
BitScope: Automatically Dissecting Malicious Binaries

David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang

James Newsome, Pongsin Poosankam, Dawn Song, Heng Yin

March 18, 2007
Last Modified: May 23, 2007

CMU-CS-07-133

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Automatic analysis of malicious binaries is necessary in order to scale with the rapid development and recovery of
malware found in the wild. The results of automatic analysisare useful for creating defense systems and understanding
the current capabilities of attackers.
We propose an approach for automatic dissection of malicious binaries which can answer fundamental questions such
as what behavior they exhibit, what are the relationships between their inputs and outputs, and how an attacker may
be using the binary. We implement our approach in a system called BitScope. At the core of BitScope is a system
which allows us to execute binaries with symbolic inputs. Executing with symbolic inputs allows us to reason about
code paths without constraining the analysis to a particular input value.
We implement 5 analysis using BitScope, and demonstrate that the analysis can rapidly analyze important properties
such as what behaviors the malicious binaries exhibit. For example, BitScope uncovers all commands in typical DDoS
zombies and botnet programs, and uncovers significant behavior in just minutes.

Keywords: symbolic execution, malware analysis, binary analysis

1/18

1 Introduction

The ability to automatically dissect a malicious binary andextract information from it is an important cornerstone for
system forensic analysis and system defense. Malicious binaries, also calledmalware, include denial of service attack
tools, spamming systems, worms, and botnets. New malware samples are uncovered daily through widely deployed
honeypots/honeyfarms, forensic analysis of compromised systems, and through underground channels. As a result of
the break-neck speed of malware development and recovery, automated analysis of malicious programs has become
necessary in order to create effective defenses. Malware analysis is needed to create signatures for subsequent malware
detection, detecting scams, and in general “knowing thy enemy”.

Automatic dissection of malicious binaries, however, is a challenging task. There is no source code available, and
to make things worse, the binary could be packed or obfuscated to evade purely static binary analysis. There may
be different behavior embedded in the malicious binary which will only be activated under certain conditions such as
receiving a command from the network.

Regardless of the type of malware, there are common high-level questions we would like to answer, such as:

• What actions may the malware perform, and what is the controlflow between potential actions? For example,
does the malware write or delete files, does it send out network packets, and does it accept remote commands?

• How do we run the malware to uncover its behavior? Since malware typically does not come with a user
manual, it may be difficult to derive inputs which cause embedded behavior to be activated. For example, a
malware sample may immediately exit without a particular registry key.

• How do inputs and outputs relate? For example, a DDoS client’s may create a packet which in part depends
upon attacker’s input, and is in part constant.

Any system that can answer these questions is of high value. For example, we can use the space of possible
actions to prioritize future analysis, e.g., malware that deletes files is of high importance. If we can identify unique
characteristics of its behaviors, we may be able to develop signatures to weed out future malware infestations.

Unfortunately, although needed, there has to date been little progress towards useful automatic malware analysis
which can answer these questions. One approach for analyzing malware is to manually use a debugger and try and
reason about the behavior. Manual analysis, however, is clearly slow, error prone, and does not scale.

Another approach for malicious binary analysis is to run themalicious binary sample in a confined environment
such as a virtual machine environment and observe and recordits actions. Such an approach, however, can only
provide very limited information. The logged information records only the external behavior of the malicious binary
running in a specific setting. However, malicious binaries may have many different functionalities embedded which are
only exhibited under certain environments or conditions such as when a correct command is received or a particular
register key is set; and many malware will simply exit and do nothing when conditions are not met. If the virtual
machine environment setup for the test does not satisfy the required conditions, the relevant malicious functionalities
will not be activated. One could try to test the sample with different environment setup and try to feed random network
inputs. However, setting up different environments and testing the sample with them is expensive and ineffective—the
probability of guessing the right environment to satisfy the condition can be extremely low. Thus, such an approach has
extremely limited utility for automatic analysis of malicious binaries, and in many cases, may not be able to produce
any useful results.

Our Approach. We propose a system, calledBitScope,to perform automatic malware dissection. BitScope takes
as input a malicious binary, and outputs information about execution paths. This information is then be used by
supplemental analysis designed to answer specific questions, such as what behavior the malware exhibits, what inputs
activate interesting behavior, and dependency between inputs and outputs.

BitScope dissection is not performed by executing the malware with different concrete input values. Instead,
BitScope abstracts away specific concrete inputs by executing the program onsymbolicinputs which simultaneously
capture a multitude of different inputs to the program. Executing with symbolic inputs allows us to reason about code
paths without constraining the analysis to a particular input value.

BitScope employs whole system emulation in order to intercept any input to the program. Specific inputs are
replaced with symbolic variables. BitScope then symbolically executes all instructions which are derived from an

2/18

struct { int type; char arg[512]; } cmd;
// Code to set up server.
while(1){

read(net_sock, &cmd, sizeof(cmd));
if (cmd.type == 0x1){
DDoS(cmd.arg);

} else if(cmd.type == 0x2){
Spam(cmd.arg);

} else if(cmd.type == 0x3){
Execute(cmd.arg);

} else {
die();

}
}

Figure 1: Our running example.

input. However, many instructions do not depend on the input, and can be executed natively. Thus, BitScope performs
a mix of symbolic and concrete execution.

The BitScope approach gives us two powerful capabilities. First, the execution paths we explore are not constrained
by specific inputs. As a result, we can explore a larger fraction of the program than traditional methods. Second, the
information collected by BitScope can be used for additional, more specific analysis.

We build BitScope, and demonstrate its utility by creating 5analysis components build on top of the core sys-
tem. Our components can answer important questions such as what behavior the malware exhibits, what input/output
dependencies exist, what inputs cause interesting behavior, and the overall flow of the program.

We test our system on two representative types of malware: botnets and DDoS zombies. Botnets and zombies
serve as platforms for attackers to conduct various attacks, often with global repercussions. For example, it has been
reported that a single botnet at one point used up about 15% ofYahoo’s search capacity [2]; 27% of all malicious
connection attempts observed in certain darknets can be directly attributed to botnet-related spreading activity [32];
and it is well known that botnets are the main sources of distributed denial-of-service (DDoS) attacks, spams, and
personal information and identity thefts.

To evaluate our approach, we have run BitScope on several examples of real malware. In each case, we have
observed the malware under traditional conditions and compared these observations with those given by BitScope.
For each example we have been able to discover significant pieces of information that would have been very difficult
or impossible to observe with traditional methods. This information includes commands accepted by various bots
and zombies, capabilities of these malicious programs, anddependency information correlating their inputs to their
outputs.

Contributions. We present and evaluate BitScope, a system for comprehensive analysis of malware. Specifically,
we show how effective analysis can be built on top of mixed execution. Our experiments indicate that we can explore
a significant portion of the malware code: in several cases weuncovered all the commands in our test DDoS zombies
and bot programs. For example, our approach uncovers 709 different API call sites where malware interacts with
its host — call sites such as sending out DDoS packets and executing commands on the host — while running the
program alone only shows 324 call sites. Additionally, as a component of this system we present the first complete
Mixed Execution Engine capable of enabling symbolic memoryaddresses.

2 Goals and Our Approach

2.1 Motivating Example

We motivate our work with a running example, shown in Figure1, which shares many characteristics with typical
malicious binaries. For clarity, we keep the example much simpler than most malware. We also show the malware in
source-code form for ease; in practice our system works on native binaries.

3/18

Our example is a zombie which reads in a command from the network. A command consists of a command type
type and a command argumentarg. The example performs one of 4 different actions based on thecommand: it
initiates a DDoS attack where the argument is the target, sends spam where the argument is the spam message, will
execute a command given by the argument on the local host, or die.

2.2 Goals and Challenges to Malicious Binary Analysis

Given a malicious binary program, our goal is to automatically uncover as much about the malware as possible includ-
ing what actions the binary may perform, what behaviors it may exhibit, what inputs it accepts which may activate
different behaviors, and other questions.

More concretely, in our running example, we would like to learn:

• Control flow. For example, we would like to learn that the example implements a loop which continually reads
in attackers commands from the network.

• Behaviors. Our example implements 4 different behaviors: a DDoS behavior, a spam behavior, a remote
execution behavior, and a die behavior.

• Inputs. We would like to learn actual inputs to the program which activate the behaviors. For example, we are
interested in what inputs will cause the program to exhibit the four different behaviors mentioned above.

• Dependencies.We would like to learn that the DDoS behavior is dependent upon the input supplied by the user,
in specific, when the first int is 0x3, and the host is the remaining bytes. Similarly, we would like to learn that
the spam messages sent are dependent upon an argument supplied by the user.

The central problem is how to automatically extract this information from the binary. One approach is to statically
analyze the binary. However, static analysis of malicious binaries is impractical. First, static binary analysis in general
is a hard problem. We cannot simply use source code analysis techniques as there are huge differences in scale and
semantics. For example, while typical source code programshave functions, types, and local variables, assembly has
instructions, does not necessarily adhere to functional abstractions even when compiled from a higher level language,
has no local variables, one global memory, and a number of other problems that make source code analysis unsuitable.
Our simple example compiles to over 200 lines of assembly.

Second, attackers may encrypt or pack the binary, thus hiding the actual instructions which get executed. Code
packing statically compresses a binary program (or regionsof a binary program). A code packer will insert an un-
compress stub routine which runs at load-time. The uncompress stub uncompresses the compressed binary image in
memory, then transfers control to it. Code encryption encrypts the executable segments of a binary program. A stub
routine takes in a password, decrypts a stream of instructions, then executes them. The program may be completely
decrypted in memory, or incrementally decrypted and executed on the fly. Code packing and encryption make static
analysis difficult. While in theory we may be able to unpack the code statically then analyze it, in practice we usually
do not know how the code was packed or encrypted, e.g., what algorithms were used, in the first place.

2.3 The Intuition Behind Our Approach

The intuition behind our approach is we can run the binary andcollect the desired information. The main questions we
must answer are how to run the program so that we can collect asmuch information as possible. As aforementioned,
most malware has embedded behaviors which will only be activated by certain inputs. Simply running the program on
random inputs is insufficient, since random inputs will likely exhibit uninteresting behavior.

Instead of using specific inputs, we run the program using symbolic inputs which stand in for a multitude of
specific inputs. Any instruction which depends upon the input must then be performed symbolically. For example, the
instructionadd x,y wherex andy are derived from the input creates the symbolic expressionx = x + y, and is
not restricted to specific values ofx or y. Tests and conditional jumps, however, add restrictions. The true branch in
the conditional jump restricts the current symbolic formula to values which are non-zero. Similarly, the false branch
restricts the symbolic formula to values which are zero. Thus, symbolic execution can allow us to explore different
program paths and observe the malware’s behaviors under different conditions.

In order to enable the user to introduce symbolic inputs for any input source, e.g., a network input, a file descriptor,
libraries, etc., we build a symbolic system environment which provides symbolic inputs to the malware as it executes.

4/18

Symbolic
system

environment

Extractor

Rudder:

Mixed
execution

engine

T F

Path
Selector

Binary
Malicious

BitScope

CFG

Multi−path Dependency Info.

Impacts / Behaviors

Solutions / Inputs

Single−path Dependency Info

Figure 2: BitScope Architecture Overview

We perform a mixed symbolic and concrete execution on the malware, where we symbolically execute instructions
which depend on the symbolic inputs, and concretely executeinstructions which only depend on concrete values.

Mixed execution produces symbolic formulas in terms of the input values. The generated formulas can be used to
facilitate subsequent analysis. For example, we can generate a specific input which will execute a desired path. Other
analysis include driving execution down alternate code paths, reasoning about the control flow of the program, and
inferring dependencies between inputs and outputs.

3 BitScope System Overview

At a high level, BitScope takes a malicious binary as input and outputs a series of analyses. This output includes: a
control-flow graph of discovered code, inputs required by the binary to drive the different execution paths discovered,
impact that the binary has on the system, and dependency between the inputs and outputs of the malicious binary.

Our system is composed of four components which complement each other to yield this comprehensive view of the
analyzed malicious software. As shown in Figure2, these components include: the Symbolic System Environment,
Rudder, the Path Selector, and the Extractor. We give an overview for each of the components below.

The Symbolic System Environment. The Symbolic System Environment monitors the flow of information in and
out of the malicious binary. Specifically, it manipulates inputs to the malicious binary to control the execution of the
malicious software, and it records the outputs from the malicious binary including its impact on the system such as
sending packets and writing to files. The logged informationwill be used by the Extractor to provide analysis results.

The Symbolic System Environment is built on top of the whole-system emulator, QEMU. At a high level, the
Symbolic System Environment works by intercepting WindowsAPI calls made by the malicious software. We do this
by adding hooks to QEMU’s execution.

A malicious binary receives input data whenever a Windows API call returns some information to the malicious
software. When this happens, instead of allowing the actualconcrete value to be returned, the Symbolic System
Environment will create a new symbolic variable that represents the return value. This symbolic variable represents all
the values that could have been returned to the malicious binary. Rudder, described later, uses these symbolic variables
to perform symbolic execution on the malicious binary.

Information also flows out of the system when Windows API calls are made. Therefore, we log the calls that are
made as well as the arguments to these calls. If the argumentsto these calls are symbolic, then we determine how
these symbolic outputs correspond to the original symbolicinputs.

For example, consider:
send(fd, buf, 30, 0);

In this call, the data being written to the socket is considered output from the binary. Ifbuf is marked as symbolic,
we will find howbuf relates to the inputs the malicious binary has received. Theabove call also returns information

5/18

to the binary. Therefore, we will mark the return value as symbolic. Later, if the return value is checked for success,
this will allow us to investigate what the malicious binary does both in case of success and in case of failure.

Rudder. Rudder is responsible for performing mixed concrete and symbolic execution on malicious software. Sym-
bolic execution is necessary to handle the symbolic variables that are introduced by the Symbolic System Environment.
Meanwhile, concrete execution is used as an optimization for all operations that do not depend on those symbolic vari-
ables.

As malicious software is executed, operations will be performed on the symbolic variables that the Symbolic
System Environment introduces. Symbolic execution allowsus to track how other values become symbolic as the
program executes and to relate these derived values to the original symbolic variables that were introduced. For
each newly derived symbolic value, we build a formula capturing this relation. Then, when we reach a branch in
the malicious code that depends on a symbolic value, we can express the condition of that branch in terms of this
formula. In particular, the constraint required to take thetrue or false branch, called apath predicate, is the logical
conjunction of the constraints of all previous branches along the execution path and the constraint introduced by the
current branch. Rudder builds this formula in terms of the original symbolic variables introduced by the Symbolic
System Environment.

By solving the formula that Rudder has constructed, we can determine which directions of the branch are satisfiable
under the current constraints. The true benefit of the Symbolic System Environment shows here. For each satisfiable
path, we can find the original input values that would ordinarily drive execution down that path. Newly discovered
feasible path(s) are then added to the pool of feasible pathsmaintained by the Path Selector to be further explored.

The Path Selector The Path Selector keeps a pool of feasible paths to be furtherexplored.
In general, it is unreasonable to explore all the paths through a binary. In many cases, loops introduce an infinite

number of such paths. Therefore, it is the job of the Path Selector to prioritize the paths that are available. Since
different approaches work better in different situations,the Path Selector is modular to allow different algorithms
to be dropped in. For example, if the user is able to disassemble the input binary and find parts of the code that are
specifically interesting to investigate, the Path Selectorcan use the disassembled code to give shorter paths to the points
of interest a higher priority. In other cases, where no such information is available, the path selector can prioritize paths
based on a metric such as symbolic branch coverage. In this case, paths involving unvisited branches will be given
priority over paths that are retracing visited code.

The Extractor The Extractor is responsible for analyzing the informationthat other system components obtain and
providing that analysis to the user. It takes information from Rudder and the Symbolic System Environment and
produces outputs such as a control-flow graph of discovered code, inputs required by the binary to drive the different
execution paths discovered, impact that the binary has on the system, and dependency between the inputs and outputs
of the malicious binary.

4 System Design and Implementation

In this section we describe the details of the design and implementation of the BitScope system, including the four
components: Symbolic System Environment, Path Selector, Rudder, and Extractor.

4.1 Building up Symbolic System Environment

Using the Symbolic System Environment, we manipulate the environment of the malicious code. As described in
Section3, the goal of the Symbolic System Environment is two-fold; itcreates symbolic inputs the malware reads in
and it logs the actions of the malware.

It achieves these goals through hooking Windows API calls. These hooks are written as modular plugins to the
Symbolic System Environment. Windows API calls are intercepted by adding code to QEMU that executes right
before the emulated environment would jump to a hooked function. When the emulated CPU reaches the entry point

6/18

of a hooked function, the QEMU will execute the hook associated with that function. When the hook is finished, it
can allow the actual API function to be executed, or simply jump over it. If the actual function is called, another hook
can be dynamically added to be called when the API function returns.

Hooks can mark pieces of data in the system as symbolic. For example, whenrecv is called, we often will mark
the buffer it writes into as symbolic, which allows us to trace its effects throughout the system. Hooks most commonly
mark return buffers and return values as symbolic. However,hooks can be far more complex, and even maintain state
of their own between calls. As described in the next section,Rudder is notified of the creation of symbolic variables
by the Symbolic System Environment, which will create new symbolic variables and notify Rudder which register or
memory location it represents.

Hooks that we implement also serve a second purpose. Since hooks execute in QEMU, they have access to all
information about the emulated machine. For example, they can inspect memory or examine register state. This yields
the ideal environment to log information about API calls that are made. When an API call is made, we note where it’s
called from as well as the arguments it’s called with. Additionally, we make note of whether the arguments have been
marked as symbolic. If they have, the information from the Symbolic System Environment and Rudder will allow the
Extractor to correlate the call being made to the original symbolic system inputs. This correlation between input and
output provides important dependency information and makes these logs significantly more valuable than traditional
logging.

4.2 Mixed Concrete and Symbolic Execution

We use the term Mixed Execution to refer to the combination ofconcrete and symbolic execution. In our system,
this is realized by Rudder, which is responsible for actually executing the malicious binary. Additionally, Rudder
is responsible for ensuring that execution paths that we discover are realizable, i.e., that there exists real inputs to
the system that will drive execution down the same paths. Theconcept of Mixed Execution originally proposed
in EXE [10] and DART [20] for bug finding in source code. To the best of our knowledge, we are the first one
to develop a fully-functional Mixed Execution Engine for binaries including enabling symbolic memory addresses.
Mixed Execution on binaries although is similar in spirit toMixed Execution on source code, however, the details
of the design and implementation are completely different,and Mixed Execution on binaries is significantly more
challenging as binaries in general are harder to analyze than source code.

By utilizing symbolic execution, Rudder is able to find branches in the malicious binary that depend on symbolic
variables as the program executes. When this type of branch is found, Rudder will construct a path predicate for each
branch direction. Each path predicate describes the constraints the symbolic inputs need to satisfy for the program
execution to go down that path. The new path predicate is the conjunction of the constraints of the current path before
the current branch and the constraint imposed by the currentbranch. Once these path predicates are constructed,
Rudder will use the Solver to determine if each direction of the branch is satisfiable. All possible directions are given
to the Path Selector to enqueue as future paths to be explored.

For each instruction, we perform mixed execution by following these steps. First, we must determine whether
the instruction will execute concretely or symbolically, this is described in Section4.2.1. If the instruction can be
executed concretely, we simply execute on the real CPU. Otherwise, we must synchronize the symbolic machine with
the concrete machine, as described in Section4.2.2. Once the machines are synchronized, we are ready to translate
the instruction to IR (Section4.2.3) and execute it symbolically (Section4.2.4.)

4.2.1 Determine Whether to Execute an Instruction Symbolically or Concretely.

An instruction can be executed concretely iff all operands of the instruction are concrete. Thus, deciding whether
an instruction should be executed concretely or symbolically requires information about which data in the system is
concrete and which is symbolic. For registers, we simply maintain a table denoting whether each register contains
symbolic or concrete data. For memory, we keep a page-table type data structure that shadows each valid memory
location, marking it as symbolic or concrete. This data structure allows us to efficiently track all valid memory. Every
instruction executed symbolically must update this structure to reflect the propagation of symbolic data throughout
the system. Additionally, when the Symbolic System Environment notifies Rudder of a new symbolic variable, the
locations represented by this symbolic variable must be marked as symbolic.

7/18

Instructions i ::= ∗(r1) := r2|r1 := ∗(r2)|r := v|r := r1�bv

|r := �uv | label li | jmp ℓ | ijmp r

| if r jmp ℓ1 else jmp ℓ2

Operations �b ::= +,−, ∗, /,≪,≫, &, |,⊕, ==, ! =, <,≤ (Binary operations)

�u ::= ¬, ! (unary operations)

Operands v ::= n (an integer literal)| r (a register)| ℓ (a label)

Types τ ::= reg64t | reg32t | reg16t | reg8t | reg1t | Array of τ * τ

Table 1: Our RISC-like assembly IR. We convert all x86 assembly instructions into this IR.

If we determine that all operands of the instruction are concrete, we can simply execute the instruction concretely
and continue with the next instruction. Otherwise, we must continue toward symbolic execution as described below.

4.2.2 Synchronize Machines

Mixed execution means that many instructions will be executed concretely and never be executed on the symbolic
machine. Therefore, if an instruction to be symbolically executed has any concrete operands, we must update those
concrete values inside the symbolic machine. In the case of registers, this is trivial– for an instruction about to be
symbolically executed, we simply copy all of its concrete register operands from the real CPU to the symbolic machine.
Memory accesses with concrete addresses are handled similarly. However, we also have to deal with memory accesses
where the memory address itself is symbolic, which is described below.

Symbolic Memory Addresses. A symbolic memory address means that the data specifying which memory is to be
read or written is itself symbolic. This means that we don’t specifically know which memory location is about to be
accessed.

In the case of a memory read, we know that some memory is being accessed, but because the address is symbolic,
we don’t know exactly which memory this is. In this case, we use the Solver to determine the range of possible values
of this address. In some cases, the range that the Solver returns is too large to effectively consider. In this case, we
add a constraint to the system to limit its size, therefore limiting the complexity that is introduced. In practice, we
found that most symbolic memory accesses are already constrained to small ranges, making this unnecessary. For
example, consider code that iterates over an array. Each access to the array is bounded by the constraints imposed by
the iteration itself. Note that this is a conservative approach, meaning that all solutions found are still correct. Once a
range is selected, we simply move all concrete memory valuesin that range into the symbolic machine.

In the case of a memory write, we apply a similar technique to find the range of addresses thatcould bewritten.
We update the page-table type data structure mentioned before and mark that entire range as symbolic, thus all future
accesses to that memory will be done with the symbolic machine.

In both of these cases, we continue correct mixed execution after the symbolic memory access.

4.2.3 Translating to an Intermediate Representation (IR).

In order to perform sound symbolic execution, we must correctly interpret the semantics and effects of all assembly
statements. x86 is much too complex to analyze directly. Forexample, parts of a register can be directly referenced
and modified (e.g.,%al references the lower 8 bits of%eax), there are single instuction loops (repz instructions),
instructions with implicit side-effects (arithmetic instructions set theeflags register), and the semantics of each
instruction may depend on the operand addressing mode (e.g., 8, 16, or 32-bit operands). Thus, we translate each x86
instruction into a simplified intermediate representation(IR). Our IR resembles a RISC-like assembly language, as
shown in Table1.

Our IR has assignments (r := v), binary and unary operations (r := r1�bv andr := �uv where�b and�u are
binary and unary operators), loading a value from memory into a register (r1 := ∗(r2)), storing a value (∗r1 := r2),

8/18

direct jumps (jmpℓ) to a known target label (labelℓi), indirect jumps to a computed value stored in a register (ijmpr),
and conditional jumps (ifr then jmpℓ1 else jmpℓ2). Memory is treated as an array of bytes. In the IR, we generate a
variablevar mem:reg8 t[reg32 t] to correspond to memory, which is an array which takes a 32-bit index, and
returns an 8-bit value.

The translation from an x86 instruction to our IR is designedto model the semantics of the original x86 instruction,
including all implicit side effects, register addressing modes, and other issues. We perform all symbolic execution on
IR statements.

For example, the following assembly instructions add two numbers and then jump to address0xff if the result
overflows%ebx, otherwise falls through is:
0x1. add 0x1254, %ebx
0x2. jo 0xff
0x3. ...

We translate this to the IR as:
T_32t1 = 0x1254;
// R_EBX is the variable in the IR for %ebx
T_32t0 = R_EBX + T_32t1;
// Set R_OF to 1 if there is overflow
R_OF = (1==(1& (((R_EBX⊕ (T_32t1⊕4294967295))

&(T_32t2⊕T_32t0))≫31)));
cjmp(R_OF == 1, 0xff, 0x3)

whereR OF is the variable in the IR for the overflow flag, and thecjmp jumps to location 0xff if the overflow flag is
set, and falls through to the next instruction otherwise.

4.2.4 Symbolic Execution

In concrete execution, a register or a memory location takesa concrete value such as integers. At a high level, symbolic
execution allows registers and memory locations to containsymbolic expressions in addition to concrete values [26].
Thus, a value in a register may be an expression such asX + Y whereX andY are symbolic variables.

For example, if we symbolically execute the program:
x = y+1;
z = x *3;
k = 4+4;
mem[k] = z;

we produce the final valuesz = (y+1)*3 andmem[4+4] = (y+1)*3. Note that in pure symbolic evaluation
we need not evaluate the expression “4+4” to 8: integer literals can be treated just like variables.

Pure symbolic execution as described can produce formulas exponential in the size of the program, e.g. executing:
x1 = x0+x0; x2 = x1+x1; x3 = x2+x2;

produces the formulax3 = x0+x0+x0+....+x0 where there are 8x0’s. We use a variant of straight symbolic
execution where common sub-expressions can be named using alet expression, reducing the overall size. For
example, our symbolic evaluator will evaluate the above example as:

let x1 = x0+x0 in let x2 = x1+x1 in x2+x2

More specifically, our symbolic evaluator performs the following action based upon the type of each statement to
execute:

• We generatelet expressions for assignment operations. Alet expression binds a unique variable name to
the expression computed.let expressions avoid blowup due to substitution during symbolic evaluation as
mentioned above.

• We symbolically execute loads and stores usingλ-abstractions. A store creates a new memory, which is a new
λ abstraction. A load is modeled as aλ-application to mimic reading from the current memory state. Theλ-
abstraction acts like an array: given an address, it returnsthe last value written to that address. LetM0 represent
an initial memory state. Then a store*a := v to memory addressa with valuev (in memory contextM0)
can be modeled as an if-then-else expression with argumentx:

M1

.
= λx.if x == a thenv else (M0 x)

9/18

This is a function which takes an argument — an addressx — and returns the value associated with the address,
e.g.,v if x == a. A memory read of addressar is performed by function application (Mi ar)

.
= if ar == a

thenv else (Mi−1 ar). The application evaluates the if-then-else expression,returning the last-written value to
the addressar.

• For conditional jumps of the form:

cjmp(e, true branch, false branch)

build a path predicate for following the true branch and a path predicate for the false branch. For example,
if the expressione is R OF == 1, and our current symbolic formula forR OF is φ, then the path predicate is
φ ∧ (R OF == 1) for the true branch, andφ ∧ (R OF 6= 1) for the false branch.

4.2.5 The Solver

A path predicate is a boolean function. Thus, a path predicate is either satisfiable or unsatisfiable. A satisfiable path
predicate means that there is an assignment of values to symbolic variables in the path predicate which make it true.
Since the symbolic variables in a path predicate are input variables, a satisfiable path predicate means there exists a set
of inputs which would execute the path. Conversely, an unsatisfiable path predicate means that the path would never
be executed.

We employ a Solver, such as a theorem prover or decision procedure, to check whether a path predicate is satis-
fiable. If a path predicate is satisfiable, the Solver returnsan example solution. The example solution makes the path
predicate true, which by construction is thus an input whichtakes us down the program path represented by the predi-
cate. Rudder is extensible; we can plug in any Solver appropriate, and our system thus can automatically benefit from
any new progress on decision procedures, etc. Currently in our implementation, we use STP as the Solver [10,19].

4.2.6 String Functions Optimizations.

In our experiments, we noticed that often the greatest complexity in our paths was introduced by string functions
(strcmp, strtok, etc.). These string functions are extremely common in C code. We found them to be especially
common in our examples, because most of these examples require parsing string input.

Upon investigation, we found that the complexity from thesefunctions is not because of the formulas they create,
but because of the complicated execution paths they create.In general, when we arrive at a branch that depends on
symbolic data, we can pass this information to the Solver andfind which directions are possible. For example, consider
strlen, which could be implemented like this:

int i = 0;
while(*str++)i++;
return i;

In the shown code, if the input string is based on symbolic data, then clearly the returned value will depend on how
that symbolic data is constrained. However, the value that is returned is never directly manipulated with symbolic
data. Therefore, the return value of this function isalwaysconcrete. This is still completely correct. However, we are
now, essentially, solving across the space of possible paths, instead of choosing paths and solving across the space of
symbolic values.

In an effort to reduce this complexity, we have implemented function summaries for many of these functions.
When one of these string functions would need to be executed symbolically, we instead execute our function summary
which is responsible for propagating symbolic data in the same way that the original call would have. For example, in
the case ofstrlen, we observe that the desired effect is for symbolic strings to have symbolic lengths. Therefore,
we create a summary that will avoid actually callingstrlen and instead return a new symbol.

It’s important to note that these summary functions are onlyan optimization. They provide a method to reduce
the number of paths through a given program. Without these summary functions our analysis is correct. However, we
have observed better performance when using these functions.

After we obtain results using these summary functions, we use these values in a run with these summary functions
disabled. This allows us to make several simplifying assumptions in our summary functions without losing overall
correctness.

10/18

4.3 Path Selector

Simple Path Selection The Path Selector is responsible for prioritizing the pathsthrough malicious software. In
practice, the number of paths through software is very large, or even infinite. Therefore, we require algorithms that
will allow us to prioritize these paths in order to find interesting paths in a reasonable amount of time. We have
designed BitScope to work efficiently with many different levels of information about the malicious binary. Therefore,
the Path Selector allows different algorithms to be used based on this information level.

In the worst case, the Path Selector has noa priori knowledge of the binary being analyzed. In this case, the Path
Selector will attempt to explore as much of the unknown executable as possible. As Rudder queries the Path Selector
about branches, the Path Selector will build a representation of the parts of the executable that have been explored.
When future queries are received, priority is given to branches that will lead outside the currently known paths.

In a slightly improved case, we may have a binary which we are capable of at least partially disassembling. In
this case, we locate points in the assembly that are interesting. These ‘interesting points’ include potentially malicious
function calls. Given this information, the Path Selector will give paths that reach these interesting points a higher
priority.

In both of these cases, the chief goal of the Path Selector is to use known information to most efficiently gather
more information.

4.4 Extractor modules

We have implemented several Extractor modules in BitScope,which perform a range of useful analyses. Each module
provides one more analyses. Modules can also be combined to build more complex analysis.

Control Flow Graph Module. The Control Flow Graph Module generates a control flow graph (CFG) of the ana-
lyzed binary. A CFG is useful for answering questions such aswhat system or library calls the binary uses, and what
order the calls are used in. For example, simple control flow analysis can be used to show malware implements a
server poll-accept-action loop. Control flow provides an important basis for subsequent analysis, and also gives a high
level picture as to how different procedures or code segments relate.

Previous work has shown the value of determining the controlflow of binaries when static disassembly is pos-
sible [28]. However, malware often decompresses, decrypts, or otherwise dynamically generates code at run time,
making static disassembly impractical.

The Control Flow Graph Module creates as much of the CFG as possible via static analysis, and then continuously
updates the CFG based on the dynamic execution of the binary.As Rudder finds and executes new paths, the Control
Flow Graph Module adds them to the CFG. For each run, Rudder outputs which instructions were executed to the
Control Flow Graph Module. We fill in the control flow graph by driving execution down different code paths, as
described below. In addition, when code is dynamically decompressed, decrypted, or otherwise generated, the Control
Flow Graph Module dumps the memory image and performs staticwhole-program control flow analysis to add the
new code to the CFG.

Input Analysis Module Malware does not typically come with documentation, so learning how to properly run the
malware, usually to observe its behavior, can be a daunting task. We implement an Extractor module which learns
new, interesting input values by analyzing and solving the generated path predicates. For example, in our experiments
we are able to learn the various input commands for bots.

One analysis provided by this module is to find the set of inputs that drive execution down a particular program
path. A path predicate by design is a formula which is satisfiable for inputs that are accepted by a program path. We
implement a feedback loop which solves path predicates to generate new inputs. Given the predicateφ, the Solver
generates an example inputI that satisfiesφ and hence leads us down the corresponding program path. We then set
φ = φ ∧ (¬I), and iterate to get a new inputI ′, and so on.

Another analysis provided by this module isgoal-orientedinput generation, which finds an input that drives
execution to a particulartarget. The input to goal-oriented input generation is a target node to reach, and the analysis
generates an input which drives execution to the target node. We generate inputs for a particular goal by driving
execution down a path to the goal, generating a path predicate which is then solved for the input. We implement

11/18

goal-oriented input generation using the CFG Extractor module to keep track of which paths we have explored in the
malware. Note if the code is encrypted, we can still use this technique to explore previously untaken branches by
specifying the branch target as the goal target.

For any node in the CFG, there are typically many paths that wecan choose from. We isolate which paths could
reach the target node by creating a chop of the CFG which includes only those paths from entry to the target node.
We then select the shortest path from source to target, called the target path. The target path consists of a sequence of
conditional jumps targets to take. The module uses Rudder todrive execution down the target path by only solving for
the path predicate for the desired conditional jump targets. If the path utilizes parts of the CFG that were discovered
via static analysis, the selected target path may be unrealizable due to imprecision of the static analysis;i.e., no input
would ever take that path. The selected path is unrealizableif we reach a point where the Solver is unable to find an
input that satisfies the path predicate of the next desired conditional jump target. When that happens, we iterate with
the next shortest path. When we discover a realizable path, we solve the path predicate and output the answer as the
goal-oriented input.

Impact Analysis Module. We often want to know what types of behavior a particular piece of malware may exhibit.
For example, we may want to know if it deletes files or sends network packets. We have implemented the Impact
Analysis Module which determines behaviors dependent uponWindows API calls. We are able to detect control flow
in the malicious binary that depends on API calls by using symbolic execution. By solving the constraints that Rudder
constructs for this control flow, we can explore all code blocks dependent on these API calls. Using this method, we
get much better code coverage than analysts simply running an executable would observe. Additionally, we log actions
taken by the malware during these runs. This allows analysisof the impact this malware can have on a system.

Single-path Dependency Analysis Module. In many cases there is a straight-forward relationship between input
and output behaviors. For example, a bot may accept a commandto DDoS a particular host, and that host then appears
in the output DDoS attack. The Single-path Dependency Analysis Module uncovers such dependencies.

We perform single-path dependence analysis on the information generated by Rudder. Instructionb is dependent
upon instructiona if a computes a value thatb uses. For example, one system call may set a value a subsequent system
call uses, e.g.,stat a filename, which is subsequently opened. Dependence analysis is calculated backwards: for the
goalb, we calculate all instructionsa which went into the calculation ofb.

Multi-path Dependency Analysis Module. The Multi-path Dependency Analysis Module analyzes several runs of
a program, using several different inputs, to infer additional dependencies.

We have implemented a genericdata-flow analysisExtractor component. Dataflow analysis can be used to compute
many interesting dependencies. Two useful ones we have implemented are may-constant analysis, which determines
any constants used in the program, and global-value numbering, which determines if the program computes the same
sub-expression several times.

May-constant analysis has proven useful for uncovering constants in packets sent out by malware. May-constant
analysis determines, for each symbolic operation, if the output must be one of a set of constants, and if so, what
possible constants it may be. Constant analysis is performed inductively. Any literal integer is a constant. Then, any
instruction with all constant arguments is also a constant.One detail is that loops may produce a potentially infinite
number of constants. Our analysis limits the number of constants to less than a pre-defined parameterk.

Global-value numbering is useful for a similar reason: we can see if observable output, or parts of the observable
output, are related by an expression. The global value numbering algorithm is a bit more complicated, but essentially
involves recognizing when two computed expressions are equivalent. Both global value numbering and may-constant
analysis are covered in more detail in standard compilers books such as Muchnick [29].

4.5 System Implementation

We have implemented the above components in about 38,000 lines of C/C++ and OCaml code. Since we want our
system to work with binaries (even when they are packed), we employ dynamic binary instrumentation in our system.
In particular, we use QEMU [8], a whole system emulator that uses dynamic translation technique, as the basis for

12/18

dynamic binary instrumentation. At runtime, a block of instructions in the guest system are translated into a piece of
code in the host system and then executed. This feature enables us to perform dynamic instrumentation on any code
in the guest system (including code in the kernel space).

Symbolic System Environment Implementation. QEMU only provides a hardware-level view of the system, such
as the state of registers and memory. For the analysis of malicious code, a software-level view is required. In particular,
we want to know which process and which module (i.e., shared library or main executable) an instruction comes from.
In addition, if this instruction is a call to a Windows API, wewant to know which Windows API it is and its argument
information.

To achieve these, we have developed a kernel module, and loadit into the guest system to obtain the necessary
software-level information. This kernel module is aware ofthe creation and deletion of processes. When a new process
is created, the kernel module obtains the value of current CR3 register. As the CR3 register contains the physical
address of the current process’s page table, it is different(and unique) for each process. The kernel module is also
aware of new modules being loaded. For each newly loaded module, the kernel module obtains its base address, and
scans its exported section for the offsets of exported functions. Then we obtain the entry point of an exported function
by adding the base address to its offset. All this information is passed on to the Symbolic System Environment through
a predefined I/O port.

Thus, when executing a guest instruction, we can check the current CR3 to know which process is running, and
we only perform instrumentation on the process(es) under analysis. At the beginning of every basic block, we check
the current program counter with the entry points of WindowsAPIs that we are interested in. If it matches one entry,
then we perform instrumentation on it. The instrumentationincludes logging the function name and its argument list,
and special handling for some APIs such as introducing symbolic inputs.

Obtaining the argument list of an API call requires examining the stack according to its prototype. We have
developed a parsing tool to scan the API prototypes in Windows header files and automatically generate for each API
a stub function that records the argument information.

Some APIs need special handling for either introducing symbolic inputs or implementing function summaries
(such as for string functions). For most such APIs, the instrumentation is to simply make it return immediately with
symbolic variables. For instance, whenrecv is called, we make it return immediately and mark the return value
and the receiving buffer as symbolic. However, the instrumentation can be complicated for some APIs. An example
is gethostbyname, which returns a pointer tostruct hostent if successful, and NULL otherwise. We have
to wait until it returns to mark the real content as symbolic,instead of simply marking the pointer as symbolic. In
addition, in case the malware relies on the success of this call to do evil, we replace the argument of host name with
“localhost” before the real invocation and recover it afterreturn.

Currently, we have implemented hooks for all WinSock functions, some file operation functions such as Registry
functions, and most functions involving time and date to introduce symbolic inputs. We have also implemented
function summaries for most functions described instring.h.

The implementation of this component consists of about 14,000 lines of C code, excluding the stubs generated
from the parsing tool.

Rudder Implementation. Rudder is implemented in about 14,000 lines of C/C++ code and10,000 lines of OCaml.
We use STP [10, 19] as our Solver in this version of Rudder. STPis a decision procedure well suited for the types of
operations commonly found in the formulas Rudder constructs.

Path Selector Implementation. We have designed our system to allow easy implementation of new path selection
algorithms. Currently, we have two interfaces which these algorithms can use: a linked in code interface, and a separate
socket interface. In both cases the interface allows Rudderto give current path data to the path selection algorithm
and receive commands in return. In our current implementation, these commands simply tell Rudder which path of
a branch to select or if it should restart execution. In the future, we envision storing multiple virtual machine states,
which will allows us to suspend and resume execution from anybranch seen in the code.

The code interface is currently used by our main explorationalgorithm. This algorithm builds a graph of the code
that it has seen in current and previous runs and chooses new paths based on least traveled branches.

13/18

We have also implemented a socket interface. This allows path selection algorithms to be built and run separately
from the main application. When a new path decision needs to be made, Rudder will simply send a request to the
remote Path Selector which will respond with the new action.We use this interface with our second algorithm. This
algorithm loads in the disassembly for a certain binary as well as a list of desired code locations. Currently, this
algorithm will then give priority to shortest paths betweenthe malicious software’s entry point and the desired code
location.

Extractor Implementation. Extractor modules are implemented in OCaml. We originally developed modules in
C/C++, but found we could implement the same algorithms in OCaml much more concisely (and with fewer bugs
thanks to strong type checking).

Our control flow graph module consists of about 1600 lines of OCaml. The CFG module produces graphs in
the Graphviz DOT format. The CFG module can also compute the chop, a callgraph which depicts the callee/callers
relationships, and a supergraph which shows both the instruction control flow and callee/caller relationships together.

We build the dependency analysis as dataflow analysis. The generic dataflow analysis is built on top of the CFG,
and adds about 165 more lines of code. Our specific dependencyanalysis is about 1000 lines of OCaml code. Our
implementation follows that of Muchnick [29].

We learn new inputs by querying STP [10, 19] with the generated path predicate’s. About 1000 lines are devoted
to translating expressions in our IR into STP.

5 Evaluation

We have evaluated BitScope with 8 representative malware samples. We get some of them from Malfease [1], and the
others from collaborative researchers. We present detailed analysis results on three of them and summarize our results
on all samples. In our experiments, we run BitScope on a Linuxmachine with a dual-core 3.2GHz Pentium CPU and
2GB RAM. Inside QEMU, we allocate 512M RAM for the guest system with Windows XP Professional installed.
For each sample, we keep the system running until no more conditional jumps depending on symbolic variables are
discovered for 2 minutes.

5.1 Detailed Analyses

Here we present detailed analysis results on three pieces ofmalware, Trin00, TFN2K, and SDBot 04b respectively.

5.1.1 Trin00

Trin00 is a zombie program for launching DDoS attacks [15]. It waits for commands sent from a master and launches
DDoS attacks according to the commands. Trin00 was originally a Linux zombie, but we have ported it to Windows
for our analyses.

As a baseline comparison, we have executed Trin00 without BitScope, and have observed that it creates a UDP
socket, binds it to port 27444, and then sends hello messages(“*hello*”) to 3 IP addresses on port 31335. We believe
these IP addresses to be those of the master machines. Then the program simply waits and does not exhibit further
behaviors.

We then ran BitScope on the Trin00 zombie program. The end-to-end time for BitScope to analyze Trin00 took un-
der 3 minutes. Within this time, BitScope fully explored theprogram and discovered 218 conditional jumps depending
on symbolic inputs. BitScope is able to extract much richer information about Trin00 than the baseline case.

First, BitScope identified several network inputs which activate different behaviors in Trin00. By analyzing the
information from the Symbolic System Environment and Rudder, the Input Analysis Module identified that the input
message has a special format– in particular, it is composed of three parts, Input1, Input2, and Input3, separated by
spaces. Further, the Input Analysis Module identified 7 specific values for Input1, “aaa”, “bbb”, “shi”, “png”, “dle”,
“rsz”, and “xyz”, which will activate different functionalities in Trin00. Essentially, Input1 provides the command.
Note that the information BitScope extracted about the inputs can serve as a preliminary signature to flag potential
Trin00 control traffic using the UDP port number 27444 and the7 commands.

14/18

IP header ICMP header
0

’+’ ’h’ ’+’ ’@’
20 312928 30

(a) Input Analysis on input message.

0 2015141312 16 91
input[31:34]random()

(b) Single-path dependency analysis on output message.

16

0000

6 1210984

4500

20

01

20

0800F7FF

24 91+p

(c) Multi-path dependency analysis on output message foundpacket to
have variable size

Figure 3: Analysis results on TFN2K input and output messages.

The Impact Analysis Module identified new functionalities when program execution followed the paths activated
by these commands. For example, when Input1 contains the values “aaa” or “xyz”, Trin00 will continuously send out
UDP packets.

The Dependency Analysis Modules output further information on the dependency between inputs and outputs.
First, the Single-path Dependency Analysis Module identified that for the initial hello message sent by Trin00, the
payload and destination IP addresses are independent of other symbolic inputs and the other API calls. The Multi-
path Dependency Analysis Module shows that the payload and the destination IP addresses are constant across all the
different runs. Second, for the UDP flooding packets generated when commands “aaa” or “xyz” are sent, the Single-
path Dependency Analysis Module indicates that the destination IP address is constructed from the input message, in
particular Input3, the destination port is generated from therand function call1, and the payload is independent of
the inputs. To our surprise, both dependency analyses show that the payload size is a constant 4.

5.1.2 TFN2K

TFN2K is another DDoS zombie program [6]. TFN2K is more complex than Trin00, it uses raw sockets to receive
commands and send flood packets. TFN2K was originally a Linuxprogram, but for these analyses, we have ported it
to Windows. Additionally, we have removed the original encryption functionality for these analyses.

First, we ran TFN2K without BitScope to observe its behaviors as the baseline case for comparison. In this case,
we observed that TFN2K creates three raw sockets for ICMP, TCP and UDP respectively and waits to receive data on
them. We observed no other behaviors.

We then ran TFN2K under BitScope. The end-to-end time for BitScope is under 4 minutes. Within this time,
BitScope fully explored the program and discovered 20 conditional jumps depending on symbolic inputs. BitScope is
able to extract much richer information about TFN2K than thebaseline case.

First, the Input Analysis Module identified network inputs which activate different behaviors ini TFN2K. By
analyzing the information from the Symbolic System Environment and Rudder, BitScope identified that the input
message has a special format. Figure3(a) illustrates an example of the input message format in theICMP payload
where the first and third byte (i.e. offset 28 and 30) has to be ’+’ and the second byte (i.e., offset 29) can be different
values. Depending on the value of the second byte, TFN2K willperform different actions. Thus, the value of the
second byte acts as a command. The Input Analysis Module uncovered twelve commands in TFN2K, which are ’a’,
’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, and ’l’.

The Impact Analysis Module identified new functionalities when program execution followed paths activated by
these commands. For example, the command ’h’ activates an ICMP flooding attack, ’f’ activates a TCP flooding
attack, and ’e’ activates a UDP flooding attack, as the ImpactAnalysis Module can seesendto being called many
times in all these cases.

The only messages TFN2K sends out are flooding packets, whichcan be ICMP, UDP, and TCP packets, when
activated by the correct command. Thus, results from the Dependency Analysis Modules are for the flooding packets.
For an ICMP flooding packet, as shown in Figure3(b), the single-path dependency analysis indicates that the source
IP address is a random number from the result of therandom function call, and the destination IP address is from

1BitScope hooks therand function call

15/18

the input message (offset 31 to 34), which is the argument. The remaining bytes are all concrete. In the multi-path
dependency analysis, we found that many fields in the packet always exhibit specific constant values. These are shown
in Figure3(c).

The Multi-path Dependency Analysis Module has identified the following special patterns in the ICMP packet
generated for flooding: (1) the two bytes in offset 21 to 22 are0x08 and 0x00, indicating that this is an ECHO request
packet; (2) the two bytes in offset 23 to 24 are 0xF7 and 0xFF, which are ICMP checksum. For a UDP flooding packet,
the Single-path Dependency Analysis Module show that the destination IP address is from the input, and the source
IP address is randomly generated from the result ofrandom. For a TCP packet, Multi-path Dependency Analysis
Module shows that it always has SYN URG flags, which means thisis a SYN flooding.

5.1.3 SDBot

SDBot is a typical IRC bot program that allows a remote attacker to control a computer using Internet Relay Chat
(IRC) [24]. We have analyzed a specific variant: SDBot 04b.

As with our other examples, we first ran SDBot without BitScope in order to create a baseline for compari-
son. First we observed SDBot callGetModuleFileName, GetSystemDirectory and CopyFile. This
resulted in SDBot copying itself to the Windows system directory. Next, SDBot callsRegCreateKeyEx and
RegSetValueEx to create a registry key that causes it to start on boot. Finally, it appears to sleep between calls to
InternetGetConnectedState.

We then ran SDBot under BitScope. SDBot is much more complex.The end-to-end time for BitScope is about 2
hours. In this time BitScope discovered 119 conditional jumps depending on symbolic inputs and new behaviors in
SDBot First, the Input Analysis Module identified input messages needed to be of a particular format where an input
message consists of several space-delimited strings. The first string is always the command and following strings are
the arguments. The Input Analysis Module was able to extract9 commands for IRC, and the arguments of 3 out of
9 IRC commands, “NOTICE”, “PRIVMSG”, and “332”, provide actual commands for the bot program. The Input
Analysis Module identified 72 bot commands for SDBot 04b.

The Impact Analysis Module identified new behaviors when program execution followed the paths activated by
the commands. For example, the “udp” bot command causes UDP flooding packets.

The Dependency Analysis Modules identified dependency information between inputs and outputs. For IRC re-
sponse messages, both the Single-path Dependency AnalysisModule and Multi-path Dependency Analysis Module
found that part of the payload depends on the input buffer containing the command. For UDP flooding attacks, the
Single-path Dependency Analysis Module shows that the payload is independent of symbolic inputs. However, the
destination IP address is dependent on the command buffer and the port used can either originate from the command
buffer or a simplerand call.

5.2 Summarized results

To demonstrate the general utility and performance of BitScope, we provide the following metrics from different
aspects. The first is the end-to-end execution time. It showshow long it takes for BitScope to finish analyzing a
sample. The second metric is the number of discovered conditional jumps depending on symbolic inputs, The third
metric is the behaviors uncovered. Since it is in general difficult to quantify the number of different behaviors, here
we use the numbers of unique call sites to Windows APIs in the sample to provide this measure. For comparison, we
give the number discovered by BitScope in the third column, and the number discovered by a normal execution of the
malware without BitScope in the forth column as the base-line. The difference between these two infers BitScope’s
capability of discovering hidden behaviors.

We list these three metrics for all the samples in Table2. We can see that it normally takes only minutes for
BitScope to analyze a sample to uncover substantially more behavior, except SDBot 04b which took 2 hours. This
execution time is still satisfactory, in the comparison with the time and efforts the human analysts spend currently.
In addition, we observe that the number of unique API call sites uncovered by BitScope increases significantly than
the number under the un-instrumented environment, demonstrating that BitScope is capable of revealing substantially
more behaviors of malware that are invisible under normal circumstances.

16/18

Code Runtime Symbolic Behaviors Discovered

size Cjmps BitScope Normal

Discovered env

Trin00 201KB 569s 28 45 10

TFN2K 47KB 212s 20 39 16

SDBot 04b 238KB ≈2hr 119 115 46

evilbot 16KB 127s 7 44 22

sdbot 2311 59KB 383s 13 234 66

ircbot 0045 74KB 186s 5 86 81

ircbot 004d 34KB 181s 5 93 58

q8bot 37KB 120s 9 53 25

Table 2: Performance results

6 Discussion and Future Work

There are a variety of potential limitations to our approachand current implementation, including:

• We currently do not handle floating point numbers in the symbolic evaluator. Adding floating point numbers is
straight-forward, but so far has been unnecessary. We are working to support floating point operations in future
versions.

• The scalability of the solver limits the depth at which we canexplore programs. Attackers could try and create
formulas which would be difficult to solve. However, the formula itself still serves as a useful tool for many
analysis, such as dependency analysis.

• We do not attempt to break crypto routines. Attackers often use crypto to password-protect their malware. For
example, a typical scenario is a piece of malware callscrypt to check a password, and if the crypt’ed password
matches the hard-coded password, executes the command. Although our current infrastructure does not address
this problem, one technique is to recognize such calls and force execution to always succeed. We are currently
implementing this approach.

Although attackers can come up with ingenous ways to make analysis hard, the advantage of our approach is we
still learn about whatever we can execute.

7 Related Work

This work builds upon our previous infrastructure for mixedexecution [4]. Although we use the mixed execution
engine described there, we have since addressed several deficincies. In particular, we can now hook almost all windows
API calls. This allows us to analyze a wider variety of software. We also now handle symbolic memory accesses and
string manipulation routines. In this work, we use the mixedexecution engine as a component to perform more
complex analysis.

Many state-of-art dynamic analysis tools provide limited functionalities to support human analysts. Tools such as
CWSandbox [35], Norman Sandbox [5], TTAnalayze [7], and Cobra [34] automatically record program actions but
only on a single execution path and may miss some crucial behavior. Our technique explore multiple execution paths
to address this limitation and thus have more complete view of a program’s behavior. Many software testing tools also
proposed to detect bugs by exploring multiple paths. For example, model checking tools [13,23,25] convert programs
into state machine and use it to verify relevant program properties.

We use mixed symbolic and concrete execution to trigger different behaviors embedded in malware. Symbolic
execution was first proposed by King in 1976 [26]. Since then it has been used in many different settings, including
automatic test case generation [20, 33, 36], vulnerability-based signature generation [9], sound replay of application
dialog [30], and program verification [16,17].

17/18

EXE and DART both use mixed execution to find bugs in program source code [10, 20] while we perform mixed
execution on binaries. Engineering mixed execution for binaries is quite different than for source code. For example,
we must deal with symbolic memory writes and reads, which in source code is equivilant to reasoning about loading
and storing pointers from collections such as arrays. Another difference includes the lack of abstractions: while source
code has complex types, procedures, and variable scoping which can be used as hints for mixed execution, binaries
have only simply types, no functions, only globally addressed memory region and registers. Unlike our work or EXE,
DART only handles linear constraints. It also uses random testing instead of symbolic inputs and thus may miss paths.

Methods for automatic test data generation presented in [21] and [22] also use constaint solving techniques to
identify interesting input values but have some limitation; the first method only works on high level languages and the
latter one only handles linear constraints.

We also perform some static analysis, such as dataflow analysis. Static analysis has been used in recent researches
to verify safety properties of a program [3] and to uncover malicious behaviors that may evade dynamic detection [27].
Another study uses static binary analysis to automaticallygenerate attack signatures based on the vulnerability pre-
sented in a program [9].

We apply our technique to real-world botnet programs. Others have performed automatic malware detection [11,
12, 31], and analyzed behavior patterns in bot networks [14,18, 32]. These approaches are complementary. For
example, our approach can uncover bot commands from a bot binary, which can then be used to identify or monitor
specific bot networks.

8 Conclusion

We have proposed techniques for automatically analyzing malicious binaries. We developed a system called BitScope
to demonstrate our approach. At the heart of BitScope is a system for mixed execution of malicious binaries in a
whole system emulation environment. The result of the mixedexecution is a mathematical formula which captures
the conditions necessary to execute code paths. The benefit of mixed execution is the analysis is not constrained to a
specific input value, but is abstracted over all input valuesfor a code path. We show that these formulas can be used as
a basis for many interesting analysis. We demonstrate 5 suchanalysis, and found they produced important information
for real-life malicious binaries.

References
[1] Project malfease.http://malfease.oarci.net/.

[2] http://news.bbc.co.uk/1/hi/business/6298641.stm, Jan 2007.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In CCS ’05: Proceedings of the 12th ACM conference on Computer
and communications security, pages 340–353, New York, NY, USA, 2005. ACM Press.

[4] Anonymous. Anonymized for review.

[5] N. ASA. Norman Sandbox.http://sandbox.norman.no/, 2006.

[6] J. Barlow. Tfn2k analysis.http://www.securiteam.com/securitynews/5YP0G000FS.html, Mar 2000.

[7] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for analyzing malware. In15th Annual Conference of the European Institute for
Computer Antivirus Research (EICAR), 2006.

[8] F. Bellard. Qemu, open source processor emulator.http://fabrice.bellard.free.fr/qemu/.

[9] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards automatic generation of vulnerability-based signatures. InProceedings of
the 2006 IEEE Symposium on Security and Privacy, pages 2–16, 2006.

[10] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE: A system for automatically generating inputs of deathusing symbolic
execution. InProceedings of the 13th ACM Conference on Computer and Communications Security (CCS), Oct. 2006.

[11] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. Semantics-aware malware detection. InProceedings of the 2005 IEEE Security
and Privacy Conference, 2005.

[12] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding, detecting, and disrupting botnets. InProceedings of USENIX
Workshop on Steps to Reducing Unwanted Traffic on the Internet, July 2005.

[13] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.Pasareanu, Robby, and H. Zheng. Bandera: extracting finite-state models from java
source code. InICSE ’00: Proceedings of the 22nd international conferenceon Software engineering, pages 439–448, New York, NY, USA,
2000. ACM Press.

http://malfease.oarci.net/
http://news.bbc.co.uk/1/hi/business/6298641.stm
http://sandbox.norman.no/
http://www.securiteam.com/securitynews/5YP0G000FS.html
http://fabrice.bellard.free.fr/qemu/

18/18

[14] D. Dagon, C. Zou, and W. Lee. Modeling botnet propagation using time zones. InProceedings of the 13th Network and Distributed System
Security Symposium (NDSS’06), 2006.

[15] D. Dittrich. The dos projects ”trinoo” distributed denial of service attack tool.http://staff.washington.edu/dittrich/misc/
trinoo.analysis, 1999.

[16] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Estended static checking for java. InACM Conference on
the Programming Language Design and Implementation (PLDI), 2002.

[17] C. Flanagan and J. Saxe. Avoiding exponential explosion: Generating compact verification conditions. InProceedings of the 28th ACM
Symposium on the Principles of Programming Languages (POPL), 2001.

[18] F. Freiling, T. Holz, and G. Wicherski. Botnet tracking: Exploring a root-cause methodology to prevent distributed denial-of-service attacks.
Technical Report ISSN-0935-3232, RWTH Aachen, April 2005.

[19] V. Ganesh. STP: A decision procedure for bitvectors andarrays.http://theory.stanford.edu/∼vganesh/stp.html, 2007.

[20] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. InProc. of the 2005 Programming Language Design and
Implementation Conference (PLDI), 2005.

[21] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data generation using constraint solving techniques. InACM Symposium on Software
Testing and Analysis, 1998.

[22] N. Gupta, A. Mathur, and M. L. Soffa. Automated test datageneration using an iterative relaxation method. InACM SIGSOFT Symposium
on Foundations of Software Engineering, 1998.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with Blast. InProceedings of the 10th SPIN Workshop on Model
Checking Software (SPIN), 2003.

[24] T. Holz. A short visit to the bot zoo.IEEE Security & Privacy, 3(3):76–79, 2005.

[25] G. J. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering, 23(5):279–295, 1997.

[26] J. King. Symbolic execution and program testing.Communications of the ACM, 19:386–394, 1976.

[27] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating mimicry attacks using static binary analysis.In Proceedings of the
14th USENIX Security Symposium, Aug. 2005.

[28] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated binaries. InProceedings of the 13th USENIX Security
Symposium, 2004.

[29] S. Muchnick.Advanced Compiler Design and Implementation. Academic Press, 1997.

[30] J. Newsome, D. Brumley, J. Franklin, and D. Song. Replayer: Automatic protocol replay by binary analysis. In R. Write, S. D. C. di Vimercati,
and V. Shmatikov, editors,In the Proceedings of the13th ACM Conference on Computer and and Communications Security(CCS), pages
311–321, 2006.

[31] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray. Semantics-based approach to malware detection. InProceedings of the Symposium
on Principles of Programming Languages, 2007.

[32] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach to understanding the botnet phenomenon.In Internet Measure-
ment Conference 2006 (IMC’06), Proceedings of, October 2006.

[33] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for c. InACM SIGSOFT Sympsoium on the Foundations of Software
Engineering, 2005.

[34] A. Vasudevan and R. Yerraballi. Cobra: Fine-grained malware analysis using stealth localized-executions. InSP ’06: Proceedings of the 2006
IEEE Symposium on Security and Privacy (S&P’06), pages 264–279, Washington, DC, USA, 2006. IEEE Computer Society.

[35] C. Willems. CWSandbox: Automatic behaviour analysis of malware.http://www.cwsandbox.org/, 2006.

[36] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Automatically generating malicious disks using symbolic execution. In IEEE Symposium
on Security and Privacy, 2006.

http://staff.washington.edu/dittrich/misc/trinoo.analysis
http://staff.washington.edu/dittrich/misc/trinoo.analysis
http://theory.stanford.edu/~vganesh/stp.html
http://www.cwsandbox.org/

	Introduction
	Goals and Our Approach
	Motivating Example
	Goals and Challenges to Malicious Binary Analysis
	The Intuition Behind Our Approach

	BitScope System Overview
	System Design and Implementation
	Building up Symbolic System Environment
	Mixed Concrete and Symbolic Execution
	Determine Whether to Execute an Instruction Symbolically or Concretely.
	Synchronize Machines
	Translating to an Intermediate Representation (IR).
	Symbolic Execution
	The Solver
	String Functions Optimizations.

	Path Selector
	Extractor modules
	System Implementation

	Evaluation
	Detailed Analyses
	Trin00
	TFN2K
	SDBot

	Summarized results

	Discussion and Future Work
	Related Work
	Conclusion

