn]hu.nps to trampo-
the ATPhttpd binary. Here, we measure the performance Ofllne functions that call our instrumentation code, and then

the hardened Microsoft SQL Server and the hardened AT-€Xecute the overwritten instruction before returning. sThi
Phttpd server. For both tests, we issue queries to the servefPPro ac_h was cho_s_en to avq|d the run-time oV erhead of dy-
namic binary rewriting. Dyninst and our destination-based

rocess from the same machine so as to not introduce net- . . X .
\Ilavork latency VSEF Binary Instrumentation Engine run on both Linux

. . and Windows.
We subjected the Microsoft SQL server to the bench- o) .
) . . Q The destination-based VSEF filter consists of the ad-
mark query described in [19]. We measured performance ; . o
. . dress of the overwrite point, the activation records on the
when the server was run natively, and when it was run un-

. ! . . stack when the overwrite point was executed in the origi-
der DynamoRIO with and without the taint-based VSEF in-) P 9
. . nal exploit, and the normalized address of the data that was
strumentation. Table 2 shows the results. The instrumenta- . : . X
:) overwritten. Given the exploit execution trace generated b
tion added by the taint-based VSEF causes the server to rug_. oo 2
) aintCheck, the destination-based VSEF filter is generated
only 14% slower than native, and only 2% slower than run-

: L . . using the algorithm from Section 3.2 to identify which in-
ning under DynamoRIO alone. Again, implementing the fil- struction is the overwrite point, and pulling the rest of the
ter refinement step for the Windows version of TaintCheck . point, puing

. . . information from the exploit execution trace in a straight-
would reduce the number of instructions instrumented, and e .
X forward manner. We assume the most difficult scenario,
further reduce the taint-based VSEF overhead.

in which no debug or type information is available to help
We used the Apache Flood tool [39] to measure the per'identify the overwrite point
formance of the hardened ATPhttpd server when serving 1 We observe that the overwrite instruction is usually a
KB files. Results are shown in Table 3. Our results show

that the hardened server runs only 6% slower than Whenn"ov instruction, which is usually too small to be overwrit-
0

.) ten b unp instruction by Dyninst. Dyninst handles this

running under Valgrind alone. We also ran the same bench y 8 ump y Ly y

K usina Valarind t th tten the inst ‘ d'case by instead overwriting it with a 1 byte instruction to
mark using vaigrind to count how often the instrumente generate a trap, which causes the operating system todelive
instructions are executed. We found that the 10 instrustion

. ; a signal to the process, and the instrumentation code to be
instrumented by the talnF—based. VSEF accounted for OnIyexecuted by the signal handfefThis is undesirable, since
322649 of 746’419’.783 |nstru.ct|ons executeq ('00437%)'this is a relatively expensive process. We observe that in
This su_ggests _that |_mpIement|r_19_ the_ VSEF Bmar_y Instru- many cases, the instrumenteolv is called frequentlyi(e.,
mentation Engine with more efficient instrumentation tech-

niques (such as DynamoRIO or Dyninst) should resultinthe 1pyninst version 5, which is currently under developmengsua dif-

taint-based VSEF having very little performance overhead. ferent method to insert instrumentation which should nycsitininate the
] - need to use traps. Unfortunately, we were not able to testvirision at
Taint-based VSEF Accuracy. We verified that the hard- the time of writing.

it may be instrcpy), but usually not in the vulnerable able binary. Here, we measure the performance of the hard-
context. Therefore we address this problem by only having ened ATPhttpd server.
the instrumentation be used when the function is called in ~ As in Section 4.1, we evaluate the performance of the
the vulnerable context. The most efficient way to do this is hardened ATPhttpd server using the Apache Flood tool to
by copying the functions that make up the vulnerable con- measure the time to serve requests for 1 KB files. Our re-
text, and rewriting the correspondie@l | instructions so sults are shown in Table 3. Our results show that the server
that the instrumentedov is only used in the vulnerable runs only 3% slower than when the server is run without
context. In cases where this is infeasible, we can dynam-instrumentation.
ically enable or disable theov instrumentation when the We also used Valgrind to count how often the instru-
vulnerable context is entered or left. mented instructions are executed during the benchmark.

We currently implement the latter approach. We imple- The 12 instrumented instructions accounted for 6,070 of
mented the VSEF Binary Instrumentation Engine to instru- 746,465,052 instructions executed(.000813%).
ment thecal | instruction corresponding to each activation
record in the vulnerable context. This instrumentation in-
crementally tracks which of the activation records of the
vulnerable context are currently on the stack. The instru-
mentation for the lastal | of the vulnerable context dy-
namically adds or removes the instrumentation at the over-
write point when the vulnerable context is entered or left.
Note that if we instrumented only thisal | instead of each
cal | in the vulnerable context, the instrumentation would ..
need to walk the stack every time thedl | was executed ©- Deployment and Applications
to see if it was in the vulnerable context, which would result
in a higher performance cost.

The instrumentation at the overwrite point checks
whether the instruction is about to write to the protected
location. If so, an attack is detected.

Destination-based VSEF Accuracy.We verified that the
hardened ATPhttpd server was able to successfully defend
against the original exploit. As in the taint-based VSEF ex-
periment, we also verified that server was able to defend
against polymorphic variations of the exploit, and thabit-c
rectly did not identify similar but non-exploiting requests
attacks.

Vulnerability-specific execution filtering meets three im-
portant goals: fast filter generation, accurate detectod,
low performance overhead. These requirements address the
most relevant threat to today’s Internet infrastructumeesst f
spreading worms. Worms that exploit known vulnerabilities
can cause millions of dollars of damage. A worm exploiting
an unknown vulnerability could be much more devastating.

We evaluate the quality and efficiency of our destination- ~ Figure 2 shows our envisioned architecture for defend-
based VSEF using the ATPhttpd expl®it. ing against worms. Various full instrumentation detectors

Destination-based VSEF Filter Size The fil q are placed across the Internet, for example on honeypots or
estination-base liter Size.The filter generate over-provisioned sites. When a new worm is released, the

flozr _the ATEhttpd r\]/ulnerar\]blllty con&s;s of the qddreszei of full instrumentation version detects the exploit and ukes t

mstrgctlons_(t @rov that caufsest e overwrite, and the \,ser Fijer Generator to create an execution filter. The fil-
11 call instructions corresponding to the vulnerable con-
text), and a_:_a;\ngi_l(_);ﬁffszts frolm the vulnerabrl1e stack fra:Jlneternet (that have the same vulnerable binary, similar share
to protect. The ttpd exploit overwrote the return ad- libraries, etc.), which use VSEF Binary Instrumentation En

drﬁsi’ .SOI n th'z caseﬁwe ar;a proYtqctlnhg thel returtr:l addrelfsgine to harden their binaries against subsequent infection
¥V ichis ocatg alt 0 sets. to 7in the va n(;r_a e stac dThis hardening can be done without restarting the server for
rame. (In our implementation, we recognize this ase andyastination-based VSEF, because Dyninst is able to attach
extend the range to 0 to 7 to also protect the frame pointer)., - - already running program and instrument it without

To clr?nfy, Ifl we lwer_e qutetcn_ng dafta |nts_|de thg tstacl;f;r"same restarting. Taint-based VSEF could also be implemented
(SI:C asl,daboca vatr_la e storing a function pointer), 0 using Dyninst, which would also allow it to harden the pro-
Setwould be negalive. gram binary without needing to restart the program.
Destination-based VSEF Performancelt takes a negligi- Our architecture provides for completely automatic re-
ble amount of time to create a destination-based VSEF fil- sponse and containment, and therefore can respond to a
ter from TaintCheck’s log, and to use the destination-basedrapid worm outbreak. Our system also works for previously
VSEF Binary Instrumentation Engine to harden the vulner- unknown vulnerabilities where the hardened binary can be
> . — _ _ _ _ used until a proper patch can be installed. We note that sites
At the time of writing, the Windows implementation of Taitetk 5y e ynmotivated to install automatically generated net-
does not log the correct information to create a destindimsed VSEF, so . . .
we were unable to evaluate our destination-based VSEF éokiarosoft work filters with Su_Sp_eCt accuracy. The accuracy OT our fil-
SQL server exploit. However, doing so would be straightvnd. ters make automatic installation much more attractive.

4.2.2. Evaluation

ter is then distributed to other vulnerable hosts acroskithe

3. VSEF filter /4
disseminated e

1: New exploit received

VSEF filter

5. Exploit fails
against hardened Phd
7’

binary %

4. VSEF binary
Instrumentation

1 (on each host)

Figure 2. The deployment scenario for
vulnerability-specific execution filtering.

Upon (1) receiving an exploit of a new vul-
nerability, the (2) full instrumentation engine

detects it and creates an appropriate filter.
The filter is (3) disseminated to all hosts,
which then (4) use the filter to instrument and

produce a hardened binary. The hardened
binary cannot be then exploited (5). Note that
the exploit in step 5 may be a polymorphic
variant of step 1.

2. Full instrumentation
detects exploit & creates

function call granularity, and they use heuristics to find ou
what function calls need to be instrumented. They leave as
an open problem how to determine more precise instrumen-
tation, which we solve by using taint-based analysis.

Rinard et. al. has proposed using compiler extensions to
deal with writes to unallocated memory. The approach al-
lows a program to execute even in the presence of buffer
overflow attacks[30]. These techniques are aimed at in-
creasing availability for services and are not necesssaily
and thus inappropriate as a defense mechanism.

Shield [40] provides vulnerability-specific exploit
generic protection. However, it uses manually generated
signatures.

Costa et. al. propose a concurrent work to automatically
generatechost-basednput filters [11], which has greater
accuracy than network-based input filters, and can coyrectl
recognize some semantically equivalent inputs. However,
the approach still suffers difficulty when the correct class
fication rule is complex or needs application state, or when
input is encrypted.

IntroVirt [15] uses vulnerability-specific predicates to
detect when a vulnerability has been exploited. However,
these predicates are manually generated.

DAKODA [13] provides a quantitative analysis for a
number of exploit vectors. Their results show that network-
based filters are not specific enough for exploits against
many vulnerabilities, and that there are a number of vul-
nerabilities where the attack vector is encrypted, making

host-based input filters impractical. The paper also noted

that return addresses are not suited to be used as signatures

for polymorphic worms which were used in several existing
d_automatic signature generation methods [27, 20, 42].

versarial models. Host-based privilege escalation astack . we ben_ef_it directly from t_he active research for increas-
are a serious threat that previous automatic defense sslsten"l'ng the efficiency of emulation [21, 41, 2]. For example,

have mostly ignored. Our scheme can be used to harden’® Use Valgrin(_j and DyngmoRIO for tair_lt-based _instr_u-
known vulnerable programs against such attacks until theMentation (on Linux and Windows, respectively), while Pin

proper patch can be applied. Note this is especially impor- reports emulation speeds 3.3x faster than Valgrind and 2x

tant for legacy systems where source code for the runningfas'ter than Dy_namoRIO [21]. - .

applications may no longer exist or be accessible and thus a We use _TalntCheck_[27] o initially dlsc_over unknOV_/n

permanent patch may never be created. vulnerabilities. Other fln_e-gr_al_n_ed c_zlynamlc b_ug detection
We present a distributed architecture for efficiently and tools could be used during initial filter creation, such as

.) . , . program shepherding [17], libsafe [4, 6], or Nethercote-
securely generating, using, and sharing VSEF filters in [25] Fitzhardinge bounds checking [23]. We chose TaintCheck

because the taint-based approach detects the widestyvariet
of attacks and is easy to augment to produce the taint log
needed for taint-based VSEF.

Slicing techniques [38, 43] can be used to help create or
refine the VSEF filters, as discussed in Section 3.3. We plan
to investigate this approach in the future.

Our techniques and architecture also apply to other a

6. Related work

Sidiroglou et. al. proposed selective emulation as part of
a reactive approach for handling software failure [33]. iThe
selective emulation is similar in some aspects to our work.
Like us, they note that partial instrumentation can reduce
total monitoring overhead. However their approach for de-
fending against buffer overflow attacks requires source cod
to instrument the binary, since it is based on a canary as We propose vulnerability-specific execution filtering
in StackGuard [12]. In addition, their instrumentationis a (VSEF), a new type of filter that recognizes and filters out

7. Conclusion

execution patterns of an exploit exercising a known vulner- [12] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
ability. VSEF is more accurate than input filtering, and sig-
nificantly faster than full execution monitoring. We giveatw
types of VSEF filters: taint-based VSEF and destination-
based VSEF. The former is more accurate while the latter
may require less instrumentation. We show how to auto-
matically create both filters using a VSEF Filter Genera-
tor. The filters can then be used to automatically harden
a binary against the vulnerability via the VSEF Binary In-
strumentation Engine. We provide an implementation for
both components under Windows and Linux, and run ex-

periments that confirm the accuracy, performance, and gen-

tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: automatic adaptive detection and prevention of
buffer-overflow attacks. IfProceedings of the 7th USENIX
Security Symposiundanuary 1998.

] J. Crandall, Z. Su, S. F. Wu, and F. Chong. On deriving un-

[14]

eration speed. In most cases the overhead of VSEF binary[15]
hardening is only a few percent.

8. Acknowledgments

We would like to thank the following people: Jad Cham-
cham, for implementing TaintCheck on DynamoRIO [10];
Xeno Kovah, for help running experiments; Drew Bernat,
for feedback and assistance with using Dyninst; Timothy
Wong; Emery Berger; and the anonymous reviewers for [1g]
their insightful feedback.

References

(1]
(2]

(3]
[4]

[5]

Dynamorio.
dynanori o/ .
Dyninst. waw. dyni nst . or g.

Metasploit.ht t p: / / www. met aspl oi t. org.

K. Avijit, P. Gupta, and D. Gupta. Tied, libsafeplus: Tso
for runtime buffer overflow protection. ISENIX Security
SymposiumAugust 2004.

R. Balzer. EXDAMS - extendable debugging and monitor-
ing system. Proceedings of the AFIPS SJC84:567-586,
1969.

http://ww. cag.lcs. mt.edu/

[6] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time

[7]

(8]

[9]

(10]

(11]

defense against stack smashing attackdJ$ENIX Annual
Technical Conference 200R000.

P. Bosch, A. Carloganu, and D. Etiemble. Complete x86
instruction trace generation from hardware bus collect. In
23rd IEEE EUROMICRO Conferencg997.

M. Burrows, S. N. Freund, and J. L. Wiener. Run-time type
checking for binary programs. limternational Conference
on Compiler ConstructionApril 2003.

CERT/CC. CERT/CC statistics 1988-2008.t p: / / www.
cert.org/stats/cert stats.html .

J. Chamcham. Dynamic taint analysis: Protecting Win-
dows against worms and zero-day attacks. Master’s Thesis,
Carnegie Mellon University, 2005.

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end contain-
ment of internet worms. IfProceedings of the twentieth
ACM symposium on Operating systems principles (SOQSP)
Oct. 2005.

[16]

[17]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

known vulnerabilities from zero-day polymorphic and meta-
morphic worm exploits. IrProc. 12th ACM Conference on
Computer and Communications Security (CCSP5.

J. R. Crandall and F. Chong. Minos: Architectural suppo
for software security through control data integrityTimap-
pear in International Symposium on Microarchitectuie-
cember 2004.

A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detect-
ing past and present intrusions through vulnerabilitye#fjze
predicates. IfProceedings of the twentieth ACM symposium
on Operating systems principles (SOSBgt. 2005.

H.-A. Kim and B. Karp. Autograph: toward automated ,-dis
tributed worm signature detection. Froceedings of the
13th USENIX Security SymposiuAugust 2004.

V. Kiriansky, D. Bruening, and S. Amarasinghe. Secue-e
cution via program shepherding. Rroceedings of the 11th
USENIX Security Symposiudugust 2002.

C. Kreibich and J. Crowcroft. Honeycomb - creating untr
sion detection signatures using honeypot®ioceedings of
the Second Workshop on Hot Topics in Networks (HotNets-
I1), November 2003.

G. Larsen. Benchmarking performance of a query - part
1 elapsed time. http://ww. dat abasej our nal .
com features/nesql/article. php/ 3298411,
2004.

Z.Liang and R. Sekar. Fast and automated generatiot: of a
tack signatures: A basis for building self-protecting sesv

In Proc. of the 12th ACM Conference on Computer and
Communications Security (CGRP05.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. IfProgramming Language Design and Im-
plementation (PLDL)2005.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford
and N. Weaver. Inside the slammer worm.IBEE Security
and Privacy volume 1, 2003.

N. Nethercote and J. Fitzhardinge. Bounds-checkingesn
programs without recompiling. IRroceedings of the Second
Workshop on Semantics, Program Analysis, and Comput-
ing Environments for Memory Management (SPACE 2004)
Venice, ltaly, Jan. 2004. (Proceedings not formally pub-
lished.).

N. Nethercote and J. Seward. Valgrind: A program superv
sion framework. InProceedings of the Third Workshop on
Runtime Verification (RV’03Boulder, Colorado, USA, July
2003.

J. Newsome, D. Brumley, D. Song, M. R. Pariente, and
T. Kampouris. Efficient and effective self-healing for de-
fending against exploit attacks on commodity software.
Technical Report CMU-CS-05-191, Department of Com-
puter Science, Carnegie Mellon University, May 2005.

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]
(38]
(39]

[40]

[41]

[42]

(43]

J. Newsome, B. Karp, and D. Song. Polygraph: Automati-
cally generating signatures for polymorphic worms Pho-
ceedings of the IEEE Symposium on Security and Privacy
May 2005.

J. Newsome and D. Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generatiorx-of e
ploits on commodity software. IRroceedings of the 12th
Annual Network and Distributed System Security Sympo-
sium (NDSS)February 2005.

F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-
memory for detecting memory leaks and memory corruption
during production runs. IRroceedings of the 11th Interna-
tional Symposium on High-Performance Computer Architec-
ture, 2005.

Y. Ramin.
http://www.redshift.comtyramin/atp/atphttpd/.
M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and
W. B. Jr. Enhancing server availability and security thitoug
failure-oblivious computing. I®©perating System Design &
Implementation (OSDJR004.

T. J. Robbins. libformat. http:// ww.
securityfocus. conitool s/1818,2001.

P. A. Sandon, Y. Liao, T. Cook, D. Schultz, and P. M.
de Nicolas. Nstrace: A bus-driven instruction trace tool fo
powerpc microprocessorlBM Journal of Research and De-
velopment41(3), 1997.

S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a reactive immune system for software
services. INJSENIX Annual Technical Conferen@905.

S. Singh, C. Estan, G. Varghese, and S. Savage. The-Early
Bird system for real-time detection of unknown worms.
Technical Report CS2003-0761, University of California,
San Diego, August 2003.

S. Staniford, V. Paxson, and N. Weaver. How to Own the
Internet in your spare time. lhlth USENIX Security Sym-
posium 2002.

G. E. Suh, J. Lee, and S. Devadas. Secure program esBcuti
via dynamic information flow tracking. I®roceedings of
ASPLOS2004.

P. Szor. Hunting for metamorphic. Wirus Bulletin Confer-
ence 2001.

F. Tip. A survey of program slicing techniquedournal of
programming languages3, September 1995.

A. F. Tool. http://httpd.apache.org/test/

f1 ood.

H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shield:
Vulnerability-driven network filters for preventing known
vulnerability exploits. IPACM SIGCOMM August 2004.

C. Williams and J. Hollingsworth. Interactive binamysiru-
mentation. InSecond International Workshop on Remote
Analysis and Measurement of Software Systems (RAMSS)
2004.

J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automati
diagnosis and response to memory corruption vulnerabili-
ties, 2005.

X. Zhang and R. Gupta. Cost effective dynamic program
slicing. In2004 Programming Language Design and Imple-
mentation (PLDI) conferenc@004.

ATPhttpd.

[44] P.Zhou, W. Liu, F. Long, S. Lu, F. Qin, Y. Zhou, S. Midkiff

and J. Torrellas. AccMon: Automatically detecting memory-
related bugs via program counter-based invariantsThe
Proceedings of 37th Annual IEEE/ACM International Sym-
posium on Micro-architecture (Micro’'04Dec. 2004.

