
Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emulators

Lorenzo Martignoni
UC Berkeley

martignlo@gmail.com

Stephen McCamant
UC Berkeley

smcc@cs.berkeley.edu

Pongsin Poosankam
CMU & UC Berkeley
ppoosank@cmu.edu

Dawn Song
UC Berkeley

Berkeley, CA, USA
dawnsong@cs.berkeley.edu

Petros Maniatis
Intel Labs

Berkeley, CA, USA
petros.maniatis@intel.com

Abstract
Processor emulators are widely used to provide isolation and instru-
mentation of binary software. However they have proved difficult
to implement correctly: processor specifications have many corner
cases that are not exercised by common workloads. It is untenable
to base other system security properties on the correctness of em-
ulators that have received only ad-hoc testing. To obtain emulators
that are worthy of the required trust, we propose a technique to ex-
plore a high-fidelity emulator with symbolic execution, and then lift
those test cases to test a lower-fidelity emulator. The high-fidelity
emulator serves as a proxy for the hardware specification, but we
can also further validate by running the tests on real hardware. We
implement our approach and apply it to generate about 610,000 test
cases; for about 95% of the instructions we achieve complete path
coverage. The tests reveal thousands of individual differences; we
analyze those differences to shed light on a number of root causes,
such as atomicity violations and missing security features.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing tools

General Terms Reliability, Security, Verification

Keywords Symbolic binary execution, CPU emulators, cross-
validation

1. Introduction
Processor emulators are widely used in systems, to provide pri-
vacy [29], integrity [17], instrumentation, replay, sandboxing [9],
and program analysis [3, 27]. In principle, any component meant to
mediate transparently between an operating system and the hard-
ware needs to emulate the hardware to some degree; consequently,
processor emulators have been linchpin components for a large
class of critical applications.

Unfortunately, our critical reliance on emulators has not been
met by a commensurate assurance of their correctness. Emulators
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are just too hard to implement correctly, for several reasons. First,
emulators are large, complex pieces of software meant to mirror
complex emulated layers such processors. Second, as components
that often appear in the critical path of applications, emulators must
be optimized aggressively, often using pervasive, brittle optimiza-
tions involving self-modifying code and multiple intermediate rep-
resentations. Third, typical emulated systems exhibit great variance
in how their different features are exercised, which leads to emu-
lators with many corner cases that are infrequently exercised by
common workloads.

In this paper, we tackle the problem of increasing the assur-
ance of processor emulators, hoping to generalize what we learn to
broader emulation assurance. Specifically, we present PokeEMU,
a systematic framework for high-coverage testing and cross-
validation of processor emulators such as Bochs1 and QEMU2.
Our work is inspired by two observations. First, there are sev-
eral emulators for common processor architectures such as IA-32,
each of which achieves a different point in the complexity-fidelity
spectrum. For example, the Bochs interpreter is a faithful but rela-
tively slow implementation of the processor (a “Hi-Fi” emulator),
whereas QEMU, a dynamic binary translator, is faster but much
more complex, buggier, and less complete (“Lo-Fi”)3. Second, ex-
ploration based on symbolic execution has matured significantly
in recent years, allowing us to leverage such techniques to enable
high-coverage path exploration and test-case generation.

We capitalize on these observations by exploiting the following
insight: one can use symbolic execution on a Hi-Fi emulator to
generate high-quality test cases for a Lo-Fi emulator. Analysis of
the Hi-Fi emulator extracts all the distinct behaviors and corner
cases it implements; those are useful because we assume the Hi-
Fi emulator’s behavior is closer to the ideal processor specification
than the behaviors implemented by the Lo-Fi emulator. Using then
the Hi-Fi emulator’s behaviors to generate automatically a test suite
for the Lo-Fi emulator, one can detect and fix deviations of the Lo-
Fi emulator from the behavior of the (presumed “more correct”)
Hi-Fi emulator or the emulated hardware. We call this methodology
path-exploration lifting, since it automatically “lifts” definitions of
program behaviors—as captured by distinct code paths—from one
emulator to another.

1 http://bochs.sourceforge.net/.
2 http://www.qemu.com/.
3 We use fidelity loosely to denote how closely an emulator approximates
the target architecture; a buggier, less complete emulator has lower fidelity
than a more correct, more complete emulator.



Interestingly, although in this paper we use path-exploration lift-
ing from a Hi-Fi emulator to a Lo-Fi emulator, hoping to “rub off”
some of the higher fidelity of the Hi-Fi emulator to the Lo-Fi one,
the technique is more general. It can be used in the opposite di-
rection, from Lo-Fi to Hi-Fi, to see how the Hi-Fi emulator would
behave for the distinct cases implemented by the Lo-Fi emulator
developers. Beyond emulation, for any two implementations of the
same precise specification (e.g., SQL query engines, SSL imple-
mentations, etc.), it makes sense to analyze one implementation to
generate test cases for comparison to the other implementation.

Certainly neither cross-validation nor path exploration via sym-
bolic execution are new. However, path exploration on an arti-
fact to test that same artifact can at best trigger its own corner
cases, but not capture those unimplemented in it, which our ap-
proach can achieve. More importantly, cross-validation alone can,
at best, do random directed testing (“fuzzing”) without capitalizing
on the fundamental differences between the different tested arti-
facts. In contrast, applying systematic program analysis for path
exploration, such as symbolic execution, to amplify the benefits
of cross-validation is novel to our knowledge. Ideally, one would
want to apply path-exploration lifting to a hardware specification
(e.g., the register-transfer language specification of a circuit); un-
fortunately, such specifications for commodity hardware are pro-
prietary and extremely well guarded. By applying the methodology
to a Hi-Fi emulator, we capture corner cases from the next best
thing. Conveniently, the Hi-Fi emulator need not be perfect, only
complete: we use the actual hardware to test our emulators against,
so correctness bugs in the Hi-Fi emulator do not impact our results,
and can be discovered through our approach as side effects.

Although path-exploration lifting is a general concept, its im-
plementation is challenging, often losing generality. In this paper
we apply and customize the technique for Bochs and QEMU, deal-
ing with several fundamental challenges. While in the past others
have used symbolic execution to generate high-coverage test cases
for programs, those programs were applications with scalar or other
simple input types. In contrast, PokeEMU must generate test cases
for emulators, whose input is a starting machine state and a test in-
struction, a staggeringly large state space to explore. Furthermore,
even after PokeEMU makes sense out of the state space and gener-
ates some test cases with starting states for a given test instruction,
we must figure out how to lead the emulated system to the desired
start state: how to get it to set its registers, configuration, program
counter, and execution mode to the values required, which is not
straightforward since certain parts of the machine state cannot be
set directly and most instructions have multiple side effects that
may undo prior state setup. Finally, it may not always be possible
to analyze the source code of an emulator due to intellectual prop-
erty restrictions and, even without such restrictions, the emulator
may manipulate system state through multiple intermediate repre-
sentations, via just-in-time compilers, etc.; operating on the binary
executable may be the only option for testing system emulators.

Contributions. This paper proposes path-exploration lifting, a new
methodology for exhaustively exploiting the correctness of one ar-
tifact to improve the correctness of another. The paper presents the
design, implementation, and evaluation of the methodology in the
PokeEMU system for processor emulators. PokeEMU consists of
several key components. First, the paper presents a symbolic execu-
tion engine for x86 binaries, FuzzBALL, used to explore paths from
binaries, as opposed to source code. Second, it describes a novel ex-
ploration strategy for processor emulators, which starts with the in-
struction decoders, generating instructions to iterate over, and then
explores the instruction emulator to identify paths per instruction,
with optimizations to reduce the state space. Third, it details an
essential tool for processor testing: an input-state generator that,
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Figure 1. Overview

given an input state for a test case, automatically creates a program
to bring an emulator or physical system to that state, so that the
test can take place. Finally, it conducts the first systematic study of
the approach using symbolic execution, assessing QEMU’s emula-
tion fidelity using test cases lifted from Bochs and comparing it to
both Bochs and real hardware, identifying several deviations from
expected behavior.

Our evaluation establishes four key points. First, for more than
95% of the instructions, PokeEMU achieved complete path cover-
age. Second, PokeEMU found a large number of deviations among
the emulators tested and real hardware: out of about 610,000 pro-
grams, more than 72,000 triggered differences, and we have iden-
tified a number of root causes, some of which affect many instruc-
tions. Third, many of the deviations found could not have been
found by prior emulator-testing approaches, such as random test-
ing. Finally, at least two of the deviations found could lead to sig-
nificant security problems, when those emulators are used as the
basis for a security tool.

2. Overview
A CPU or instruction-set emulator is a program that runs on one
architecture (host), but whose functionality is to simulate the pro-
cessor of a potentially different architecture (guest). Our goal in
this work is to discover differences between the behavior of a CPU
emulator, and the behavior of another emulator or real hardware:
such a difference enables us to find bugs in emulators.

To be precise, we define the (machine) state of a CPU emulator
or hardware system to be all the values, such as in general pur-
pose registers, control registers, flags, or memory, that can affect
the execution of a future instruction. We say that systems show a
behavioral difference if we start them in the same machine state
(called the test state), and they execute the same instruction (called
the test instruction), but after the instruction executes they are in
different machine states (called the final states). Example differ-
ences include having a different value in a register, or not raising
an exception when the hardware would.

Approach. At a high level, our approach is to discover differences
by constructing high-coverage tests that trigger them, using the



methodology of path-exploration lifting. Furthermore, unlike tra-
ditional program testing where the tests are simply scalar test input
values, a test for the emulator would specify a test state and a test
instruction. And in practice, we generate test programs: stand-alone
programs that can run on an emulator to set up the test states and
then execute the test instructions.

Our design goals are (1) to maximize the coverage of our test-
ing, subject to the constraints of (2) producing a practical number
of tests, while (3) requiring relatively little human guidance in mod-
ifying the emulators or configuring the tests. Next we discuss how
we apply these principles to the key technical challenges.

Challenges and Techniques. First, the space of possible instructions
and machine states is astronomically large, so it would not be prac-
tical to individually test every possible instruction and initial state.
However this space also has complex structure, so choosing instruc-
tions and states at random, or based on typical usage, would miss
differences that occur in corner cases. We address this challenge
by using symbolic execution to explore the space based on how
components of the state are used by a tested emulator. First, we
apply symbolic execution on the instruction decoder of an emu-
lator to select test instructions. Then for each test instruction, we
apply symbolic execution to the emulator’s implementation of that
instruction. Specifically, we choose a subset of the machine state
as relevant (this choice is discussed in detail in Section 3.3.1 and
Figure 3). Symbolic execution determines a test state for each ex-
ecution path through the implementation that can be triggered by
some assignment of values to the selected state components.

A second challenge is that CPU architectures do not provide
a uniform interface to initialize all the components of their state.
For instance control registers must be initialized using specialized
instructions, and some kinds of initialization are either prerequisites
for or conflict with other kinds. To address these challenges, we
write a fixed piece of code to initialize a machine to a baseline
state. Then our tool automatically instantiates a sequence of test
state initializers to set the remaining parts of the state. Thus the test
program consists of the baseline state initializer, then the test state
initializers, then the test instruction.

A third challenge is that many emulators use inline assembly
code or perform just-in-time (JIT) compilation, so they cannot
be properly analyzed at the source code level. We address this
challenge by using binary-level symbolic execution, which applies
uniformly to an interpreter compiled from source code and the
machine code created by a just-in-time compiler. Although we
did have source code for the emulators we studied, we took on
this challenge so as to prepare for also studying closed-source,
commercial emulators and VMMs.

System Architecture. Our approach has four steps: exploration, test
program generation, test program execution, and difference analy-
sis (Figure 1).

In the first step, exploration, we use symbolic execution to ex-
plore an emulator. To efficiently partition the space of possible in-
struction executions, we do the exploration in two steps: we first
explore to generate legal instructions (Figure 1(1)), and then ex-
plore the execution of each instruction separately (Figure 1(2)). We
progressively explore all the execution paths of an instruction im-
plementation, given a selected set of symbolic state components,
and generate one test for each path. Thus the output of this step is
a set of pairs of test instructions and test states. The symbolic ex-
ecution is implemented using our tool FuzzBALL, which we have
extended with optimizations for this problem domain. The second
step, test program generation, constructs complete test programs
from the results of exploration. For each input pair of a test instruc-
tion and an test state found in the exploration phase, we construct

as output a test program consisting of the baseline initializer, the
test state initializer for the test state, and the test instruction (Fig-
ure 1(3)). In the third step, test program execution, we take the test
programs as input and run them on emulators and real hardware
(Figure 1(4)). We instrument the emulators and a hardware-based
virtual machine to save as output the machine state after execut-
ing the test program (the final state). In the fourth step, difference
analysis, we compare the final states from the different executions
of a test (Figure 1(5)). If the results differ between emulators or
between an emulator and the real hardware, we have triggered a
behavior difference.

For our evaluation, we have selected two emulators that support
x86 guest code: Bochs is an interpreter, and QEMU is a JIT com-
piler. We compile the emulators for the Linux/x86 host platform.
In our experiments, we apply symbolic execution to Bochs, and
then use the generated tests for a three-way behavior comparison
of Bochs, QEMU, and an Intel R© CoreTM i5 ∗ workstation virtual-
ized by KVM. We test the processor’s 32-bit protected mode.

3. Path-Exploration Lifting
In this section we describe the main technical aspects of how our
system explores the space of possible instruction executions in an
emulator. We start by describing our core technology of lightweight
binary-level symbolic execution (Section 3.1). Then we describe
the two ways we apply it: first, to discover possible instructions
(Section 3.2), and then to find machine states that trigger various
behaviors in an emulated instruction (Section 3.3). Finally, we de-
scribe a difference-minimization technique that we use to simplify
the machine states discovered by symbolic execution (Section 3.4).

3.1 Lightweight Symbolic Execution
The core of our system’s state-space exploration is a lightweight
engine for binary-level symbolic execution, named FuzzBALL.
We start our description with a review of the key concepts of
symbolic execution in general, then describe the online approach
our tool takes, and some of the particular challenges that arise
when operating on binaries. At a high level, FuzzBALL implements
similar functionality to previous symbolic execution systems such
as KLEE [6]. But in contrast, it takes a simpler approach in some
areas that can be performance or code complexity challenges in
other systems, and it is designed for a binary-level, rather than a
source-level, program representation.

3.1.1 Background: Symbolic Execution
The basic principle of symbolic execution is to replace certain
concrete values in a program’s state with symbolic variables. As
these symbolic values are used in later computations, they produce
more complex symbolic expressions. These symbolic expressions
are valuable because they can summarize the effect of many con-
crete executions.

When a symbolic expression is used in a control-flow instruc-
tion, we call the formula that controls the target a branch condition.
On a complete program run, the conjunction of the conditions for
all the symbolic branches is the path condition. Thus the values for
the symbolic variables that satisfy a path condition are ones that
would cause the program to execute the same control-flow path as
the one executed symbolically. Similarly, by taking a prefix of the
path condition with the final branch condition negated, we obtain
a condition corresponding to a different control-flow path. Solving
such a path condition lets us obtain a new set of concrete values
that would cause the corresponding path to be executed.

∗ Intel R© CoreTM i5 is a trademark of Intel Corporation in the U.S. and/or
other countries. Other names and brands may be claimed as the property of
others.



Figure 2. An overview of some of the key components of our symbolic execution engine FuzzBALL. The interior components are described
in Section 3.1; the gray-shaded components are off-the-shelf libraries.

3.1.2 Lightweight, Online Approach
At its core, FuzzBALL is an interpreter for x86 instructions, but
one in which the values in registers and memory can be sym-
bolic expressions rather than just concrete bit patterns. A graphi-
cal overview of FuzzBALL’s architecture is shown in Figure 2. As
it executes an x86 binary program, FuzzBALL translates each in-
struction into a streamlined intermediate representation (IR), then
performs each action specified by this IR on a symbolic state repre-
sentation. For instance, suppose that %eax has the symbolic value
a− 20, and the location pointed to by %ebx has the value 5. Then
after FuzzBALL interprets the instruction add (%ebx),%eax,
the symbolic value of %eax will be a− 15.

Suppose that the following instruction is jz a04, a conditional
branch that checks whether %eax is zero. The branch condition
a−15 = 0 depends on the symbolic variable a, so to decide which
instruction to execute next, FuzzBALL checks whether either of
the formulas a − 15 = 0 or a − 15 6= 0 is satisfiable, using a
decision procedure. In this case both are, so FuzzBALL can choose
freely. Suppose it chooses to take the true case (a − 15 = 0);
then it will record that the false case is available to explore later,
and go on to the instruction at address 0xa04. As it encounters
other symbolic branches, it makes similar choices and records
them. When it reaches the end of the program or another specified
stopping point, FuzzBALL will mark that state as explored, and
start again from the beginning of the program or a specified starting
point. On the next run, FuzzBALL uses recorded decisions to
ensure that the path it executes is different from those explored
before. FuzzBALL continues in a loop, executing new paths, until
all the possible paths have been executed. The choice of which
program values are marked symbolic (typically the inputs to some
computation) controls how many paths FuzzBALL explores: more
symbolic values mean more execution paths.

Many uses of symbolic execution start by running a program
with a pre-existing concrete input. In such applications, a simplifi-
cation is to have the symbolic execution run in parallel with, but not
modify, a concrete execution, so that the path condition describes
the path the concrete execution took. In our context, by contrast,
we wish to completely explore an execution space, so it does not
matter which path we execute first. On the other hand, it is useful to
have more flexibility in choosing which paths to symbolically ex-
ecute. Therefore our system performs online symbolic execution.
During execution we start with no commitment to a concrete value

for any symbolic variable; when the value at a memory location
has a symbolic expression, this is instead of, rather than in addition
to, a concrete value. This gives the system the flexibility to choose
either direction for a symbolic branch, subject only to feasibility.

Thus FuzzBALL is an interpreter for machine instructions,
where registers and memory contain symbolic formulas. The rep-
resentation of memory uses a two-level data structure similar to a
page table, in which each page of memory is an array of formulas
rather than an array of integers.

Online Decision Making. When a branch condition is symbolic, an
online symbolic execution tool can execute either the true or false
side of the branch, but to make this decision it must reason about
the path condition before execution can proceed. Our symbolic ex-
ecution engine can choose directions subject to two constraints: the
branch direction must be feasible, and it should lead to a path that
has not been explored before. A branch direction is feasible if it
is logically consistent with the previous branches in the path. For
instance, in if (x>y) x=y; if (x>y) abort();, there is
no feasible path in which both if conditions are true. FuzzBALL
checks feasibility by giving the path condition to a decision proce-
dure, which determines whether the condition is satisfiable, and if
so, supplies a satisfying assignment.

Specifically, FuzzBALL interfaces with the decision procedures
STP [13] and Z3 [12]. After simplifying symbolic expression, it
translates them into STP or Z3’s syntax for quantifier-free formulas
over fixed-sized bit-vectors (representing bounded machine arith-
metic). STP and Z3 are well tuned for applications like FuzzBALL:
their results are precise but produced quickly, with most queries
completing in a fraction of a second. When using Z3, FuzzBALL
can also solve path conditions incrementally: i.e., if it previously
solved b1 ∧ b2, Z3 can reuse information from that solving process
when solving b1 ∧ b2 ∧ b3.

Decision Tree. To avoid exploring the same paths repeatedly,
FuzzBALL uses a decision tree. The decision tree is a binary tree in
which each node represents the occurrence of a symbolic branch on
a particular execution path, and a node has children labeled “false”
and “true” representing the next symbolic branch that will occur
in either case. Each tree node records whether the false and true
branches have been checked for feasibility, as well as whether any
additional unexplored branches appear below this node in the tree.



On each execution, FuzzBALL examines the decision tree to
choose a random path within the part of the tree that has not been
completely explored, then adds on to the tree for the part of the path
being explored that is new. When creating a new node, FuzzBALL
checks whether both the false and true branch directions are fea-
sible, and if so, it can choose arbitrarily (either randomly or ac-
cording to a supplied heuristic). After reaching the end of the path,
FuzzBALL propagates the bit indicating that a subtree has been
fully explored back up the tree until it reaches a node with an unex-
plored branch. The decision tree grows as more paths are explored,
so FuzzBALL uses a compact in-memory representation and can
optionally store it on disk instead, but this is not needed for runs of
the length used in this project.

Branches that come from if statements and branches for loop
exit conditions are treated uniformly, since at the instruction level
they look the same. Thus FuzzBALL considers a different num-
ber of executions of a loop as distinguishing a different execu-
tion path. In other applications, this can lead to a significant state-
space explosion to manage, but it is not a major obstacle to Po-
keEMU because instructions usually do not contain unbounded
input-dependent loops.

Thus the decision tree ensures that each path FuzzBALL ex-
plores is different, and that exploration stops if no further paths
are possible. Similarly to systems that duplicate execution state at
a symbolic branch [6, 8], the decision tree saves (expensive) in-
vocations of the decision procedure when the tool already knows
which branch direction is feasible. As a tradeoff, our approach re-
peats (relatively inexpensive) concrete and symbolic execution on
the repeated path, to avoid keeping multiple states at once, which
would increase memory usage and implementation complexity.

Extension to Word-sized Values. When execution requires a con-
crete value for a word-sized expression, like a switch statement
argument or an array index, FuzzBALL applies the same mecha-
nisms described above for two-way branches, once for each bit in
the word, most-significant first. This reduction carries over the key
properties from two-way branches: FuzzBALL chooses only feasi-
ble values, and eventually tries all feasible values.

3.1.3 Operating at the Binary Level
Since FuzzBALL targets binaries rather than source, it must ad-
dress challenges including instruction-set complexity and variable-
sized memory accesses.

To factor out instruction-set complexity, FuzzBALL uses the
BitBlaze4 Vine library [27], which in turn builds on the VEX library
which is also used by the Valgrind debugging tool [25]. First VEX
translates an x86 instruction into the VEX intermediate representa-
tion, and then Vine translates from this into its own language which
is even simpler; these translations are cached for efficiency. To han-
dle memory accesses of different operand sizes (bytes, words, etc.),
FuzzBALL tries when possible to represent values in their natural
size, so that splitting and reassembly are required only when the
program itself accesses memory in an inconsistent way. To achieve
this, FuzzBALL’s representation of memory can contain symbolic
values of differing sizes. We describe some additional implementa-
tion challenges that, in particular, are inspired by use with emula-
tors in Section 3.3.2.

3.1.4 Impact of FuzzBALL’s Correctness
At this point, one might worry about seemingly circular reasoning
in our approach. Our goal is to check the correctness of one x86
interpreter (that in an emulator), but our technique relies on another

4 http://bitblaze.cs.berkeley.edu/

x86 interpreter (that inside FuzzBALL). What if FuzzBALL has
bugs similar to those we find (Section 6) in other emulators?

In fact there are several reasons why our approach is still ef-
fective. First, any such bugs in FuzzBALL would be unlikely to
significantly affect our results, because emulators use in their own
implementation a much smaller and better-exercised subset of pro-
cessor functionality than they emulate. Second, the differences we
discover are real, independent of the test generation process. We
use symbolic execution to improve coverage, but the behavior dif-
ferences are validated by test cases that run on their own. Third,
FuzzBALL can be used to validate many emulators, so efforts
towards strengthening or verifying the correctness of FuzzBALL
would be amplified through its use in a tool such a PokeEMU.

3.2 Instruction Set Exploration
The x86 instruction set is complex enough that even just enumer-
ating all the possible instructions is non-trivial. But we would like
exactly such an enumeration, in order to partition the later explo-
ration so that we consider each instruction separately and exactly
once. Therefore our first, and relatively simpler, application of sym-
bolic execution is to discover a set of byte sequences representing
instructions to test.

We observe that emulators contain instruction-decoding func-
tionality to parse a byte sequence, check whether the sequence is
a legal instruction, and if so, decide which code in the emulator
will process it. This later code might be the implementation itself
in an interpreter, or a code-generation routine in an IR-based or JIT-
compiler emulator; we will refer to it as per-instruction code. By
exploring the instruction decoder with symbolic execution, we can
discover which byte sequences the emulator considers to be instruc-
tions, and group byte sequences that are the “same” instruction in
the sense that they have common per-instruction code in the emu-
lator. In particular, we start symbolic execution at the entry point of
the emulator’s instruction parser, mark the bytes that are the input
to this parser as symbolic, and explore execution paths up to the
selection of the per-instruction code.

An x86 instruction is between 1 and 15 bytes, consisting of op-
tional prefix bytes, an opcode that is usually 1 or 2 bytes, and trail-
ing fields. Those trailing fields can specify a sub-opcode, register
operands, addressing modes, and immediate values. The total num-
ber of possible instruction byte sequences is astronomical (though
less than 28·15 ≈ 1.3 · 1036, because not all instructions allow
all possible prefixes and operands). To select a more manageable
number of byte sequences, we conceptually partition the byte se-
quences according to which per-instruction code they trigger, and
select a bounded number of byte sequences (currently 1) from each
cell of the partition. Intuitively, we select one byte sequence per in-
struction, for the definition of “instruction” given by the emulator’s
per-instruction code. Selecting more byte sequences per instruction
would slightly improve our coverage of functionality selected by
flags within the instruction, such as different addressing modes, but
we estimate that the incremental benefit would be relatively low.

The instructions defined by emulator implementations are not
in one-to-one correspondence with the 1-2 byte instruction opcode
field: some opcode values correspond to multiple implementations
depending on prefixes or an extra sub-opcode field, and some dis-
tinct opcodes share a single implementation. But we observe that
generally at most either a single prefix byte or the sub-opcode
within the next byte after the opcode is also relevant, and any other
prefix bytes are optional, so every implementation has a unique rep-
resentative based on the first three bytes of an instruction byte se-
quence. As shown in the results of Section 6, this approach allows
us to cut down an original space of 224 (16.8 million) three-byte
sequences into less than 1000 unique instructions.



3.3 Machine State-Space Exploration
Our system’s more critical (and more complex) use of symbolic ex-
ecution is to explore how the state of the emulated machine before
execution of an instruction (the input state) affects the instruction
execution of the Hi-Fi emulator, and the state after its execution
(the output state). At a high level, we mark the input state as sym-
bolic, symbolically execute the instruction implementation, and for
each execution path record the behavior and output state. Specifi-
cally, each execution path starts at the beginning of the code imple-
menting an instruction and ends when the Hi-Fi emulator is about
to raise an exception or execute the next instruction. Here we dis-
cuss how we select and mark machine state as symbolic, and some
optimizations that make this state space manageable.

3.3.1 Machine State
Our key control over the exploration performed by symbolic exe-
cution is the choice of which parts of the machine state we treat as
symbolic. Symbolic execution will explore all of the code paths that
can be reached for some assignment of values to the symbolic parts
of the input state. On the other hand, those parts of the machine
state that are left concrete will be treated as fixed in exploration.
Thus the more state we mark as symbolic, the larger a state space
we will explore. We would generally like to explore as large a state
space as possible, except that we would like to avoid repeatedly ex-
ploring large numbers of executions that are effectively identical.
For instance the page table can have 220 possible base addresses,
but while the contents of the page table are significant, its location
is not, so it is enough to use only one such position for exploration.

The state of the guest machine is represented by data structures
in the memory of the host program, so it is with respect to these data
structures that we specify symbolic locations. FuzzBALL supports
a mode in which the entire state of the host machine is symbolic,
and we also considered inferring this data layout from execution.
However, neither of those approaches has proved necessary so far:
in our observation the data structures that represent the machine
state have a straightforward layout in the Hi-Fi emulator.

Symbolic values are specified to FuzzBALL by giving their
address, so we write C test code to print the locations of the
fields that we make symbolic. For uniformity, all of the symbolic
locations are specified as bytes, but specifying 4 consecutive bytes
as symbolic is equivalent to specifying a single symbolic word.
Conversely, we can make a subset of the bits in a byte symbolic
by marking the entire byte as symbolic, and then adding a side
constraint that fixes the concrete bits.

Overall, our strategy has been to mark as much of the machine
state as symbolic as possible, except for locations that have many
effectively equivalent values. Thus we make most of the machine
registers and tables such as the page table and the global descrip-
tor table (used for segment accesses) symbolic. A graphical pre-
sentation of the registers we mark symbolic is shown in Figure 3.
However, we keep concrete values for parts of registers that are ef-
fectively just pointers to other data in memory, such as the portion
of the CR3 register that is a pointer to the page table, as described
above. We also leave concrete the flags that specify the CPU is
operating in 32-bit protected mode, since that is the target of our
testing. And of course the instruction pointer (EIP in x86 terminol-
ogy) needs to be concrete along with the bytes of the instruction
to be executed. In total, our symbolic machine state consists of ap-
proximately 400 bytes in registers and tables, along with all of the
unused bytes in physical memory.

3.3.2 Optimizations for Exploration
Even after restricting to a single instruction and carefully selecting
which machine state should be symbolic, the space of possible
executions is still quite large. Here we discuss two classes of further

optimizations that make our symbolic execution more effective by
avoiding repeated exploration of similar paths.

Summarizing Common Computations. Some parts of instruction
execution involve multiple execution paths, but are consistent over
a large number of instructions. We would like to avoid repeated
execution of these code regions, particularly since each such multi-
path region has a multiplicative effect on the total number of paths.
To avoid path explosion, we take a divide and conquer approach: we
identify the common code region, perform symbolic execution on
it separately to build a precise summary, and then use that summary
in place of the common code.

Using a preliminary run of symbolic execution, we explore all
the paths of a computation and record the outputs as a function
of the inputs. Next, we combine the symbolic expressions for the
path conditions and the output values for a value into a single
large formula: for instance, if such a computation had an output
vi on the path with path condition pi, the summary formula is
p1 ? v1 : (p2 ? v2 : ...). Then, in the main symbolic
execution runs, we skip execution of the computation and instead
add the pre-computed constraint to the path condition.

For instance, we use this treatment for code in Bochs that com-
putes a cached copy of a segment descriptor. An x86 processor al-
lows the specification of six memory regions, called segments, each
with a chosen base address and size (these were once used for mem-
ory management, and are still used for thread-local memory regions
and some security applications). The locations and other attributes
of each segment are stored in a packed data structure called the seg-
ment descriptor, but since this descriptor rarely changes, emulators
often cache its information in a data structure with their own choice
of layout. The layout of the cache is emulator-specific, so we mark
the state symbolic in the emulator-independent descriptor structure
and let the emulator recompute its cache. However the code that
updates the cache has 23 paths, so executing all the possible paths
through all of the possible cache updates would increase the search
space by a factor of 236 = 148035889. Instead, we summarize
the cache-update computation with a single set of symbolic expres-
sions, automatically computed from an exploration, in advance, of
just the cache-update function.

Indexing Memory and Tables. As described in Section 3.1.2 above,
FuzzBALL’s default behavior, when a symbolic value is used as
an index, is to exhaustively explore each index value. While this
would be suitable for a small table in which each entry is different,
it is impractical for large arrays such as the page table or the guest
memory (which is generally represented as a single or multi-level
table in the host). For these arrays, we instead direct FuzzBALL
to select a single index value at random, and not explore any other
values. Like making a pointer in the initial state concrete rather than
symbolic, this on-the-fly concretization narrows the search space
that FuzzBALL explores, but it is justified by the observation that
for most purposes, all 232 locations in memory are equivalent.

Another important consideration for large tables in the machine
state is how they are initialized for symbolic execution. For the
page table, we concretely initialize the parts of the table that are
pointers to sub-tables or page frames, but make all of the flag bits
symbolic. For main memory, we treat each byte as a separate sym-
bolic variable, but we modify FuzzBALL to create those variables
on demand only when a location is accessed.

3.4 State Difference Minimization
For each path explored in symbolic execution, the decision proce-
dure computes an assignment of bits to the symbolic variables that
would cause the emulator to execute that path: this assignment is
then the basis for constructing a test state. If any bits are symbolic,
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Figure 3. Symbolic machine state (grayed bits are symbolic, the remaining ones are concrete).

but not constrained by checks on the explored path, the decision
procedure will choose values for them arbitrarily. However, this
flexibility is inconvenient for two reasons. First, it makes the gen-
erated tests harder to understand, because they contain extra state
differences that are irrelevant to the execution of the emulator, and
caused only by the decision procedure’s arbitrary choices. Second,
these irrelevant differences can cause test execution to fail when
they affect state that is checked in the test execution but not during
the symbolic execution. As an example, we start symbolic execu-
tion in Bochs after it has fetched and decoded an instruction, so
the permissions on the code segment CS are not relevant for most
instructions. But in a real execution, the test instruction must be
fetched using CS, so a change that makes that segment inaccessible
will cause the test to fail before executing the instruction.

To avoid these problems, we wish to base test states not on an as-
signment where unconstrained bits are arbitrary, but on one where
unconstrained bits are left the same as in a baseline machine state
that “just works.” In other words we want to find an assignment that
is minimally different from the baseline state. We implement this
minimization using a simple and efficient greedy approach. Start-
ing with a working assignment equal to the one produced by the
decision procedure, we iterate over each of the bits that are differ-
ent from the baseline state. For each bit that is different, we check
whether setting it to its value in the baseline state still satisfies the
path condition; if so, we make the change in the working assign-
ment. Potentially making multiple passes could further reduce the
size of the difference, but a single pass is sufficient for the problem
of unconstrained variables, which is our main motivation.

We also explored implementing this minimization by exclud-
ing variables from the assignment that do not appear in the path
condition. However, particularly in the presence of bitwise oper-
ations, FuzzBALL’s symbolic expressions sometimes retain irrele-
vant variables. It would have required a complex additional analysis
to reliably remove such variables. By comparison our current ap-
proach based on evaluation was simple to implement and requires
no approximation.

4. Generating Test Programs
Figure 4 shows the execution of a test program, which is a stan-
dalone disk image that boots an emulator, initializes a test state,
executes a test instruction, and either halts normally or raises an
exception. To simplify the process of constructing code to set up
the test state, we divide it into two steps. First we write a baseline
state initializer, code that sets up a single baseline state that is a
starting point for any state in a given processor mode. Then we use
an automated code generation process to construct, for each spe-
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Figure 4. Execution of a test (the black circles denote when we
take a snapshot of the CPU state and of the physical memory; the
rectangle delimits the test program).

cific test state, the additional initializations needed to reach the test
state from the baseline state: we call these the test state initializers.
The advantage of this two-step approach is that because the test
states are similar to the baseline state, we require relatively little
new code specific to each test.

We choose a bootable disk image as the easiest way to load and
run code in an emulator. So in summary, a test consists of a bootable
disk image containing an off-the-shelf boot loader, the fixed base-
line state initializer, the test state initializers for a particular test
state, and the test instruction.

Next we describe in detail baseline-state initialization and test-
state initializer generation.

4.1 Baseline State Initialization
The baseline state is a minimalist execution environment necessary
for successfully running all possible tests in a specific operating
mode. This baseline state corresponds to the concrete state used
during the exploration stage (described in Section 3.3). We now
describe specifically the baseline initializer we use for 32-bit pro-
tected mode with paging enabled, the most common mode for x86
processors and the one used in our evaluation. We could construct
similar baseline initializers for other modes.

The off-the-shelf boot loader we use happens to already con-
figure the machine in 32-bit protected mode. The remainder of the
initialization consists of populating the global descriptor table, the
page table, the interrupt descriptor table, and enabling paging and
interrupts. More precisely we initialize the global descriptor ta-
ble to use a flat segmentation model. That is, the code, data, and
stack segments have a zero base and a 4-GByte limit. We configure
the page table to map the 4-GByte virtual address space linearly
to a 4-MByte physical memory, repeating every 4-MBytes so that
each physical page backs 1024 virtual pages. All pages are initially
marked as readable and writable and accessible to both user and
kernel mode. This configuration ensures that, unless the global de-



scriptor table or the page table are modified later during the exe-
cution, any access to the memory will succeed. The interrupt de-
scriptor table is configured to dispatch exceptions to handlers that
halt the CPU, and interrupts to handlers that effectively ignore the
interrupt by resuming execution immediately.

4.2 Building Test Programs
Each output of the exploration phase is a test instruction and a test
state: a precise configuration for a subset of the CPU state and of
the physical memory, necessary to trigger a specific path during
the emulation of the test instruction. In order to exercise the same
behavior at run-time, we need to run the test instruction starting
from the same machine state discovered during the exploration. To
do so, we need to generate code that, starting from the baseline
state described in the previous section, sets up the machine state
for running the test instruction. This code, the test state initializer,
will be executed immediately after the baseline state has been
initialized. The test program then executes the test instruction. If
the test program is executed successfully the CPU halts; otherwise
an exception is raised.

To organize the process of constructing the test state initializer,
we divide it according to the various parts of the machine state we
initialize. For each part of the state that must be initialized, we de-
sign a gadget, a short code snippet, that encapsulates how to initial-
ize the state component. Then we have an algorithm that automat-
ically selects and instantiates appropriate gadgets and assembles
them into a complete test state initializer.

In more detail, each gadget consists of an assembly-language
instruction sequence that initializes a specific state component,
plus additional constraints specifying its prerequisites and side
effects. The prerequisites specify that one gadget must execute
before another. The side effects specify that in addition to the
intended initialization, a gadget has other effects such as modifying
scratch registers or causing a cache to become out of date. We
have built gadgets to initialize general purpose registers, segment
registers, control registers, and memory locations.

Then, our algorithm to generate the test state initializer operates
as follows. First we instantiate a gadget for each component of the
test state. Next, for each side effect of this first set of gadgets,
we instantiate an additional gadget to correct the side effect, and
we continue this process until there are no more outstanding side
effects. Then, based on the prerequisite structure between all of
these gadgets, we construct a dependency graph, and topologically
sort the gadgets to respect the dependencies among them. Finally
we append to this initializer sequence the test instruction itself and
a halt instruction, and assemble the whole sequence to a binary.
If our mechanism fails to find an initializer (e.g., because of a
cyclic dependency or a side effect for which no gadget exists),
we abort and ask for user assistance. A benefit of state-difference
minimization (Section 3.4) is that none of the test cases generated
by our system caused the initializer generator to fail.

Figure 5 shows a sample test program (without the baseline ini-
tializer) generated by our system for the instruction push %eax.
The left hand side (Figure 5(a)) shows the output of the machine
state space exploration. The system returned an assignment for the
stack pointer and for two bytes of the physical memory, corre-
sponding respectively to the fifth and sixth byte of the tenth entry
in the global descriptor table. This descriptor is used for the stack
segment, thus the purpose of the test is to exercise checks on the
type and on the limit of the stack segment. The right hand side of
the figure (Figure 5(b)) shows the code generated by our system
to initialize the state, to execute the push instruction, and to mark
the end of the execution. Line 1 initializes the stack pointer. Lines
2 and 3 overwrite the type and the default operand size attributes
of the tenth segment descriptor in the global descriptor table. Lines

4 and 5 force the CPU to reload the descriptor of the stack seg-
ment (the tenth descriptor). Line 6 restores the original value of the
%eax register, used by the previous instructions. Line 7 is the test
instruction and line 8 halts the CPU. Our sequence generation al-
gorithm automatically determines that lines 2 and 3 require lines 4
and 5, and that lines 4 and 5 require line 6.

5. Executing Test Programs
In the test program execution step, we take as input a test program
as constructed in the previous step, and execute it on either an
emulator or the real hardware. We monitor its execution to catch
any exceptions raised by the test instruction, and to record the final
state; these are the outputs that we will then compare. We now
explain how we implement this execution step for emulators and
for real hardware.

5.1 Emulator Execution
To run a test on a given emulator, we boot the emulator using
the virtual disk image created for the test. After booting, the test
runs automatically. The execution of the test can terminate in two
different ways: the CPU either halts or throws an exception. To
detect the termination of a test, we intercept those events; when
one occurs, we generate a snapshot of the state of the CPU and of
the physical memory. We achieve this by instrumenting the main
execution loop of the emulator, enabling the interception after the
baseline initialization has completed.

The test state initialization might modify critical portions of the
CPU state (e.g., the page table or the global descriptor table). If any
hardware interrupt is delivered during this stage of the initializa-
tion, the CPU might be unable to execute the interrupt handler suc-
cessfully and will throw an exception. Different emulators simulate
different devices and adopt different strategies to deliver hardware
interrupts. Therefore, to prevent a spurious difference in the state,
we ignore all interrupts after the baseline state has been initialized,
again by instrumenting the main execution loop of the emulator.

We have had to implement very little instrumentation to inter-
cept hardware interrupts, exceptions, and halt requests. Bochs al-
ready offers an API to instrument various types of events. QEMU
does not provide an API, but we only needed to write a 10-line
patch to intercept the events.

We create snapshots of the CPU state and of the physical mem-
ory with instrumentation code in the emulator that uses the emula-
tor’s APIs for memory access. The advantage of this approach, as
opposed to attempting to create the snapshot as part of the test pro-
gram, is that it is effective even if the emulated CPU is in an invalid
state. Bochs and QEMU have similar built-in snapshot capabilities,
but we implement our own file format to simplify comparison.

5.2 Hardware Execution
As with the emulator, we would like to record the state of the CPU
and of the physical memory obtained at the end of the test program
on real hardware Unfortunately, this is not easy to do because the
execution environment would require special support for creating
snapshots of the state at the end of the execution and because each
test would have to reset the hardware.

Our strategy to overcome this problem is to leverage the closest
approximation of the real hardware available: a hardware assisted
virtual machine. With a hardware assisted virtual machine, based
on Intel R© VT-x, or AMD-V∗ [1, 24], we can execute tests in a guest
virtual machine and supervise the execution of the guest from the
virtual machine monitor. The majority of the instructions (including
most privileged ones) can be executed directly on the hardware
from the guest. The mediation of the virtual machine monitor is
required only for a small subset of the instructions and events,



%esp : 0x002007dc
00208055: 0x13 (gdt 10)
00208056: 0xcf (gdt 10)

(a)

1 movl $0x002007dc,%esp
2 movb $0x13,0x00208055 // modify segment type and
3 movb $0xcf,0x00208056 // default operation size (gdt 10)
4 movw $0x0050,%ax // force reload of stack segment
5 movw %ax,%ss
6 movl $0x00000000,%eax // restore killed %eax
7 .byte 0xff,0xf0 // push %eax
8 hlt // the end

(b)

Figure 5. Sample test-case generated by FuzzBALL (a) and corresponding x86 code of the test program (b), for the instruction push %eax.

and is triggered by traps. Hardware interrupts, exceptions, and
halt requests that occur while executing guest code directly on the
hardware can be intercepted by configuring the CPU to trap into the
virtual machine monitor whenever they occur. When a trap occurs,
the virtual machine monitor, having complete visibility to the state
of the guest virtual machine, can create a snapshot of the state of the
CPU and of the physical memory. Finally, the hardware guarantees
a separation of the guest from the virtual machine monitor. Thus,
the virtual machine monitor is always able to regain control of the
execution, it can reset the state of the guest, and multiple tests can
be run without having to reset the machine physically.

All the guest instructions in the test program that can be directly
executed on the hardware are guaranteed to be correct. In other
words, the state at the end of their execution corresponds to the
state we would obtain if we executed the same instructions without
the virtualization layer. On the other hand, for the instructions that
require the mediation of the virtual machine monitor we do not
have the same guarantee. However the number of such instructions
is very small (just those that load and store a few privileged control
registers), and their semantics simple, so we have checked by hand
that the code in the virtual machine monitor responsible for the
mediation complies with the real semantics.

Our implementation is based on KVM [19] (Kernel-based Vir-
tual Machine), a virtual machine monitor for GNU/Linux. Only a
few modifications were necessary to the original KVM codebase
in order to intercept all traps that occur after the baseline state has
been initialized. We handle different types of traps differently. If the
trap originates from an exception or a halt request, we take a snap-
shot of the guest CPU state and physical memory and terminate the
guest. If the trap originates from a hardware interrupt, we ignore the
trap and resume the execution of the guest. Another class of traps
are used to simulate exceptions: these occur when an instruction
that would normally cause an exception (in the absence of the vir-
tualization layer), instead generates a virtualization trap. Thus for
all other types of trap, we let the virtual machine monitor handle
the trap, but, before resuming the execution of the guest, we check
whether an exception will be injected into the guest at the next re-
sume. If so, this indicates that the trap was simulating an exception,
so we take a snapshot and terminate as for a direct exception.

6. Evaluation
We evaluated PokeEMU by comparing the behaviors of the latest
versions of QEMU (0.14.0) and Bochs (2.4.6), with the behavior of
an Intel R© CoreTM i5 processor. On the latter we used a customized
version of KVM (2.6.37) to automate the execution of the exper-
iments. Since the i5 processor has hardware support for memory
virtualization (extended, or nested, page tables), the vast majority
of the instructions could be executed natively by the hardware with-
out the need for software emulation.

As the Hi-Fi emulator we used a slightly earlier version of
Bochs (2.4.5), the latest available at the time we started working on

this project. We slightly customized this emulator to ease symbolic
execution (e.g., we disabled the devices and the user interface).

We generated test cases using virtual machines running on
Amazon EC2. We then used the same virtual machines to run the
test cases in QEMU and Bochs and to compare their behaviors.
The generation of the test cases required 545.4 CPU hours on 3
8-core instances on EC2 (total cost was about 135 US dollars in
Amazon EC2 charges during the summer of 2011). Generation is
highly parallelizable, since the bulk of its execution cost lies in the
invocations of the solver, and multiple paths can be explored at
the same time. We estimate that, with proper scheduling, test-case
generation would take about 33.0 hours on 3 instances.

Test-case execution took totals of 198.7, 391.9, and 48.5 CPU
hours on QEMU, Bochs, and the real hardware, respectively, and
results comparison took 175.9 CPU hours. Test execution is also
highly parallel, but our real-hardware testing approach is incom-
patible with EC2’s para-virtualization; for the present results we
used a local workstation. By combining 13 EC2 instances and 3
bare-metal instances from another provider, and accounting for the
network transfer between them, we estimate that a complete set of
test executions and the comparison of their results would take 7.8
hours and $100.19. This is already fast enough to use for nightly re-
gression testing, so we believe that execution time is not a limiting
factor for our approach or the PokeEMU prototype.

Our system was able to identify several differences in the behav-
iors of the emulators, some of which were not known before. We
argue that our system can successfully be used in the future to val-
idate the implementation of the currently missing security features
in QEMU (i.e., the enforcement of segments’ limits and rights) and
the other issues (such as those caused by the lack of atomicity dur-
ing emulation) we found.

6.1 Completeness of the Testing
To generate test instructions we explored the instruction set using
a 15 byte input buffer. The first three bytes of this buffer were
made symbolic (for the reasons explained in Section 3.2) and the
remaining ones were set to zero. We identified 68,977 candidate
byte sequences encoding valid instructions and then selected 880
unique instructions. This set of instructions covered all the unique
instructions supported by the emulator, with the exception of a
few SIMD instructions whose opcodes are longer than three bytes;
we also excluded floating point instructions since our symbolic
execution engine does not support them.5

We used each of these instructions to explore the machine state-
space and to generate test programs. For the exploration we treated
the entire machine state as symbolic, with the exception of the
bytes in memory representing pointers (as shown in Figure 3), the
FPU state, the MMX registers, and the contents of the interrupt
descriptor table. As concrete inputs we used a snapshot of the

5 Some of the techniques used for floating-point equivalence checking by
Collingbourne et al. [11] might help us remove the floating-point restriction
from PokeEMU in our future work.



baseline machine state. For each test instruction we executed the
emulator until we explored all paths or we reached a limit on the
maximum number of paths (currently 8192).

In this setting, our system explored 610,516 different paths. We
observed that the number of explored paths per instruction mainly
depends on the type of instructions and on the type of operands
(e.g., whether the operand represents a register or a memory loca-
tion). We exhaustively explored the machine state-space for about
95% of the instructions. The remaining 5% of the test instructions
were not exhaustively explored because we either hit the limit on
the maximum number of paths or because of a limitation of our
current concretization strategy. Thus, for the exhaustively explored
instructions, our system generated test programs that covered all
the possible behaviors of the Hi-Fi emulator that can be triggered
by varying the symbolic machine state. (It does not follow that our
tests achieved 100% block or branch coverage of all of the code
within the exhaustively-explored instructions, because for instance
code that would only execute outside of protected mode was not in-
cluded in the exploration. But in the cases we examined manually
the static coverage appeared very high.)

6.2 Analysis of Differences
Overall, we observed quite a high number of differences: out of
the 610,516 test programs generated by our system, 60,770 of
these programs produced distinguishable behaviors in QEMU and
15,219 of them produced distinguishable behaviors in Bochs.

Not all discovered differences represent a distinct bug. Some
are caused by undefined CPU behaviors; since those behaviors are
undocumented, there may be no single correct behavior (and even
different physical CPUs may produce different results). Among the
remaining differences, many are imputable to the same root cause.
We used scripts to filter out differences due to undefined behaviors
(we reused filters from our prior work [20, 21]). We then clustered
the differences according to root cause; this clustering identified
different executed paths that triggered the same behavior differ-
ence. We then examined representative tests to understand each root
cause. In the remainder of this section we briefly summarize some
of the root causes we identified, and we discuss their implications.

Hardware CPUs execute instructions atomically. On the other
hand, in a software emulated CPU, the execution of an instruction
requires executing multiple instructions on the real hardware. Thus,
to emulate the execution of an instruction atomically, special care
is needed to ensure that the original state is preserved (or restored)
when the execution of an instruction is interrupted by an exception.
Non-atomic execution of instruction can produce incorrect program
behaviors and open opportunities for attacks. The test programs
generated by our system confirmed that both emulators execute the
majority of the instructions atomically. However, our system iden-
tified instructions for which the atomicity property is not guaran-
teed in QEMU. More precisely, our system found that this prob-
lem occurs with the instructions leave (high level procedure exit)
and cmpxchgw (compare and exchange). The former corrupts the
stack pointer when the page containing the top of the stack is not
accessible. The latter corrupts the source operand when the destina-
tion operand represents a memory location and this memory loca-
tion is read-only. Indeed, the lack of write permissions is detected
only after the source operand has been updated, and the original
value of the source operand is not checkpointed. We speculate that
such issues, although not easy to trigger, might lead to serious se-
curity consequences.

Paging and segmentation are the two main security mechanisms
provided by the CPU; an emulator has to support these mechanisms
to be considered trustworthy. Our system identified that QEMU
does not implement segmentation properly because it does not en-
force segment limits and rights with the majority of instructions,

which can have serious security implications. The lack of segmen-
tation support renders security mechanisms that rely on this fea-
ture [28] completely useless. This problem is known to QEMU’s
developers and was previously, in part, found by applying random
fuzzing to manually written test programs [21]. However, our sys-
tem was able to generate test programs to exercise all the checks
the CPU could possibly do and to identify all the cases in which
limits and rights are not properly enforced. Thus, the test programs
we have generated can be used again in the future to validate the
implementation when this currently missing feature is available.

We also found other less dangerous discrepancies in the behav-
iors of the tested emulators. For example our system generated test
programs showing that QEMU does not raise a general protection
fault exception when the rmsr (read machine specific register)
instruction is used to read the value of an invalid machine status
register. Moreover, our system found that QEMU, Bochs, and the
hardware fetch data from memory in different orders. For example,
the order in which the emulators pop items from the stack while
emulating the iret (interrupt return) instruction differs (QEMU
accesses stack items from the outermost to the innermost, Bochs
and the hardware in the opposite order). Similarly, for the lfs in-
struction (load far pointer), Bochs fetches the two operands from
the memory in the opposite order as QEMU and the hardware. This
difference could cause different exceptions. Again, we found that
QEMU does not consider valid certain instruction encodings and
that it does not properly update the segments’ “accessed” flag. Fi-
nally, both in QEMU and Bochs, some arithmetic and logical in-
structions differently update some status flags (documented as un-
defined). Since emulators are widely used to dynamically analyze
malicious software, malicious developers could embed into their
software anti-emulation tricks that fingerprint emulators by exploit-
ing these subtle differences in their behaviors.

Many of these differences would have been difficult to find
using purely random testing, and were in fact not found by a
previous such study [20]. For instance, the difference in iret
read ordering can be significant only if the values read lie on
different pages or across a segment boundary, either of which
would have a very low probability if the address and segment limit
were chosen uniformly at random. Random testing can generate
tests more quickly than PokeEMU, but this would leave the cost
dominated by the time to execute the tests.

7. Limitations and Future Work
By necessity, our work reduced the size of the problem by narrow-
ing its scope. We examine the resulting limitations and the direction
of our future work next.

Other operating modes and extended instruction sets. Although
x86 CPUs support multiple operating modes, we focus on testing
only the 32-bit protected mode with paging enabled. Other oper-
ating modes (e.g. real and virtual 8086) are more prone to buggy
behavior, since they are less commonly used. Our system could be
easily extended for testing these operating modes as well. We plan
to do that in the future. We also plan to extend our system to support
floating-point, MMX, and SSE instructions.

Multiple-Instruction Sequences. We focus on testing each instruc-
tion separately, rather than sequences of several instructions to-
gether. In principle, doing so is completely sufficient if we can
construct an initializer for every possible machine state, and the
execution of every instruction is independent, properties that have
held in our experiments so far. Under these observations, any dif-
ference caused by a multi-instruction sequence can be divided into
one or more single-instruction differences.



In practice, however, emulators may themselves compose in-
dividual instructions incorrectly, especially in the case of QEMU,
which performs dynamic binary translation for multi-instruction
sequences. In our future work, we plan on studying how multi-
instruction sequences are treated by emulators.

Symbolic Execution of JIT Compilers and Hardware Specifications.
We have based our system on binary-level symbolic execution so
that in the future we can apply it to emulators based on just-
in-time compilation, such as QEMU. For example, it would be
interesting to perform the converse of the comparison in Section 6
by generating tests from QEMU and using them to evaluate Bochs.
Since Bochs is generally more complete, our expectation is that
this would produce only a few more differences than our current
experiments, but it is important if there are cases where QEMU
implements a check and Bochs fails to.

In the limit, it may be possible to apply our path-exploration lift-
ing methodology to the highest-Fi emulator there is: the hardware
specification itself. Although we have no hope of obtaining (and
publishing about) specifications of commercial hardware, it might
be possible to apply this methodology to open-source hardware ar-
chitectures, like the SPARC Leon processor.

Before we reach that desirable remote limit, we hope to study
higher-level interpreters, e.g., for high-level languages such as Java.

Other Virtual Machines. We currently make some use of source
code to simplify the workflow of our study, but our binary approach
allows us to tackle emulators for which we have no source code
at all, e.g., commercial virtual machine monitors that incorporate
emulation in one or more execution modes. To facilitate this, we
would like to further automate the process of determining which
host locations hold guest machine state. For instance the location
of %eax is the one where the emulator writes 42 when executing
the instruction mov $42, %eax.

Equivalence Checking. Despite its promise, our approach only pro-
vides tests, not proofs of correctness. A further direction to improve
the completeness of our emulator checking would be to perform a
complete equivalence check between our set of symbolic execu-
tion results. Starting with a single Hi-Fi emulator path, we could
identify all paths in the Lo-Fi emulator exercised by the same in-
put states. Then we could symbolically combine the results for all
Lo-Fi paths into a single large formula (as in the summary-building
technique described in Section 3.3.2). Then we would check with
a decision procedure whether the formula for the single Hi-Fi path
is equivalent to the formula for the few Lo-Fi paths on all possible
inputs. It may be difficult to make such an approach scale to all
instructions, but when it works it provides a very strong statement
about the absence of differences. This has been tried successfully
for smaller, restricted programs, like processor microcode [2].

8. Related Work
Next we discuss two classes of previous research that are related to
our work here: first, other projects that have searched for bugs in
emulators, and then other systems for symbolic execution.

Testing of Emulators. Emulator authors presumably perform test-
ing internally, but there has been relatively little research on tech-
niques to make that testing more automated and effective. A series
of two recent papers by Martignoni et al. show the practical value of
third-party comparative testing of emulators. They first tested CPU
emulators specifically, with randomly generated instructions [20].
Later they tested whole-system virtual machines (based on emula-
tion and other technologies) using hand-written templates that were
then automatically expanded to create a larger number of instruc-

tion sequences [21]. To generate a set of legal instruction byte se-
quences (the same challenge we face in Section 3.2), they perform
a concrete exploration using the CPU as a black-box correctness
oracle. They also execute tests using techniques similar to the ones
we describe in Section 4: either with a user-space program [20] or
a custom-written kernel [21]. However, random testing on its own
does not provide the same kind of coverage guarantees that sym-
bolic execution does. First, PokeEMU completed test generation
with measurable path coverage: complete path coverage for 95% of
the tested instructions, a precise quantitative measure of coverage,
which random-testing methods cannot provide. Second, as shown
by the comparison of Section 6, our approach revealed some bugs
that these previously state-of-the-art studies based on random test-
ing did not find. Therefore, we consider PokeEMU a demonstrated
improvement over the state of the art.

Symbolic Execution. Though our primary motivation in this work
is the practical problem of trustworthy emulation, our results there
are made possible in part by improvements in the underlying tech-
nology of symbolic execution.

Symbolic execution was first proposed in the 1970s [18]. It has
been the subject of renewed interest in the last decade thanks to a
new generation of approaches [7, 15] and advances in constraint
solving and increased computing power that have allowed it to be
more widely applied. We can classify symbolic execution systems
according to the relationship between concrete and symbolic ex-
ecution. In systems that are called trace-based, dynamic, or con-
colic [26], the program chooses branch directions based on a con-
crete input, but records a path so that it can generate an different
input later. By contrast online systems, of which FuzzBALL is an
example, maintain symbolic values without a corresponding con-
crete value, and so can be free to choose either direction at a branch.

Another online symbolic execution tool is KLEE [6], which
generates test cases for C programs using a symbolic interpreter
for LLVM byte code. KLEE is similar to FuzzBALL in many ways,
but has two key design differences. First, KLEE “forks” and main-
tains multiple execution states at once when both sides of a branch
are feasible, whereas FuzzBALL executes just one path to com-
pletion and returns to other paths later. Second, KLEE’s symbolic
constraints can contain array expressions, while FuzzBALL avoids
them by choosing concrete values for indexes. KLEE’s approach
produces fewer execution paths, but it requires additional knowl-
edge and assumptions about the way a program manages memory.
Also, decision procedure queries that contain large arrays can be
significantly difficult to solve. Though a more symbolic approach
could be added to FuzzBALL, our current approach works suffi-
ciently well for many applications, including the present one.

Particularly for security applications, it is important to be able
to perform symbolic execution at the binary level, as we do. SAGE
[16] is a trace-based symbolic execution system for x86 that is
used for extensive testing within Microsoft, but is not publicly
available; SmartFuzz [22] is open-source and based on Valgrind.
However trace-based systems tend to be geared to exploring just
a few paths in a program, rather than the exhaustive exploration
we perform. Another capability that is important in some security
applications is to be able to symbolically execute a program in
the context of a complete operating system. In a trace-based tool
one can collect traces with a whole system emulator, but maintain
symbolic information for a single process, as in the BitFuzz [5]
system, based on QEMU. Most recently, S2E [10] is an online
system that integrates KLEE with QEMU, allowing more flexible
combination of symbolic and concrete execution across multiple
components. However, our emulators do not make significant use
of the operating system when executing instructions, so a lighter-
weight single-process approach was appropriate for us.



Some of the optimizations we perform are also related to previ-
ous approaches in symbolic execution. For instance, the technique
of summary construction described in Section 3.3.2 is similar in
spirit to compositional symbolic execution techniques [14].

It is important to distinguish our work on validating processor
emulators (using symbolic execution) from work on using proces-
sor emulators (possibly to implement symbolic execution). For ex-
ample, Anubis [3] uses a CPU emulator (based on QEMU) to ana-
lyze malware and can perform symbolic path exploration [23]. Sim-
ilarly, Minesweeper [4] uses an emulator to discover trigger-based
behaviors in malware. Although our work concerns itself with secu-
rity, emulators, and symbolic execution, it aims instead to provide
assurances that the emulator itself is correct. The challenges of ex-
ecuting an emulator symbolically may have some similarities to
executing malware symbolically. However, we have two additional
problems to address: mapping a CPU state identified by symbolic
execution to a sequence of instructions that allow to reach the state,
and identifying anomalous behaviors in an emulator.

9. Conclusion
We perform high-coverage testing of emulators by using binary-
level symbolic execution to explore the space of legal instructions
and machine state that could influence their execution in a high-
fidelity emulator (Bochs). The system generates a test, in the form
of a bootable disk image, for each of the 610,516 explored paths.
We can use these tests to lift the exploration to test a low-fidelity
emulator (QEMU), and to cross-validate with a hardware processor.
In analyzing the differences, we see that many reveal systematic
implementation oversights, such as atomicity violations in QEMU:
the tests will be valuable both for understanding the failures and
verifying that the problems have been fixed. Though this is only
the first application, it demonstrates a practical and powerful tool
to make emulators more trustworthy.
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