
Renovo: A Hidden Code Extractor for Packed Executables

Min Gyung Kang, Pongsin Poosankam, and Heng Yin
∗

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, Pennsylvania 15213
{mgkang@, ppoosank@, hyin@ece.}cmu.edu

ABSTRACT
As reverse engineering becomes a prevalent technique to an-
alyze malware, malware writers leverage various anti-reverse
engineering techniques to hide their code. One technique
commonly used is code packing as packed executables hin-
der code analysis. While this problem has been previously
researched, the existing solutions are either unable to handle
novel samples, or vulnerable to various evasion techniques.
In this paper, we propose a fully dynamic approach that cap-
tures an intrinsic nature of hidden code execution that the
original code should be present in memory and executed at
some point at run-time. Thus, this approach monitors pro-
gram execution and memory writes at run-time, determines
if the code under execution is newly generated, and then
extracts the hidden code of the executable. To demonstrate
its effectiveness, we implement a system, Renovo, and eval-
uate it with a large number of real-world malware samples.
The experiments show that Renovo is accurate compared to
previous work, yet practical in terms of performance.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; D.4.6 [Operating Systems]: Security and
Protection—Invasive software

General Terms
Security

Keywords
Reverse Engineering, Dynamic Analysis, Code Obfuscation,
Malware Analysis

∗Heng Yin is also affiliated with Department of Computer
Science at The College of William and Mary, Williamsburg,
Virginia 23187

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’07, November 2, 2007, Alexandria, Virginia, USA.
Copyright 2007 ACM 978-1-59593-886-2/07/0011 ...$5.00.

1. INTRODUCTION
Reverse engineering is one of the main techniques used

for malware analysis. To make the analysis more difficult,
malware writers usually have their programs heavy-armored
with various anti-reverse engineering techniques. Such tech-
niques include binary and source code obfuscation [13, 22],
control-flow obfuscation [20], instruction virtualization [10],
and binary code packing [27]. This paper focuses on identify-
ing and extracting the hidden code generated using binary
code packing, one of the most common anti-reverse engi-
neering methods. Code packing transforms a program into
a packed program by compressing or encrypting the original
code and data into packed data and associating it with a
restoration routine. A restoration routine is a piece of code
for recovering the original code and data as well as setting
an execution context to the original code when the packed
program is executed. This technique is available as com-
mercial products [12, 14, 26, 28, 29] and open-source tools.
According to the anti-virus (AV) program test results of AV-
Test GmbH [15], the detection rates of 8 major AV programs
varied from 10% to 80% when known malware binaries have
been packed.

Various tools have been developed to identify and extract
the hidden code in packed executables. Commonly known
tools such as PEiD [6] employ a simple pattern matching
approach. These tools check an executable with a signature
database to determine what kind of packing tool is used to
create the executable. Then, using a priori knowledge about
the packing tool, it is possible to extract the hidden binary
from the executable [9]. Although this approach is usually
fast and accurate for known packing tools, it is unable to
detect novel and modified packing techniques. For example,
a variant of the Bagle worm employed its own compression
engine which is not known to the public [19]. In fact, by
modifying the open source anti-reverse engineering tools
like YodaProtector [11], it is easy for malware writers to im-
plement new anti-reverse engineering algorithms and tricks.

Dynamic analysis is a promising solution to the problem
of hidden code extraction because it does not depend on sig-
natures. Regardless of what packing technique might be ap-
plied to the original program, the original code or its equiva-
lent must eventually be present in memory and get executed
at some point at run-time. By taking advantage of this in-
trinsic nature of packed executables, one could potentially
extract the hidden binary code or its equivalent as a raw
memory dump. However, it is not clear which regions in the
memory contain the hidden binary and when is the right
time to dump such regions, i.e., when the execution context

jumps to the hidden original code. In addition to the hid-
den code, other information such as the original entry point
(OEP) is also crucial for further analyses of the malware.
The original entry point is the first hidden instruction be-
ing executed when the program control flow is transferred
from the restoration routine to the hidden code. Several ap-
proaches, such as Universal PE Unpacker [17] and PolyUn-
pack [27], have shown that extracting packed binaries and
finding the OEP using dynamic analysis is feasible. These
approaches either rely on some heuristics or require disas-
sembling the packed program. However, heuristics about
packed code may not be reliable in all cases and can be easily
evaded. In addition, correctly disassembling a binary pro-
gram itself is challenging and error-prone, as demonstrated
in [25]. To overcome the disassembly challenge required
for packed code extraction, a tool like PolyUnpack needs to
perform a series of static and dynamic analysis which leads
to performance overhead.

In this paper, we present a fully dynamic approach for ex-
tracting the original hidden code and additional information
useful for further analysis of the extracted malware binary.
We capture an intrinsic nature of packed programs that is
independent of the packing techniques applied on the pro-
grams. That is, the original code will be dynamically gen-
erated and then executed.

The contributions of this paper are as follows:

Propose a fully dynamic approach for extracting the
original hidden code of packed executables: A consid-
erable effort has been made to come up with practical so-
lutions for identifying compressed executables and restoring
their original hidden code and data. Previous work relies on
either heuristics of known packing tools or the accuracy of
the disassembler. However, as we see in the Bagle case, mal-
ware writers can apply modified binary compression tech-
niques to evade heuristic-based tools [19]. In addition, dis-
assembling binary executables as being done in [25] and [27]
is an arduous task. In this paper, we present a binary ex-
traction technique which is fully dynamic and thus does not
depend on the program disassembly or the known signatures
of packing techniques. We also show that our proposed tech-
nique can extract the original hidden code and data, and find
the entry point of the original program that enables efficient
code analysis.

Provide additional information for the next-step anal-
ysis: In addition to extracting the hidden code, our pro-
posed method can provide additional information on the
packed binaries:

• Identify the exact regions of memory where the hidden
code and data reside: by tracking the newly-written
memory areas of the program, we can distinguish newly-
generated code and data at run-time from the packed
binary, and thus obtain the exact regions of them.

• Extract information on multiple hidden layers : even
in the case that the original program is hidden through
multiple rounds of compression and encryption, we
can keep track of intermediate code and data for each
round. This provides valuable information on what
kind of packing methods are in use and what kind of
data is generated at each round.

Implement and evaluate Renovo, an automated frame-
work for extracting hidden code: Applying our pro-

posed technique, we build a framework for automatically
examining executable binaries and extracting their original
hidden code. Since this is a fully automated process, it could
be used by anti-virus programs and on-line malware binary
analysis services [1,3]. We also present the evaluation results
of Renovo, demonstrating that it is both highly effective and
efficient compared to previous approaches.

2. RELATED WORK
Extracting and re-building the original program from a

compressed or encrypted binary has been one of the ma-
jor challenges for software reverse engineers and the secu-
rity community. For known packing techniques, there exist
corresponding unpackers [9]. However, given an arbitrary
packed executable, which unpacker to use is still a problem.
PEiD [6] is a tool for identifying compressed Windows PE bi-
naries. Using the database of the signatures for known com-
pression and encryption techniques, it identifies the packing
method employed and, thus, suggests which unpacker can be
applied. However, despite their ability to perfectly restore
the original program, executables packed with unknown or
modified methods are beyond the scope of this approach.

Universal PE Unpacker [17] and OllyBonE [4] are attempts
to develop a comprehensive solution to this problem. As
plug-in modules for IDA Pro [18] and Olly Debugger [5],
both tools identify packed executables and their original en-
try points by using several heuristics. For example, Uni-
versal PE Unpacker assumes that GetProcAddress is always
called to setup the import table after the original program is
unpacked and before the program counter reaches the OEP.
Also, it is not intended to be an automated unpacking tool
because it must be given a priori knowledge about the the
possible range of the OEP. OllyBonE sets the “Break-on-
Execution” flag on the reserved memory sections used to
accommodate unpacked code and data. When the CPU ac-
cesses these execution-protected pages, OllyBonE detects it
and enables the extraction of the hidden code executed on
OllyDbg. Although the OSes do not always enforce the as-
sumptions where these heuristics work, in most of the cases,
it produces correct results quickly. However, as shown in [27]
and in our results, some malware can evade this heuristic-
based approach.

PolyUnpack [27] is a general approach for extracting the
original hidden code without any heuristic assumptions. PolyUn-
pack takes advantage of the intrinsic nature of packed exe-
cutables where the hidden code is generated and executed at
run-time, and thus it is not present in the code section of the
packed executable. As a pre-analysis step, PolyUnpack dis-
assembles the packed executable to partition it into the code
and data sections, Then it executes the binary instruction
by instruction, checking whether the instruction sequence
from the current point is in the code section identified in
the pre-analysis step. The authors have implemented this
approach and have shown that it can successfully identify
and extract the hidden code in malware samples in the wild.
However, in terms of performance, disassembling a program
and single-step executing a binary significantly increase the
computational complexity of its analysis.

Christodorescu et al. proposed several normalization tech-
niques that transform obfuscated malware into a normalized
form to help malware analysis [16]. Their unpacking nor-
malization is similar to our approach. Its basic idea is to
detect the execution of newly-generated code by monitoring

memory writes after the program starts. We independently
propose and implement our approach, and conduct more ex-
tensive experiments using various packed malware samples.

There has also been a commercial effort to enhance the
detection rate against packed malware. McAfee applies the
Generic Decryption Engine (GDE) technique to its anti-
virus products [24]. GDE analyzes the decryption (decom-
pression) algorithm in the malware code and uses this algo-
rithm to extract the hidden code before applying its detec-
tion engine. Ewido Networks employs an emulation-based
technique to extract the hidden code of malware [19]. The
details of how these mechanisms work are not present in
[19,24], but some malware in the wild are still shown to be
able to evade these commercial virus scanners [27].

3. PROBLEM STATEMENT AND OUR
APPROACH

In this paper, we devise a mechanism to automatically
identify packed executables and extract their original hidden
code and data. Specifically, given an arbitrary executable
binary, we want to verify whether it executes the original
program code that is generated from the packed data in
the binary. In addition, when observing this behavior, we
extract the whole newly-generated code and data with its
entry point address (OEP).

Packed Executable: Figure 1 shows how a typical packed
executable work. After the packed executable starts, its at-
tached restoration routine performs transformation proce-
dures on the packed data, and then recovers the original code
and data. When the restoration completes, the restoration
routine prepares the execution context for the original pro-
gram code to execute, which includes initializing the CPU
registers and assigning the program counter to the entry
point of the newly-generated code region. Hereafter in this
paper, we refer to this restoration step as hidden layer. Note
that a packed executable may have multiple hidden layers,
making it even more difficult to analyze. As will be shown
in Section 5, about 80% of the malware samples used in our
experiments have more than one hidden layer.

Scope: Besides the packing techniques, there are other
kinds of anti-reversing techniques. Linn et al. [22] proposed
obfuscation techniques to thwart the disassembly procedure.
In response, Kruegel et al. [21] presented a defense against
these techniques. Recently, sophisticated software protec-
tion tools, like Themida [10], convert the original x86 in-
structions into virtual instructions in its own randomized
instruction set, and then interpret these virtual instructions
at run-time. Dealing with these anti-reversing techniques
are beyond the scope of this paper.

Our Approach: No matter what packing methods or how
many hidden layers are applied, the original program code
and data should eventually be present in memory to be ex-
ecuted, and also the instruction pointer should jump to the
OEP of the restored program code which has been written
in memory at run-time. Taking advantage of this inevitable
nature of packed executables, we propose a technique to dy-
namically extract the hidden original code and the OEP
from the packed executable by examining whether the cur-
rent instruction has been generated at run-time, after the
program binary was loaded. For this purpose, we monitor if
the instruction pointer jumps to the memory region which

has been written after the program start-up. When a pro-
gram is loaded in memory, we generate a memory map and
initialize the map as clean. Whenever the program performs
a memory write instruction, e.g., mov %eax, [%edi] and
push %eax, we mark the corresponding destination memory
region as dirty, which means it is newly generated. Mean-
while, when the instruction pointer jumps to one of these
newly-generated regions, we determine that there is a hid-
den layer hiding the original program code, and identify the
newly-generated memory regions to contain the hidden code
and data, and the address pointed by the instruction pointer
as the original entry point (OEP). To handle the possible
hidden layers that may appear later on, we initialize the
memory map as clean again, after storing all the information
extracted from the current hidden layer. Then, we repeat
the same procedure until the time-out.

Advantages: The advantages of this approach are three-
fold: First, we assume nothing about the packing meth-
ods except the inevitable fact that the original hidden code
should eventually be written and executed at run-time. There-
fore, our approach is able to handle any sort of packing
techniques applied to the binaries. Second, the approach
can determine the exact memory regions accommodating
the code or data generated at run-time. Since we keep in-
formation about memory writes at byte-level, it is possi-
ble to efficiently extract the newly-generated code and data.
Lastly, Our approach does not rely on any information on
the code and data sections of the binary. Unlike previous ap-
proaches [17, 27] which employ disassembly techniques, our
approach depends solely on the origin of the instructions
being executed.

4. SYSTEM DESIGN AND
IMPLEMENTATION

To demonstrate the effectiveness of our approach, we de-
sign and implement a system, Renovo, to automatically iden-
tify packed executables and extract their hidden code. Fig-
ure 2 depicts an overview of Renovo. Renovo is built on
top of TEMU [8], which is a dynamic analysis component
of the BitBlaze [2] binary analysis platform. When analyz-
ing an executable, we run it in an emulated environment.
The execution monitor observes its execution from the out-
side (i.e., the host system), consults the shadow memory of
that process, and determines if any hidden code is currently
executed. If so, it extracts the hidden code and obtains
the OEP which is useful for further code analysis. We will
present these components in turn, and discuss the limita-
tions of the current implementation of Renovo.

4.1 Emulated Environment
When analyzing an executable, we run it in an emulated

environment. This emulated environment facilitates instru-
menting CPU instructions in a fine-grained manner. In par-
ticular, we need to instrument the instructions that perform
memory writes. We also need to instrument the instructions
that change the execution flow (e.g., jmp and call in x86),
in order to identify the original entry point.

Moreover, this emulated environment provides isolation
between the extraction engine and the malicious programs
under analysis. Therefore, it is difficult for malicious code to
interfere with the extraction engine and affect the analysis
results.

Instruction
Pointer Instruction

Pointer

Instruction
Pointer

Program

Newly−written
Memory Region

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

��
��
��
��

��
��
��
��

Restoration Jumping to OEP(initial clean state)
Loaded in Memory

Write
Memory

Code

Memory Region
Reserved Empty

Data
Packed

Executable Image

Figure 1: How a packed executable works.

X ������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

Emulated Environment

Execution Monitor

Extraction Engine

Memory
Write

Extracted Hidden Code

with the OEP

Executable Binary

Shadow
MemoryQuery

Figure 2: Renovo Overview

4.2 Shadow Memory
We maintain a shadow memory for the memory space

of the observed process. Considering that x86 instructions
have variable sizes, and that data and instructions can be
interleaved in x86 executables, we associate each byte of
the memory space with a flag. Since this flag has only two
states: clean and dirty, it can be represented as 1 bit. 0
stands for “clean”, and 1 for “dirty”. To minimize the mem-
ory consumption, we employ a page-table-like structure to
store the shadow memory.

4.3 Extraction Engine
The extraction engine observes the program execution

from the host system. When the program is about to exe-
cute, we set the whole memory space as clean. In this case,
the page table of the shadow memory is empty. During pro-
gram execution, the extraction engine instruments memory
writes within the observed process, and updates the shadow
memory. Meanwhile, it queries the shadow memory, and
checks if any byte of the memory region that the current
instruction occupies is dirty. If so, it can determine the in-
struction has been newly generated. A special case is that
the program may load a dynamic linked library after it has
been executed for a while. This library may occupy a mem-
ory region that has previously been dirty bytes. In this case,
we set this region to clean states.

Usually a whole-system emulator only provides hardware-
level view of the emulated system. For our analysis, we need
to know which process is running and which process should
be observed. We make use of a mechanism provided by
TEMU to reason about OS-level semantics. Technically, a

kernel module is inserted into the emulated system to obtain
necessary process information. This kernel module registers
several call-back functions. Thus the module will be noti-
fied whenever a process is created or destroyed, or a module
(DLL or Executable) is loaded into the process. Hence, when
a new process is created, the kernel module records the pro-
cess name and the value of CR3. In an x86 system, the CR3
register stores the physical address of the page table for the
current process, and thus it is unique for each process. Then,
we only need to perform instrumentation when the current
CR3 corresponds to the monitored process. If we identify
a module is loaded after the program starts to execute, we
know which memory region this module occupies, and clean
the states within the region.

Instrumenting memory writes is straightforward. TEMU
has a centralized module to instrument memory references.
Thus, we simply mark the destination (in virtual address) as
dirty if the current memory reference is a write and comes
from the observed process.

When checking newly generated instructions, we do not
have to check every instruction. To optimize the perfor-
mance, we check every basic block in the observed process.
A basic block is a sequence of instructions with only one
entry and one exit. Thus a basic block is a contiguous code
region. At the block entry, we record its address. Then at
the block exit, we check if there is any dirty memory loca-
tions within the region covering this block. If so, this block
entry is the OEP, and we dump the pages containing dirty
memory bytes.

In order to extract hidden code from packed executables
with multiple hidden layers, we clean the dirty states in the

Memory Writes Execution of
Newly Generated
Code

Resetting the State
Process Memory Region

Dump to Disk

Extracted from
the Hidden Layer

Code and Data

Initial Clean State (Shadow Memory)

Figure 3: Extracting hidden layers by using the shadow memory

shadow memory, and then repeat the extraction procedure
as shown in Figure 3. Note that determining whether a pro-
gram has hidden code or not is an undecidable problem [27].
Thus, we introduce a configurable time-out parameter into
the system. If we do not observe any hidden code being
executed within this time-out, we terminate the extraction
procedure. In the experiments, we set this parameter to be
4 minutes.

4.4 Discussion
Here we discuss potential evasion techniques that malware

writers can employ to thwart Renovo.

Circumventing the emulated environment. As we run
the binaries in an emulated environment, an obvious eva-
sion is to detect the presence of this emulated environment
and stay inactive. For example, the malicious code may
measure elapsed time for certain instructions, because emu-
lating these instructions incurs high overhead [30], or check
the results of certain instructions (e.g., sidt), because the
results they generate are different under real and emulated
environments (e.g., redpill test [7]). While there may be no
comprehensive solution to this problem, we may apply de-
fenses to specific detection techniques. For example, in the
current implementation, we instrument several instructions
like sidt. If the binary under analysis executes one of these
instructions, we may return a fake result to make it believe
that it is running under the real environment. In our ex-
periments, we have successfully deceived the redpill [7]. We
may also instrument rdstc to delude detection techniques
using the elapsed time for certain instructions.

Exploiting the time-out. Since determining whether an
executable contains hidden code or not is an undecidable
problem as shown in [27], we employ a time-out mechanism.
The malicious programs may exploit this feature to evade
detection by staying inactive for a sufficiently long period.
A better metric to determine when to terminate the extrac-
tion procedure is to count how many different instructions
from the binary have been executed. Thus, the malicious
programs cannot evade detection by simply sleeping or busy
looping. We will explore this metric in the future release of
Renovo.

5. EVALUATION
In this section, we describe two experiments and present

the evaluation results, demonstrating that Renovo is an ac-
curate and practical solution for extracting the original hid-
den code of packed executables.

5.1 Extracting from Synthetic Samples
To verify that Renovo generates accurate results, we have

tested Renovo and two other extraction techniques, Univer-
sal PE Unpacker [17] and PolyUnpack [27], against the syn-
thetic sample programs generated by using 14 different pack-
ing tools. These tools apply different packing techniques as
well as encryption, code obfuscation, debugger detection,
and instruction virtualization to thwart reverse engineering.

Samples: We use Microsoft notepad as an original binary
to generate synthetic packed program samples. For all tools
but Themida [10], the samples are created using the tools’
default configuration. In the case of Themida, we generated
two samples with slightly different configurations: one with
instruction virtualization (“VM option”) and one without it.
Other than that, both options still use the same compres-
sion, encryption, and other techniques to protect the pro-
gram from reverse engineering. We tested and ensured that
none of these synthetic samples contains the binary string
found in the .text section of the original notepad program.
With the knowledge that these packing tools usually restore
and execute the original binary instructions at run-time, we
could verify the correctness of our extraction technique by
comparing the extracted hidden code regions with the .text
section of the original binary.

Renovo: As shown in Table 1, Renovo fully extracted the
original binaries processed by all but 3 packing tools, which
are Armadillo, Obsidium, and Themida(w/ VM). But in the
first two cases, the samples terminated before reaching the
original program code, likely because the executables are
not compatible with the Renovo’s emulation engine. Never-
theless, Renovo still identified these two samples as packed
executables because it successfully extracted hidden code
and data from several initial hidden layers, which seem to
be its restoration routines. In the case of a sample generated
using Themida(w/ VM), Renovo extracted some hidden re-
gions which do not match the original notepad binary. We
believe this is the VM virtualization code equivalent to the
original notepad instructions since we successfully extracted
those from a sample generated using Themida(w/o VM).

Universal PE Unpacker (UUnP): Although UUnP re-
quires a priori knowledge about the possible range of the
OEP, it can run automatically without such input from a
user. By default, it assumes that the OEP locates in the
first program segmentation as identified by IDAPro and uses
this contiguous memory segmentation as the possible range
of the OEP. We ran UUnP using this default heuristic and

Tool Size Renovo UUnP PolyUnpack
(KB) result time result time result time

(sec) (sec) (sec)
None 68 no N/A no N/A no N/A
Armadillo 564 error 44 error 1 part 1617
ASPack 53 yes 35 yes 3 part 181
ASProtect 153 yes 48 error 6 yes 62
FSG 46 yes 38 yes 3 yes 92
MEW 44 yes 36 yes 139 yes 739
MoleBox 108 yes 47 error 242 no 757
Morphine 72 yes 36 yes 1 yes 174
Obsidium 143 error 61 error 1 no 457
PECompact 49 yes 37 error 2 no 39
Themida(w/ VM) 1342 part 60 no 9 timeout 1800
Themida(w/o VM) 1067 yes 70 error 10 timeout 1800
UPX 47 yes 35 yes 3 yes 94
UPXS 47 yes 37 yes 4 yes 92
WinUPack 44 yes 38 error 12 part 33
YodaProtector 64 yes 36 error 1 part 62

Remark:
no A tool identified a binary as not being packed.
yes A tool extracted the whole original notepad binary.
part A tool identified an incorrect entry point or could only

extract parts of the original binary.
timeout A tool did not terminate within the time-out period of

30 minutes.
error A tool encountered errors or terminated prematurely.

Table 1: Extracting the Hidden Code in Synthetic Samples

Renovo UUnP PolyUnpack
Extracted results 366 186 171
IRC pattern found 363 176 86
Avg. time (sec.) 40.9 15.7 365.8

Table 2: The comparison of Renovo and previous
work on malware samples.

found UUnP successfully extract the original notepad code
from 6 out of 15 samples (Table 1). It failed on the sample
generated by Themida(w/ VM) as the executable detected
the presence of IDA’s debugger. For the rest of the sam-
ples, UUnP encountered the exception handler routine and
was unable to proceed to later execution steps. Neverthe-
less, note that UUnP is very efficient as it can extract most
hidden code in less than 10 seconds.

PolyUnpack: We obtained the analysis results of PolyUn-
pack [27] by submitting samples to the Malfease website [23]
of which PolyUnpack operates as its sub-module. We also
asked the PolyUnpack authors to run our samples against
a version of PolyUnpack that handles some forms of struc-
tured exception handling in addition to the functionalities
presented on the Malfease website. PolyUnpack identified 10
samples to be packed and extracted the full original notepad
code from 6 of them. It partially extracted packed code in
the other 4 samples as some of the original binary is still
hidden. PolyUnpack extracted only part of these samples
because it can not handle multiple hidden layers without re-
processing the partially unpacked executable. PolyUnpack
reached the 30-minute time-out in the samples generated
using Themida. For the rest of the samples, PolyUnpack
determined them to be not packed.

5.2 Extracting from Malware Samples
In this experiment, we test Renovo with the real malware

samples which are protected by known and unknown packing
techniques. We also used Universal PE Unpacker (UUnP)
and PolyUnpack for comparison analysis like in the previous
experiment.

Samples: To select the most-likely packed executables,
we briefly examined the malware samples provided by Korea
Information Security Agency (KISA) using PEiD [6]. From
these samples, we collected 374 malware samples which are
identified either to be packed by known tools like PECom-
pact and UPX, or to contain overlay sections in their PE
headers. (The samples with the overlay sections are likely
to be packed executables.) According to the Norton Anti-
Virus scan results, 7 of these samples are downloaders, and
the rest are bot programs.

Overall: As shown in Table 2, Renovo identified most of
the samples to be packed executables; only 8 out of total
374 samples were identified as normal executables. How-
ever, these 8 samples seem to have crashed or terminated
before reaching the original hidden code. In comparison,
both UUnP and PolyUnpack identified only about half of
the samples to be packed executables. Like in the previous
experiment, we also encountered exception handler problem
when running UUnP on some of the samples. The average
time for hidden code extraction is 40.9 seconds for Renovo,
15.7 seconds for UUnP, and 365.8 seconds for PolyUnpack.
Considering that the system boot time of Renovo is about 30
seconds, the sheer code extraction time of Renovo is approx-
imately 10 seconds which is less than that of UUnP. This is
also a promising result when compared to the performance
of Norton Anti-Virus. For the same set of malware samples,
Norton Anti-Virus took 17 seconds per sample in average.

0 100 200 300 400 500 600 700 800 900
0

50

100

150

200

250

300

350

Number of Protection Layers

N
um

be
r

of
 S

m
ap

le
s

Figure 4: Hidden Layers in Malware Samples

Unlike the evaluation using the synthetic samples where
we have the original program binaries, it is difficult to verify
the correctness of extracted code and data. Therefore, we
examined extracted code and data to see if they contain
any of the IRC commands that common bot programs use
to communicate with control servers. Considering the fact
that most of the samples (367 out of 374) are bot programs,
the extracted code and data are likely to contain some of
these IRC commands which are not present in the packed
executables. As we see in the second row of Table 2, most
of the extracted code and data extracted by Renovo contain
these IRC command strings which have not been found in
the packed malware samples.

Multiple Hidden Layers As described in Section 3, Ren-
ovo can handle multiple hidden layers and thus, can extract
the code and data at each hidden layer. Figure 4 shows
the number of hidden layers found by Renovo and the num-
ber of corresponding samples. While most of the malware
samples apply less than 20 hidden layers, some of the sam-
ples are found to use more than 500 hidden layers. Most of
these highly-layered samples are applying unknown packing
techniques which are not in the PEiD signature list. We con-
jecture that they might be a new type of packing technique
which generates and executes only some parts of the origi-
nal code on the fly to protect itself from dynamic analysis
techniques at run-time. We leave this for future research.

5.3 Performance Overhead
We measured the performance overhead of Renovo by run-

ning a sample program on both Renovo and normal environ-
ment. The sample program is a small test binary which out-
puts simple text messages and it was packed using the UPX
packing tool. We found that the current version of Renovo
shows a performance slowdown of 8 times on average com-
pared to the normal execution environment. Considering
that Renovo is aiming to provide hidden code extraction en-
vironment for malware analysis which usually takes several
hours to days, this degree of slowdown in initial execution
time is tolerable.

6. CONCLUSION
To thwart reverse engineering, malware writers often try

to hide their original programs by transforming them into
packed executables. In this paper, we propose a dynamic
approach to extract the hidden code and data from these
packed executable, and the contributions are three-fold:

First, we propose a fully dynamic method which moni-
tors currently-executed instructions and memory writes at
run-time. This approach maintains a shadow memory of
the memory space of the analyzed program, observes the
program execution, and determines if newly generated in-
structions are executed. Then it extracts the generated code
and data. Assuming nothing about the binary compression
and encryption techniques, we provide a means to extract
the hidden code and information, which is robust against
anti-reverse-engineering techniques.

Second, our approach provides additional information use-
ful for further code analysis. Since it monitors the run-time
memory writes at byte-level, we can extract the exact mem-
ory regions with newly-generated code and data. Moreover,
even in the case that multiple hidden layers are applied to
the binary, we can keep track of the restoration routines and
extract information at each layer.

Finally, to demonstrate its effectiveness, we implement
a system, Renovo. By evaluating it with synthetic sam-
ples and over 370 real-world malware samples, our experi-
ments show that Renovo provides more accurate results than
all previous approaches, and incurs acceptable performance
overhead.

7. ACKNOWLEDGMENTS
We would like to thank Dawn Song for her invaluable in-

sights and Juan Caballero, Sihyung Lee, Paul Royal, and
anonymous reviewers for their insightful feedback. We also
would like to thank Korea Information Security Agency (KISA)
for kindly providing malware samples for our experiments.
Support for this material was provided by the National Sci-
ence Foundation under Grants No. 0433540 and 0448452.
Partial support was also provided by the U.S. Army Re-
search Office under the Cyber-TA Research Grant No. W911NF-
06-1-0316 and under Grant DAAD19-02-1-0389 through Cy-
Lab at Carnegie Mellon. The views and conclusions con-
tained here are those of the authors and should not be in-
terpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of ARO, CMU,
the U.S. Government or any of its agencies. Min Gyung
Kang performed this research under support of Samsung
Scholarship.

8. REFERENCES
[1] Anubis. http://analysis.seclab.tuwien.ac.at.

[2] BitBlaze Binary Analysis Platform.
http://bitblaze.cs.berkeley.edu/.

[3] Norman SandBox Information Center.
http://www.norman.com.

[4] OllyBonE. http://www.joestewart.org/ollybone/.

[5] OllyDbg. http://www.ollydbg.de/.

[6] PEiD.
http://www.secretashell.com/codomain/peid/.

[7] Red Pill.
http://invisiblethings.org/papers/redpill.html.

[8] TEMU: The BitBlaze Dynamic Analysis Component.
http://bitblaze.cs.berkeley.edu/temu.html.

[9] The Unpacker Archive. http:
//www.woodmann.com/crackz/Tools/Unpckarc.zip.

[10] Themida. http://www.oreans.com/.

[11] Yoda Protector.
http://sourceforge.net/projects/yodap/.

[12] ASPack Software. ASPack and ASProtect.
http://www.aspack.com/.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a broad
range of memory error exploits. In Proceedings of the
12th USENIX Security Symposium, August 2003.

[14] Bitsum Technologies. PECompact2.
http://www.bitsum.com/pec2.asp.

[15] T. Brosch and M. Morgenstern. Runtime packers: The
hidden problem?
https://www.blackhat.com/presentations/

bh-usa-06/BH-US-06-Morgenstern.p%df, 2006.

[16] M. Christodorescu, J. Kinder, S. Jha,
S. Katzenbeisser, and H. Veith. Malware
normalization. Technical Report 1539, University of
Wisconsin, Madison, Wisconsin, USA, Nov. 2005.

[17] Data Rescue. Universal PE Unpacker plug-in.
http://www.datarescue.com/idabase/unpack_pe.

[18] DataRescue SA. IDA Pro disassembler:
Multi-processor, Windows hosted disassembler and
debugger. http://www.datarescue.com/idabase/.

[19] T. Graf. Generic unpacking: How to handle modified
or unknown PE compression engines.
http://www.virusbtn.com/pdf/conference_slides/

2005/Graf.pdf, 2005.

[20] Y. L. Huang, F. S. Ho, H. Y. Tsai, and H. M. Kao. A
control flow obfuscation method to discourage
malicious tampering of software codes. In ASIACCS
’06: Proceedings of the 2006 ACM Symposium on
Information, computer and communications security,
pages 362–362, New York, NY, USA, 2006. ACM
Press.

[21] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna.
Static disassembly of obfuscated binaries. In
Proceedings of the 13th USENIX Security Symposium,
2004.

[22] C. Linn and S. Debray. Obfuscation of executable
code to improve resistance to static disassembly. In
CCS ’03: Proceedings of the 10th ACM conference on
Computer and communications security, pages
290–299, New York, NY, USA, 2003. ACM Press.

[23] Project Malfease. http://malfease.oarci.net/.

[24] McAfee. Advanced virus detection scan engine and
DATs. http://www.mcafee.com/us/local_content/
white_papers/wp_scan_engine.pdf.

[25] S. Nanda, W. Li, L. Lam, and T. Chiueh. BIRD:
Binary interpretation using runtime disassembly. In
CGO ’06: Proceedings of the International Symposium
on Code Generation and Optimization, pages 358–370,
Washington, DC, USA, 2006. IEEE Computer Society.

[26] Obsidium Software. Obsidium.
http://www.obsidium.de/show.php?home.

[27] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee. PolyUnpack: Automating the hidden-code
extraction of unpack-executing malware. In ACSAC
’06: Proceedings of the 22nd Annual Computer
Security Applications Conference on Annual Computer
Security Applications Conference, pages 289–300,
Washington, DC, USA, 2006. IEEE Computer Society.

[28] Silicon Realms Toolworks. Armadillo.
http://siliconrealms.com/index.shtml.

[29] Teggo. MoleBox Pro.
http://www.molebox.com/download.shtml.

[30] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft,
A. Snoeren, G. Voelker, and S. Savage. Scalability,
fidelity and containment in the potemkin virtual
honeyfarm. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), October 2005.

