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Abstract—Software updates are the current standard to re-
spond to software bugs. The software developer provides an
update fix that is then applied by the administrator: the binary
is modified and the service is restarted. Restarting a service
inevitably leads to downtime and service unavailability; in the
case of a multi-threaded installation of Apache, restart takes
several seconds and depending on the load of the web server,
several hundred or even thousand client requests will be rejected
with an error. Given the cost of restarts, system administrators
attempt to minimize the frequency of service restarts or postpone
a restart until the next maintenance window.

However, to ensure the integrity of the system, code repair
must happen as soon as possible (ASAP). We describe here the
effectiveness of an on-the-fly update system that provides ASAP
repair by integrating dynamic patches with a sandbox based on
dynamic binary translation. To investigate the feasibility of ASAP
code repair, we analyze the software updates released for Apache
2.2 between Dec 1st, 2005 and Feb 18, 2013. The study shows
that such a system allows patching 45 of 49 bugs at runtime.
Of the 4 unpatchable bugs, 1 bug is not applicable to dynamic
update mechanisms, and 3 bugs require a restart. Furthermore,
a performance evaluation of the prototype implementation shows
that our approach adds low execution overhead (below 7% for
different configurations that request a 287kB file).

I. INTRODUCTION

Software services are under constant attack so a rapid repair
of any vulnerability is crucial to the security of the critical
infrastructure. Networked (web) systems are exposed to many
forms of attack, so the security and availability of their services
demand vigorous installation of any software updates that are
made available. However, installing a software update is not free
and system administrators face the hard problem of deciding
when it is best to update a given service. There is a trade-off
between installing a new software patch right away or waiting
with the installation until the next maintenance window.

From a security perspective it is necessary to install the
patch immediately. In practice, however, system administrators
may delay the installation of updates for a variety of reasons:
site-specific updates must be performed prior to installation,
there may be higher-priority tasks, and/or the installation causes
a service to be unavailable for some time, so the installation of
the patch is postponed until later. This common ”late update“
practice [7] leaves an open window of opportunity for attackers
between the time a bug is discovered and the time the bug is
patched in a given running system.

The key to facilitate rapid deployment of security updates
is to automate code repair. If the software infrastructure can
take care of installing patches, then security updates happen as

soon as possible – when they become available. In this paper
we investigate if this approach is practical, i.e. we analyze
the security updates of a significant web service (the Apache
server) and investigate if these updates can be handled by an
automatic update system.

The rapid installation of software updates builds on two
research areas. A sandbox protects running applications from
security vulnerabilities, and dynamic software update mecha-
nisms allow on-the-fly code modification:

A sandbox [6], [9], [19], [21] detects attacks and protects the
integrity of the system by terminating the running application.
Sandboxes build on a form of Software-based Fault Isolation
(SFI) [12], [26], [27] and often rely on binary translation [10],
[16], [19] to support unmodified binary applications.

On the other hand a dynamic software update mecha-
nism [1], [5], [8], [11], [13], [14], [20], [22], [25] installs
newly available patches on-the-fly during the execution of
the application. Sandboxes have the advantage to detect both
known and unknown vulnerabilities but they only protect the
integrity of the system and leave out availability. A dynamic
software update mechanism on the other hand increases the
availability and protects the integrity of an application with the
disadvantage that only discovered and patched vulnerabilities
are covered while unknown vulnerabilities are still exploitable.

DynSec [17] is a dynamic update mechanism that builds on
the TRuE/libdetox [18], [19] software sandbox. The software
sandbox ensures that the running application is protected from
any known and unknown vulnerabilities while the dynamic
update mechanism enables on-the-fly application upgrades
without the need to restart the application. Combining a sandbox
and a dynamic update mechanism has several advantages:
application integrity is protected from known and unknown
exploits while the need to restart services during upgrades is
removed to increase the availability. In addition, both systems
can build on the same binary translation component. The
sandbox weaves security checks into the translated application
code while the update mechanism checks for security patches
during the translation of the application code.

The distribution and specification of the software updates
is an orthogonal problem to the application of the update.
When package maintainers generate a new security update for
a specific software package they already have to generate a
patch for their current software version and can generate a
binary software patch alongside the updated software package
with little overhead. An extension of the package manager that
is available in all current Linux distributions can then download
these patches and apply them whenever they become available.



This paper investigates the feasibility and practicability of
using such a combined sandbox and dynamic update mechanism
to provide ASAP code repair – the installation of patches as
soon as possible. We evaluate all published security patches of
the Apache 2.2 webserver to determine if they can be handled
by DynSec. Apache is a large and complex multi-threaded and
highly parallel software system that supports a large amount of
different (software) modules and configurations that are loaded,
reloaded, and unloaded at runtime. Apache is deployed to serve
more than 340 million websites [15] (54% of all total websites).
Of course it is impossible to predict future patches (and if they
can be handled by a system like DynSec) but looking at all
past security patches over more than 7 years allows us to assess
the effectiveness of ASAP code repair. This paper makes the
following contributions:

1) Analysis and classification of all 49 security-relevant
bugs for Apache 2.2, a large complex real-world
software system;

2) A security update case study that evaluates the
feasibility to generate patches for a dynamic software
update system for all security bugs of Apache versions
2.2.0 to 2.2.24-dev;

3) A performance evaluation of the DynSec prototype
for Apache 2.2.

II. A COMBINED SANDBOX AND DYNAMIC UPDATE
MECHANISM

Sandbox based protection mechanisms and dynamic update
mechanisms share one important property: both mechanisms
rely on some form of virtualization system to adapt the original
application code either to weave additional security checks into
the application code or to add the flexibility to replace existing
code with new code at specific program locations.

Sandboxes and dynamic software updates are two comple-
menting security mechanisms that protect applications from
software vulnerabilities. Sandboxes protect the integrity of the
system by extending the application with additional security
checks; the application stays vulnerable but exploits are detected
and the application is terminated before the system’s integrity
is compromised. Dynamic security updates on the other hand
apply software patches at runtime to remove discovered vulner-
abilities, thereby fixing the underlying bug; the vulnerability
can no longer be exploited but only the patched vulnerability
is fixed. So software patches give stronger guarantees than
sandboxing but for a smaller set of vulnerabilities.

All vulnerabilities 
(Θ)

Sandbox protection
(Ψ)

Software patches
(Ω)

Fig. 1. Comparison between sandbox-based and patching-based security.

Figure 1 shows the sets of all software vulnerabilities Θ of
an application, the software vulnerabilities Ψ that are protected
by a sandbox, and the software vulnerabilities Ω that are patched
compared to a given older version of the application. Both Ψ
and Ω are subsets of Θ (Ψ ⊆ Θ and Ω ⊆ Θ). In addition, Ψ and
Ω overlap partially. While most sandboxes target code integrity,
control-flow integrity, and some form of system call policy they
cannot protect applications from all forms of vulnerabilities
(e.g., full data-flow tracking is generally not feasible due to the
large performance overhead, or data-based attacks like SQL
injection or XSS vulnerabilities that attack missing sanitizers
between applications are out of scope as well). Software updates
on the other hand may fix any discovered vulnerability but
need specific knowledge of the discovered vulnerability and
human effort to generate the new software version (and the
update). While the intersection between Ψ and Ω is usually
not the empty set (in addition, whenever a sandbox stops a
vulnerability the logfile usually indicates the location of the
vulnerability in the application code which can be used to
generate a software update) there are some vulnerabilities that
are only in one of the two sets, e.g., all unknown or unpatched
vulnerabilities are in Ψ while many higher-level data-oriented
bugs are only covered by Ω.

Related work has studied these two protection mechanisms
in isolation. We argue that due to the facts that (i) both
mechanisms rely on user-space virtualization and (ii) they
protect from different kinds of vulnerabilities with different
protection guarantees it makes sense to combine both protection
mechanisms leveraging the same virtualization system.

In the following four sections we discuss (i) how a
sandbox protects benign applications from memory based
attack techniques, (ii) dynamic software updating and how
the technique falls back to a virtualization system, (iii) our
prototype implementation, and (iv) a patch distribution system
that can be used to push patches to individual systems.

A. Sandboxing: Software-based Fault Isolation

Sandboxing is a form of Software-based Fault Isolation
(SFI) [26] that protects executing code from unkown vulnera-
bilities. The sandbox isolates untrusted code and ensures that
the code cannot damage any structures outside the sandbox.
The sandbox uses binary translation to filter instructions, to
guard control flow transfers, and to secure memory writes.

Sandboxing enforces the integrity of an application by
adding security guards. The virtualization system handles the
on-the-fly translation of the executed code. The sandbox collects
information from different sources (e.g., from analyzing symbol
tables or relocation information which are both available in
the binaries and libraries) and instructs the binary translator to
weave additional security checks into the translated application
code. Dynamic security guards check the target of every control
flow transfer (e.g., a shadow stack protects against return
oriented programming [23]).

Another advantage of the virtualization system is that all
system calls can be redirected to a system call interposition
layer. This interposition layer imposes a specific per-application
system call policy. If the application tries to execute a system
call that is not part of the policy it is terminated.



B. Dynamic Software Updating

In an unprotected system, administrators must balance
availability and integrity. Once a bug is discovered and a
patch is available, all instances of an application, e.g., all
running Apache servers, must be updated to ensure integrity
while keeping downtime to a minimum to ensure availability.
Most systems, however, are not designed with updateability in
mind. Individual modules, e.g., shared libraries, can be reloaded
at a coarse-grained level at runtime using the functionality
provided by the standard loader, but programmers need to
reason beforehand which modules can and should be replaced.
A significant drawback of the module-based update approach is
that synchronization across multiple threads during the update
is difficult: the programmer must ensure that no other thread is
accessing code (e.g., by executing code directly or indirectly
by storing a return address on the stack that points into the
code) or state of the module that is reloaded.

Rolling updates, where services in a pool are individually
restarted and updated, are an alternative for stateless services.
Shared data (e.g., persistent user sessions) between instances
becomes a problem due to the possible updated state which
must be updated to the new version at one point in time. In
addition, the load balancer might become a single point of
failure.

DynSec targets (security) updates from a different angle.
Instead of transferring both code and state to a new version,
the running application’s code is replaced with the updated
version while keeping the original state, i.e., the data of the
application usually remains unchanged. The patch closes the
(security) vulnerability and the service runs uninterrupted (i.e.,
no restart is necessary and the application is only paused during
the usually short upgrade process). The administrator updates
the service binary and restarts the service at a later point, i.e.,
during the next scheduled maintenance window.

Leveraging a virtualization system allows DynSec to focus
on the updates itself while the virtualization system takes care of
(i) resolving addresses, (ii) translating new code, and (iii) hiding
the update system from the application using an additional layer
of indirection between the original application code and the
actual executed code.

When comparing different Apache security updates we made
the observation that security updates rarely change (global)
data structures. Most observed security updates are local and
they fix vulnerabilities by adding runtime checks (e.g., a NULL
check) or sanitizers (e.g., escaping a parameter string), adjusting
existing loop conditions (e.g., fixing an off by 1 error), or
replacing unsafe functions with safe counterparts (e.g., strcpy
is replaced by strncpy). We therefore assume that most
security updates are local and do not change any global data
structures. Due to the semantic gap of using an independent
virtualization system DynSec targets local updates only without
changes to global data structures or major code refactoring.

Related work usually relies on a-priori changes of the
application’s source code, changes in the compiler, or a different
runtime to make the runtime system aware of the update
mechanism. A virtualization system on the other hand can
inject the update mechanism into an unaware application (or
unaware runtime system).

C. Prototype implementation

DynSec is a software update system that builds on top of
a virtualization system. The virtualization system offers the
opportunity to translate code as it passes through the dynamic
binary translator. Most dynamic binary translators use a code
cache to reuse already translated code. A code cache flush forces
a retranslation of all existing code, in addition, the translator
can then patch the application code (and all libraries) on-the-
fly while the code is being translated. The update mechanism
handles the distribution and the coordination of the patches and
the binary translator handles the patch application. With two
small changes in the binary translation system (coordinating
the code flush and checking for every translated instruction
if a patch exists) it is possible to patch running applications
dynamically. DynSec design decisions and a first prototype are
discussed in [17].

The prototype implementation of DynSec builds on
TRuE/libdetox [18], [19], a sandbox and user-space virtualiza-
tion system for the execution of potentially unsafe programs
that extracts information about the application (and its libraries)
by using a trusted loader component that replaces the standard
loader. All application code is protected by a dynamic binary
translator that weaves additional security guards into the
executed code. DynSec extends TRuE by (i) adding several
hooks in the binary code translator, (ii) modifying the translator
to add (virtual) safe-points to coordinate all application threads
for incoming security updates, and (iii) adding a coordination
thread that loads, verifies, and coordinates incoming security
updates.

The patching thread of DynSec is started as part of the
trusted computing base and waits for incoming patches by
watching a specific directory (using the inotify system call.
The trusted computing base contains the trusted loader, the
sandbox, DynSec, and the binary translator. Incoming patches
are decoded and added to the patch information data structure
that is shared among all threads (each application thread uses
its own binary translator and code cache). The patching thread
synchronizes all application thread and signals them to flush
their code caches. The translator thereby indirectly applies the
patches by retranslating all code. Instruction patching happens
before security hardening; patched instructions and additional
functionality in the patch library are security hardened along
with the regular application code.

For the current prototype implementation the patches are
encoded in a simple binary format. Each patch starts with the
number of patch locations; each patch location consists of (i)
the address that is patched relative to the executable or shared
library (loader information is used during patch application to
calculate the absolute address), (ii) the length of the patched
location, (iii) the address of the translated instruction in the
new version of the application or shared library (to resolve
relative references using the dynamic loader), (iv) the length of
the new instruction(s), and (v) the machine code representation
of the new instruction(s). Patches may also specify a shared
library to include additional functionality. The library is loaded
into a patch-local context and the symbols in that library are
only visible to the patched instructions.



D. Patch generation and distribution

Most Linux distributions already use an automatic update
mechanism that chronically checks the main package repository
for updates for all installed packages. The system administrator
is notified and must agree to install the updated packages. Dur-
ing the update process the services are restarted automatically.
This human-in-the-loop process leads to a time lag between
the time an update becomes available and the time the update
is installed. We argue that an automatic update system can
automatically apply these updates on-the-fly without manual
interaction or the need to restart the service. An administrator
can then update the binary of the software during the next
maintenance window.

When a bug for a software package is discovered it is first
fixed by the software maintainers (e.g., the Apache maintainers).
The package maintainers of individual distributions (e.g.,
Debian maintainers) pick up the new source code or the patch
and generate a new package that is shipped to the customers.

To allow stable functionality and configuration most dis-
tributions freeze the software version for a specific release of
a distribution. Package maintainers back port security patches
to these frozen software versions. For a specific release of
the distribution the runtime system (e.g., the version of the
compiler, the libc, and other libraries) is fixed and all software
is compiled with the same compilation settings. The stable
runtime system results in low variance between the patched
and the unpatched version and contains mostly the patched
region. There are some additional changes due to compiler
optimizations (e.g., different inlining settings due to the length
of a patched function). This setting is a perfect opportunity to
automatically extract binary patches that allow hot patching.

The package maintainers already have the source patch
between the old version of the software and the new version
and they have the old binary as well. With little additional
effort the package maintainers can generate binary patches
that fix the software vulnerability. As part of the build system
the package maintainers can ensure the functionality of the
extracted binary patches before releasing the patches.

The (cryptographically signed) binary patches are then
distributed using a similar distribution system like for the
upgraded software packages where individual systems can
chronologically check for newly available patches and apply
them ASAP.

III. EVALUATION

Three aspects are important to test the feasibility of a
dynamic update mechanism: (i) completeness: does the system
support the targeted security patches, (ii) correctness: the
dynamic update system should not introduce any bugs or data
races, and (iii) performance: the performance overhead for the
complete system should be low.

The completeness and feasibility of DynSec is evaluated
by providing a detailed study off all security relevant bugs of
Apache 2.2 over the span of more than 7 years.

When working on the binary-only level it is hard to reason
about correctness and it is out of the scope of this paper to
proof the correctness of the dynamic update mechanism. The

prototype implementation is successfully tested using a large set
of patches that replace different parts of the running application,
testing both the replacement of code that is currently executing
or on the stack and code that is not currently executed.

Performance overhead is an important metric that greatly
influences if a system is used in practice. The performance
overhead for DynSec is both evaluated using an Apache-based
benchmark and using the SPEC CPU2006 benchmarks. All
benchmarks are executed on an Intel Core 2 Quad Q6600 with
2.64GHz and 8GB RAM on Ubuntu 11.04 with Linux kernel
2.6.38 and the GNU compiler collection 4.5.1.

A. Apache 2.2 security study

Apache 2.2 is a mature web-server for medium to large
scale web sites. Between the first release of version 2.2.0
on December 1st 2005 and the current release 2.2.24-dev on
February 18th 2013, 49 security related bugs are reported1

and fixed in later releases. The bugs are classified according
to their security impact, possible impact levels for bugs are2

low, moderate, important, and critical. This study looks at
all security-related bugs for Apache 2.2.0 until the (current)
2.2.24-dev release. The study analyzes the security patches and
evaluates if DynSec supports the dynamic application of these
patches.

The study separates patches based on complexity and
functionality needed in the dynamic updating system. Patches
are separated into the following classes:

Simple patch: only few (between 1 and 20) individual in-
structions change. The patch does not touch any symbols
(functions or variables). These patches can be applied
without additional shared objects.

New import patch: the patch changes several instructions and
imports one or more new functions in the object. The
original patch is implemented as one or more functions in
a (small) shared library. The shared library is loaded by
the patching thread using the trusted loader (that handles
the imports as well). The original code locations are then
patched with a control flow transfer to the new functions
using patched instructions.

New function patch: the patch adds a new function. This new
function is implemented in a shared library (similar to
the new import patch) and the original code locations are
patched with a control flow transfer to the new functions.

Additional call patch: the patch adds one or more calls to
functions that are already available in the unpatched object.
To simplify the implementation each call is implemented
as a function in a shared library (similar to the new import
patch).

New string patch: the patch uses an additional static string
that is added to the runtime image through a shared library
(similar to the new import patch).

Other: the patch cannot be implemented easily for DynSec
(e.g., because of type changes or additional initialization
code). These patches are problematic for DynSec due to
the structural changes in the application.

1The Apache homepage lists all the security bugs of the 2.2 release at
http://httpd.apache.org/security/vulnerabilities 22.html.

2The Apache homepage http://httpd.apache.org/security/impact levels.html
gives a description of the different impact levels.

http://httpd.apache.org/security/vulnerabilities_22.html
http://httpd.apache.org/security/impact_levels.html


Fixed in CVE number Description Impact Type Patch class DynSec Sandbox
2.2.2 CVE-2005-3352 mod imap referer XSS moderate XSS new import patch yes no
2.2.2 CVE-2005-3357 mod ssl access control low DoS simple patch yes no
2.2.3 CVE-2006-3747 mod rewrite off-by-one important EXE simple patch yes yes
2.2.6 CVE-2007-1863 mod cache NULL deref. moderate DoS simple patch yes yes
2.2.6 CVE-2007-1862 mod cache info. leak moderate IL new function patch yes no
2.2.6 CVE-2007-3304 signals to arbitrary pids moderate lDoS add. types, code refactoring no yes
2.2.6 CVE-2006-5752 mod status XSS moderate XSS new string patch yes no
2.2.6 CVE-2007-3847 mod proxy crash moderate DoS new import patch yes yes
2.2.8 CVE-2007-5000 mod imagemap XSS moderate XSS additional call patch yes no
2.2.8 CVE-2007-6388 mod status XSS moderate XSS new import patch yes no
2.2.8 CVE-2007-6421 mod proxy balancer XSS low XSS new import patch yes no
2.2.8 CVE-2007-6422 mod proxy balancer DoS low DoS simple patch yes yes
2.2.8 CVE-2008-0005 mod proxy ftp UTF-7 XSS low XSS add. type, new functions no no
2.2.9 CVE-2008-2364 mod proxy http inf. loop moderate DoS new imports patch yes no
2.2.9 CVE-2007-6420 mod proxy balancer CSRF low CSRF new imports patch yes no
2.2.10 CVE-2008-2939 mod proxy ftp XSS low XSS additional call patch yes no
2.2.10 CVE-2010-2791 mod proxy http timeout IL important IL additional call patch yes no
2.2.12 CVE-2009-0023 APR-util heap underwrite moderate HBUF simple patch yes yes
2.2.12 CVE-2009-1955 APR-util XML DoS moderate DoS new import patch yes no
2.2.12 CVE-2009-1956 APR-util off-by-one ovfl. moderate DoS simple patch yes no
2.2.12 CVE-2009-1195 AllowOverride bypass low lPE simple patch yes no
2.2.12 CVE-2009-1891 mod defalte DoS low DoS new import patch yes no
2.2.12 CVE-2009-1191 mod proxy ajp info. leak important IL simple patch yes no
2.2.12 CVE-2009-1890 mod proxy rev. proxy DoS important DoS new import patch yes no
2.2.13 CVE-2009-2412 APR apr palloc heap ovfl. low HBOF simple patch yes yes
2.2.14 CVE-2009-2699 Solaris pollset DoS moderate DoS simple patch yes no
2.2.14 CVE-2009-3095 mod proxy ftp cmd. inject. low ACI additional call patch yes no
2.2.14 CVE-2009-3094 mod proxy ftp NULL deref. low DoS new function patch yes yes
2.2.15 CVE-2010-0408 mod proxy ajp DoS low DoS simple patch yes no
2.2.15 CVE-2010-0434 mode headers DoS low DoS/IL additional call patch yes no
2.2.15 CVE-2010-0425 mod isapi unload flaw important EXE simple patch yes yes
2.2.16 CVE-2010-1452 mod cache & mod dav DoS low DoS simple patch yes no
2.2.16 CVE-2010-2068 mod proxy http timeout important IL simple patch yes no
2.2.17 CVE-2010-1623 apr brigade split line DoS low DoS new function patch yes no
2.2.17 CVE-2009-3560 expat DoS low DoS simple patch yes no
2.2.17 CVE-2009-3720 expat DoS low DoS simple patch yes no
2.2.19 CVE-2011-0419 apr fnmatch flaw moderate DoS new functions patch yes no
2.2.20 CVE-2011-3192 range header DoS important DoS new functions patch yes no
2.2.21 CVE-2011-3348 mod proxy ajp DoS moderate DoS simple patch yes no
2.2.22 CVE-2011-3368 mod proxy rev. proxy moderate AIH new functions yes no
2.2.22 CVE-2012-0053 cookie exposure moderate IL new function patch yes no
2.2.22 CVE-2011-4317 mod proxy rev. proxy moderate AIH simple patch yes no
2.2.22 CVE-2012-0031 scoreboard parent DoS low DoS type change, new functions no no
2.2.22 CVE-2012-0021 mod log config NULL deref. low DoS simple patch yes no
2.2.22 CVE-2011-3607 mod setenvif priv. escal. low IOF simple patch yes yes
2.2.23 CVE-2012-0883 Insecure var. in startup script low lPE not applicable NA no
2.2.23 CVE-2012-2687 mod negotiation XSS low XSS new import patch yes no
2.2.24-dev CVE-2012-4588 mod proxy balancer XSS moderate XSS new import patch yes no
2.2.24-dev CVE-2012-3499 unescaped hostnames XSS low XSS new import patch yes no

TABLE I. LIST OF ALL APACHE 2.2 SECURITY BUGS FROM VERSION 2.2.0 UNTIL THE CURRENT VERSION 2.2.24-DEV. THE TABLE USES THE FOLLOWING
ABBREVIATIONS: DOS DENIAL OF SERVICE; EXE ARBITRARY CODE EXECUTION; IL INFORMATION LEAK; LDOS LOCAL DENIAL OF SERVICE; XSS CROSS

SITE SCRIPTING; CSRF CROSS SITE REQUEST FORGERY; HBUF HEAP BUFFER UNDERFLOW; LPE LOCAL PRIVILEGE ESCALATION; HBOF HEAP BUFFER
OVERFLOW; ACI ARBITRARY COMMAND INJECTION; AIH ACCESS TO INTERNAL HOSTS; IOF INTEGER OVERFLOW.



Table I shows a list of all security relevant bugs with the
Apache release where the bug is fixed, CVE number of the
bug, a short description, impact level, bug type, how the bug is
fixed, if the patch can be applied in DynSec, and if a sandbox
protects from the bug.

Four patches out of 49 cannot be applied (CVE-2007-
3304, CVE-2008-0005, CVE-2012-0031, and CVE-2012-0883).
The first three patches require new types, changed types, or
code refactoring. Such patches cannot be generated easily. A
programmer could write special initialization functions for
such patches to implement a specific patch that fixes the bug
without additional types. A drawback of this approach is that the
DynSec patch construction would consume additional human
resources that are better spent on the security patch itself. The
last patch, CVE-2012-0883, is not applicable to a dynamic
updating system because the patch only changes a startup
script.

Out of 49 patches there are 45 patches that can be applied
to a running Apache instance using the DynSec framework.
20 patches are simple patches that change non-control flow
instructions only, 25 patches need an additional shared library
for added functionality, new functions, imported functions from
other modules, or calls to existing functions in the same module.

The sandbox stops all discovered control flow integrity
attacks: 10 out of 49 discovered vulnerabilities are protected
by the sandbox (by safely terminating the Apache process if an
attack is detected) until a patch is applied. The protection of the
sandbox is restricted to system call policies, code integrity, and
control flow integrity checks and is unable to stop information
leaks or cross-site-scripting attacks.

Examining the individual patches shows that a large majority
of the security related patches are compatible to the DynSec
framework. The DynSec patches can be constructed with
minimal programmer overhead.3 During the analysis of the
patches we observed that most security updates do not change
any data and a low-level virtualization system is suited to
replace the application code of binary-only applications.

B. DynSec performance

The performance of the DynSec prototype implementation
for server applications is evaluated using the ab Apache
benchmark and Apache version 2.2.21. The Apache webserver
uses multiple processes and multiple threads to serve http
requests in parallel. The Apache webserver supports modules
as extensions to implement additional functionality (e.g., PHP
scripting, WebDav access, or database access).

This benchmark uses 5 different runtime configurations to
evaluate the overhead of the sandbox, the overhead of DynSec,
and the relative patching overhead. The five configurations
are: (i) native, a native configuration without sandboxing,
(ii) sandbox, a configuration with active sandboxing, (iii)
DS-0, a configuration with an active sandbox and DynSec
without patched instructions, (iv) DS-5k, a configuration with
5,000 patched instructions in the Apache core, and (v) DS-
10k, a configuration with 10,000 patched instructions in the

3An experienced programmer with knowledge of the DynSec system spends
between 5 and 20 minutes to generate a DynSec patch based on the CVE
information and the binary diff between the two binaries.

Apache core. The files on the Apache webserver were accessed
using the ab benchmarking tool that is part of the Apache
suite. ab is executed with 4 concurrent connections. The
benchmark uses two different files to evaluate transmission
speed of the webserver, index.html, a 44 bytes text file,
and picture.png, a 287kB binary file. Transmission speed
is evaluated for 100, 1,000, and 10,000 requests. For each
thread the first request after patch application (and the resulting
flush of the code cache) experiences additional latency due to
the retranslation of the executed code. The additional latency
for retranslation is in the noise and not distinguishable from
regular latency of the service.

Figure 2(a) and Figure Figure 2(b) show the different
Apache configurations. Both figures show that the overhead for
DynSec is comparable to the sandboxing overhead. Comparing
the different configurations along the X-axis shows that the
three patching configurations have roughly the same overhead
as the sandbox configuration. The slowdown in throughput for
all configurations of DynSec is below 7% for picture.png.
For index.html the throughput is decreased by 15% for
10.000 requests and by 27% for 1.000 requests.

The benchmark run with 100 requests for index.html in
Figure Figure 2(a) shows the only outlier where the overhead
for binary translation is significant compared to the native
execution (the throughput is decreased by 59% for DS-0 and
72% for DS-10k). Due to the very low number of requests
and the small file (i.e., the CPU spends only little time on
I/O in the kernel) the translation and patching overhead cannot
be amortized during the short execution time. Larger files
and/or more requests reduce the relative overhead for the first
translation.

Comparing the different number of requests shows that the
overhead for sandboxing and DynSec is amortized through
multiple executions of the already translated code. The number
of requests is inverse-proportional to the overall overhead of the
patching configuration. In server applications the I/O overhead
and the time spent in translated code dominates the translation
overhead. The low overhead for a high number of requests
shows that DynSec is a valid approach to protect long running
server applications.

In an additional experiment we evaluate the performance
overhead for SPEC CPU2006 benchmarks. On average the
TRuE runtime environment results in a slowdown of 11%
compared to native performance. DynSec reports 11% slow-
down as well and therefore adds no measurable overhead
for long running CPU-bound applications. The usual culprits
400.perlbench, 458.sjeng, 464.h264ref, and 453.povray are the
benchmarks with most overhead due to the high amount of
indirect control flow transfers. Most of the overhead can be
attributed to the binary translation system. Both the additional
security checks and the dynamic update mechanism only add
little overhead on top of the dynamic binary translation.

IV. RELATED WORK

In this section we discuss related work in sandboxing/binary
translation and dynamic update systems. Sandboxing protects
the application at runtime from unkown vulnerabilities while
dynamic update systems patch discovered vulnerabilities.
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Fig. 2. On the left figure (a) shows the throughput for different configurations of DynSec for index.html and on the right figure (b) shows the throughput
for different configurations of DynSec for picture.png

Dynamic sandboxing approaches like Vx32 [6], Program
shepherding [9], Strata [21], and libdetox/TRuE [18], [19] use
dynamic binary translation to sandbox the application on-the-fly.
Code is translated right before it is executed, usually on a basic
block level. Translated basic blocks are placed in a code cache.
Security guards are added during the translation and executed
from this code cache.

Dynamic software updating [22] relies on some form
of a runtime system to load and inject new patches into a
running application (or operating system). Compiler-based
approaches [1], [2], [5], [8], [11], [13], [14], [25] modify
the compiler tool-chain to include the update mechanism into
the compiled program while other approaches modify the
programming language [8]. Smith et al. [24] give a great
overview of different dynamic software updates.

All kernel and user-space based dynamic update systems
require a runtime system that is aware of the source-code (of the
application and of all used libraries) and prepares the executable
for incoming changes already at the compilation stage, thereby
limiting the updateability for libraries that were compiled with
a different compiler or in a different setting. DynSec, on the
other hand, does not need any source-code information and
uses user-space virtualization to inject a runtime system into
the unmodified, binary-only application. The runtime system
must not be prepared and pre-linked into the binary but can
be added at any time.

The different runtime systems run at very different levels of
granularity. The simplest runtime systems replace the complete
runtime image [5], [8] while other systems work on function
level [1], [4], or on the basic block level [11]. DynSec works

on the most fine-grained level of individual instructions and the
evaluation of Apache security patches shows that a majority of
the patches can be applied by replacing only a few instructions.

Efficiently synchronizing patch application among multiple
threads is a hard problem as some threads may be sleeping in
the kernel (e.g., for high latency I/O operations, or because they
are waiting for a lock or semaphore) and the dynamic software
update mechanism must ensure atomic patch application for
correctness but should reduce the delay until the patch is applied
and minimize the time needed to apply the patch. Many existing
systems therefore do not support multi-threaded applications
and state that they support only single-threaded applications [8],
[14], [22]. Using a sandbox-based virtualization system that
already supports per-thread code caches and system call
interposition naturally allows multi-thread patch application by
(i) interposing the return of all system calls for threads that
are currently sleeping in the kernel and (ii) using a safe-point
mechanism at the end of each basic block to synchronize all
running threads with negligible overhead.

A virtualization system enables a high-level view of the
application and offers an additional level of abstraction between
the application and the runtime system. This abstraction enables
a clear separation between the patch and the patched application.
Another advantage of the virtualization approach is that the
application can be updated even if the replaced function is
currently being executed (or is on the stack). DynSec injects
new code on instruction level granularity and not on function
level granularity like other approaches.

LUCOS [4] and Ksplice [2] implement dynamic security
updates for Linux kernels. Ksplice modifies the compilation



toolchain to implement a dynamic security update system.
LUCOS is based on Xen [3] and uses full-system virtualization
to apply kernel updates. LUCOS [4] is the only related dynamic
software updating mechanism using virtualization. LUCOS
works on function level granularity and modifies page-tables
to overwrite function prologues with jump instructions to
patched functions. DynSec on the other hand uses user-space
virtualization to dynamically patch services on instruction level
granularity.

Dynamic updating systems need to address the trade-off
between flexibility (i.e., enabling as many updates as possible)
versus safety (i.e., ensuring the correctness of the patches and
the safety of the application after the patching process). DynSec
offers maximum flexibility by allowing a programmer to change
any instruction in a patch. The programmer must still ensure
that the patch is correct and that it will not crash the system
(similar to OPUS). Future work includes the development of
an automatic patch extraction process only based on the binary
itself whilst ensuring correctness.

V. CONCLUSION

This paper shows that using a dynamic update mechanism
for long running network services like the Apache web server is
feasible and highly effective: out of 49 security critical bugs for
Apache 2.2, released over more than 7 years, 45 can be patched
at runtime. Out of the 4 unpatchable bugs, 1 bug changes
only a startup script, and 3 patches require a service restart
due to changed data-structures or code refactoring. Of course,
the findings may differ for other applications or architectures.
However, the results reported for a real-life large-scale software
system that is used by many people increase our confidence that
the approach is highly effective and that “ASAP code repair”
is practical.

Implementing the dynamic update mechanism on top of a
virtualization system like a dynamic binary translation system
has several advantages: (i) the patching infrastructure can
be implemented on top of the virtualization system, reusing
the existing virtualization infrastructure and simplifying the
dynamic update mechanism; (ii) the virtualization system can
be used to protect the integrity of the application by executing
additional security checks alongside the patching infrastructure.
In addition, the evaluation shows that important security bugs
cannot be protected by a sandbox alone and a combination of
sandbox and dynamic software update mechanism is necessary
to protect a running software service from different classes of
attack.

Dynamic updating for unmodified binary applications can
be used in real-life settings, and as long as the distribution of
patches is part of the strategy to deal with vulnerabilities that
are identified after applications have been shipped, a dynamic
updating service combined with a software sandbox provides an
effective and attractive approach to increase software availability
and integrity.
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