
Privacy-Preserving Set Operations

Lea Kissner and Dawn Song

Carnegie Mellon University, Pittsburgh PA 15213
leak@cs.cmu.edu, dawnsong@cmu.edu

Abstract. In many important applications, a collection of mutually dis-
trustful parties must perform private computation over multisets. Each
party’s input to the function is his private input multiset. In order to
protect these private sets, the players perform privacy-preserving com-
putation; that is, no party learns more information about other parties’
private input sets than what can be deduced from the result. In this pa-
per, we propose efficient techniques for privacy-preserving operations on
multisets. By building a framework of multiset operations, employing the
mathematical properties of polynomials, we design efficient, secure, and
composable methods to enable privacy-preserving computation of the
union, intersection, and element reduction operations. We apply these
techniques to a wide range of practical problems, achieving more effi-
cient results than those of previous work.

1 Introduction

Private computation over sets and multisets is required in many important ap-
plications. In the real world, parties often resort to use of a trusted third party,
who computes a fixed function on all parties’ private input multisets, or forgo the
application altogether. This unconditional trust is fraught with security risks;
the trusted party may be dishonest or compromised, as it is an attractive target.
We design efficient privacy-preserving techniques and protocols for computation
over multisets by mutually distrustful parties: no party learns more information
about other parties’ private input sets than what can be deduced from the result
of the computation.

For example, to determine which airline passengers appear on a ‘do-not-fly’
list, the airline must perform a set-intersection operation between its private pas-
senger list and the government’s list. This is an example of the Set-Intersection
problem. If a social services organization needs to determine the list of people
on welfare who have cancer, the union of each hospital’s lists of cancer patients
must be calculated (but not revealed), then an intersection operation between
the unrevealed list of cancer patients and the welfare rolls must be performed.
This problem may be efficiently solved by composition of our private union and
set-intersection techniques. Another example is privacy-preserving distributed
network monitoring. In this scenario, each node monitors anomalous local traf-
fic, and a distributed group of nodes collectively identify popular anomalous
behaviors: behaviors that are identified by at least a threshold t number of mon-
itors. This is an example of the Over-Threshold Set-Union problem.

Contributions. In this paper, we propose efficient techniques for privacy-
preserving operations on multisets. By building a framework of set operations
using polynomial representations and employing the mathematical properties of
polynomials, we design efficient methods to enable privacy-preserving computa-
tion of the union, intersection, and element reduction1 multiset operations.

An important feature of our privacy-preserving multiset operations is that
they can be composed, and thus enable a wide range of applications. To demon-
strate the power of our techniques, we apply our operations to solve specific
problems, including Set-Intersection (Section 5) and Over-Threshold Set-Union
(Section 6). We also discuss a number of other applications in Section 7, such
as constructing protocols for the composition of multiset operations, computing
Threshold Set-Union and Cardinality Set-Intersection, and determining the Sub-
set relation. Due to space constraints, we describe utilization of our techniques
for efficiently and privately evaluating CNF boolean functions in [18].

Our protocols are more efficient than the results obtained from previous work.
General multiparty computation is the best previous result for most of the prob-
lems that we address in this paper. Only the private Set-Intersection problem
and two-party Cardinality Set-Intersection problem have been previously stud-
ied [12]. However, previous work only provides protocols for 3-or-more-party
Set-Intersection secure only against honest-but-curious players; it is not obvi-
ous how to extend this work to achieve security against malicious players. Also,
previous work focuses on achieving results for the Set-Intersection problem in
isolation – these techniques cannot be used to compose set operations. In con-
trast, we provide efficient solutions for private multi-party Set-Intersection secure
against malicious players [18], and our multiset intersection operator can be eas-
ily composed with other operations to enable a wide range of efficient private
computation over multisets.

Our protocols are provably secure in the PPT-bounded adversary model. We
consider both standard adversary models: honest-but-curious adversaries (HBC)
and malicious adversaries. We prove the security of each of our protocols in the
full version of this paper [18].

We discuss related work in Section 2. In Section 3, we introduce our adversary
models, as well as our cryptographic tools. We describe our privacy-preserving
set operation techniques in in Section 4. Section 5 gives a protocol and security
analysis for the Set-Intersection problem, and Section 6 gives a protocol and
security analysis for the Over-Threshold Set-Union problem. We discuss several
additional applications of our techniques in Section 7.

2 Related Work

For most of the privacy-preserving set function problems we address in this pa-
per (except for the Set-Intersection problem), the best previously known results
1 The element reduction by d, Rdd(A), of a multiset A is the multiset composed of the

elements of A such that for every element a that appears in A at least d′ > d times,
a is included d′ − d times in Rdd(A).

are through general multiparty computation. General two-party computation
was introduced by Yao [25], and general computation for multiple parties was
introduced in [1]. In general multiparty computation, the players share the val-
ues of each input, and cooperatively evaluate the circuit. For each multiplication
gate, the players must cooperate to securely multiply their inputs and re-share
the result, requiring O(n) communication for honest-but-curious players and
O(n2) communication for malicious players [15]. Recent results that allow non-
interactive private multiplication of shares [7] do not extend to our adversary
model, in which any c < n players may collude. Our results are more efficient
than the general MPC approach; we compare communication complexity in [18].

The most relevant work to our paper is by Freedman, Nissim, and Pinkas
(FNP) [12]. They proposed protocols for the problems related to Set-Intersection,
based on the representation of sets as roots of a polynomial [12]. Their work
does not utilize properties of polynomials beyond evaluation at given points. We
explore the power of polynomial representation of multisets, using operations on
polynomials to obtain composable privacy-preserving multisets operations.

Much work has been done in designing solutions for privacy-preserving com-
putation of different functions. For example, private equality testing is the prob-
lem of set-intersection for the case in which the size of the private input sets is
1. Protocols for this problem are proposed in [9, 21, 19], and fairness is added
in [2]. We do not enumerate the works of privacy-preserving computation of
other functions here, as they address drastically different problems and cannot
be applied to our setting.

3 Preliminaries

In this section, we describe our adversary models and the cryptographic tools
used in this paper.

3.1 Adversary Models

In this paper, we consider two standard adversary models: honest-but-curious
adversaries and malicious adversaries. Due to space constraints, we only provide
intuition and informal definitions of these models. Formal definitions of these
models can be found in [15].

Honest-But-Curious Adversaries. In this model, all parties act according to their
prescribed actions in the protocol. Security in this model is straightforward: no
player or coalition of c < n players (who cheat by sharing their private informa-
tion) gains information about other players’ private input sets, other than what
can be deduced from the result of the protocol. This is formalized by considering
an ideal implementation where a trusted third party (TTP) receives the inputs
of the parties and outputs the result of the defined function. We require that
in the real implementation of the protocol—that is, one without a TTP—each
party does not learn more information than in the ideal implementation.

Malicious Adversaries. In this model, an adversary may behave arbitrarily. In
particular, we cannot hope to prevent malicious parties from refusing to par-
ticipate in the protocol, choosing arbitrary values for its private input set, or
aborting the protocol prematurely. Instead, we focus on the standard security
definition (see, e.g., [15]) which captures the correctness and the privacy issues
of the protocol. Informally, the security definition is based on a comparison be-
tween the ideal model and a TTP, where a malicious party may give arbitrary
input to the TTP. The security definition is also limited to the case where at
least one of the parties is honest. Let Γ be the set of colluding malicious parties;
for any strategy Γ can follow in the real protocol, there is a translated strategy
that it could follow in the ideal model, such that, to Γ , the real execution is
computationally indistinguishable from execution in the ideal model.

3.2 Additively Homomorphic Cryptosystem

In this paper we utilize a semantically secure [16], additively homomorphic
public-key cryptosystem. Let Epk(·) denote the encryption function with pub-
lic key pk. The cryptosystem supports the following operations, which can be
performed without knowledge of the private key: (1) Given the encryptions of
a and b, Epk(a) and Epk(b), we can efficiently compute the encryption of a + b,
denoted Epk(a + b) := Epk(a) +h Epk(b); (2) Given a constant c and the en-
cryption of a, Epk(a), we can efficiently compute the encryption of ca, denoted
Epk(c · a) := c ×h Epk(a). When such operations are performed, we require that
the resulting ciphertexts be re-randomized for security. In re-randomization, a
ciphertext is transformed so as to form an encryption of the same plaintext,
under a different random string than the one originally used. We also require
that the homomorphic public-key cryptosystem support secure (n, n)-threshold
decryption, i.e., the corresponding private key is shared by a group of n players,
and decryption must be performed by all players acting together.

In our protocols for the malicious case, we require: (1) the decryption protocol
be secure against malicious players, typically, this is done by requiring each player
to prove in zero-knowledge that he has followed the threshold decryption protocol
correctly [14]; (2) efficient construction of zero-knowledge proofs of plaintext
knowledge; (3) optionally, efficient construction of certain zero-knowledge proofs,
as detailed in [18].

Note that Paillier’s cryptosystem [23] satisfies each of our requirements: it is
additively homomorphic, supports ciphertexts re-randomization and threshold
decryption (secure in the malicious case) [10, 11], and allows certain efficient
zero-knowledge proofs (standard constructions from [5, 3], and proof of plaintext
knowledge [6]).

In the rest of this paper, we simply use Epk(·) to denote the encryption
function of the homomorphic cryptosystem which satisfies all the aforementioned
properties.

4 Techniques and Mathematical Intuition

In this section, we introduce our techniques for privacy-preserving computation
of operations on multisets.

Problem Setting. Let there be n players. We denote the private input set of player
i as Si, and |Si| = k (1 ≤ i ≤ n). We denote the jth element of set i as (Si)j . We
denote the domain of the elements in these sets as P , (∀i∈[n],j∈[k] (Si)j ∈ P).

Let R denote the plaintext domain Dom(Epk(·)) (in Paillier’s cryptosystem,
R is ZN). We require that R be sufficiently large that an element a drawn
uniformly from R has only negligible probability of representing an element
of P , denoted a ∈ P . For example, we could require that only elements of
the form b = a || h(a) could represent an element in P , where h(·) denotes a
cryptographic hash function [20]. That is, there exists an a of proper length such
that b = a || h(a). If |h(·)| = lg

(
1
ε

)
, then there is only ε probability that a′ ← R

represents an element in P .
In this section, we first give background on polynomial representation of mul-

tisets, as well as the mathematical properties of polynomials that we use in this
paper. We then introduce our privacy-preserving (TTP model) set operations
using polynomial representations, then show how to achieve privacy in the real
setting by calculating them using encrypted polynomials. Finally, we overview
the applications of these techniques explored in the rest of the paper.

4.1 Background: Polynomial Rings and Polynomial Representation
of Sets

The polynomial ring R[x] consists of all polynomials with coefficients from R. Let
f, g ∈ R[x], such that f(x) =

∑deg(f)
i=0 f [i]xi, where f [i] denotes the coefficient of

xi in the polynomial f . Let f + g denote the addition of f and g, f ∗ g denote
the multiplication of f and g, and f (d) denote the dth formal derivative of f .
Note that the formal derivative of f is

∑deg(f)−1
i=0 (i + 1)f [i + 1]xi.

Polynomial Representation of Sets. In this paper, we use polynomials to repre-
sent multisets. Given a multiset S = {Sj}1≤j≤k, we construct a polynomial rep-
resentation of S, f ∈ R[x], as f(x) =

∏
1≤j≤k(x−Sj). On the other hand, given

a polynomial f ∈ R[x], we define the multiset S represented by the polynomial
f as follows: an element a ∈ S if and only if (1) f(a) = 0 and (2) a represents an
element from P . Note that our polynomial representation naturally handles mul-
tisets: The element a appears in the multiset b times if (x−a)b | f ∧ (x−a)b+1 6 | f .

Note that previous work has proposed to use polynomials to represent
sets [12] (as opposed to multisets). However, to the best of our knowledge, pre-
vious work has only utilized the technique of polynomial evaluation for privacy-
preserving operations. As a result, previous work is limited to set intersection
and cannot be composed with other set operators. In this paper, we propose a
framework to perform various set operations using polynomial representations

and construct efficient privacy-preserving set operations using the mathemat-
ical properties of polynomials. By utilizing polynomial representations as the
intermediate form of representations of sets, our framework allows arbitrary
composition of set operators as outlined in our grammar.

4.2 Our Techniques: Privacy-Preserving Set Operations

In this section, we construct algorithms for computing the polynomial repre-
sentation of operations on sets, including union, intersection, and element re-
duction. We design these algorithms to be privacy-preserving in the following
sense: the polynomial representation of any operation result reveals no more
information than the set representation of the result. First, we introduce our
algorithms for computing the polynomial representation of set operations union,
intersection, and element reduction (with a trusted third party). We then ex-
tend these techniques to encrypted polynomials, allowing secure implementation
of our techniques without a trusted third party. Note that the privacy-preserving
set operations defined in this section may be arbitrarily composed (see Section 7),
and constitute truly general techniques.

Set Operations Using Polynomial Representations. In this section, we in-
troduce efficient techniques for set operations using polynomial representations.
In particular, let f, g be polynomial representations of the multisets S, T . We
describe techniques to compute the polynomial representation of their union,
intersection, and element reduction by d. We design our techniques so that the
polynomial representation of any operation result reveals no more information
than the set representation of the result. This privacy property is formally stated
in Theorems 1, 2, and 3, by comparing to the ideal model.

Union. We define the union of multisets S∪T as the multiset where each element
a that appears in S bS ≥ 0 times and T bT ≥ 0 times appears in the resulting
multiset bS + bT times. We compute the polynomial representation of S ∪ T as
follows, where f and g are the polynomial representation of S and T respectively:

f ∗ g.

Note that f ∗ g is a polynomial representation of S ∪ T because (1) all elements
that appear in either set S or T are preserved: (f(a) = 0) ∧ (g(b) = 0) →
((f ∗g)(a) = 0)∧((f ∗g)(b) = 0); (2) as f(a) = 0⇔ (x−a) | f , duplicate elements
from each multiset are preserved: (f(a) = 0)∧ (g(a) = 0)→ (x−a)2 | (f ∗ g). In
addition, we prove that, given f ∗ g, one cannot learn more information about S
and T than what can be deduced from S ∪T , as formally stated in the following
theorem:

Theorem 1. Let TTP1 be a trusted third party which receives the private input
multiset Si from player i for 1 ≤ i ≤ n, and then returns to every player the
union multiset S1 ∪ · · · ∪ Sn directly. Let TTP2 be another trusted third party,

which receives the private input multiset Si from player i for 1 ≤ i ≤ n, and
then: (1) calculates the polynomial representation fi for each Si; (2) computes
and returns to every player

∏n
i=1 fi.

There exists a PPT translation algorithm such that, to each player, the results
of the following two scenarios are distributed identically: (1) applying translation
to the output of TTP1; (2) returning the output of TTP2 directly.

Proof. Theorem 1 is trivially true. (This theorem is included for completeness.)

Intersection. We define the intersection of multisets S ∩T as the multiset where
each element a that appears in S bS > 0 times and T bT > 0 times appears in
the resulting multiset min{bS , bT } times. Let S and T be two multisets of equal
size, and f and g be their polynomial representations respectively. We compute
the polynomial representation of S ∩ T as:

f ∗ r + g ∗ s

where r, s← Rdeg(f)[x], where Rb[x] is the set of all polynomials of degree 0, . . . , b

with coefficients chosen independently and uniformly from R: r =
∑β

i=0 r[i]xi

and s =
∑β

i=0 s[i]xi, where ∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R.
We show below that f ∗ r + g ∗ s is a polynomial representation of S ∩ T . In

addition, we prove that, given f ∗ r + g ∗ s, one cannot learn more information
about S and T than what can be deduced from S ∩ T , as formally stated in
Theorem 2.

First, we must prove the following lemma:

Lemma 1. Let f̂ , ĝ be polynomials in R[x] where R is a ring, deg(f̂) = deg(ĝ) =
α, and gcd(f̂ , ĝ) = 1. Let r =

∑β
i=0 r[i]xi, and s =

∑β
i=0 s[i]xi, where

∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R (independently) and β ≥ α.
Let û = f̂ ∗ r + ĝ ∗ s =

∑α+β
i=0 u[i]xi. Then ∀0≤i≤α+β û[i] are distributed

uniformly and independently over R.

We give a proof of Lemma 1 in Appendix A.
By this lemma, f ∗ r + g ∗ s = gcd(f, g) ∗ u, where u is distributed uniformly

in Rγ [x] for γ = 2 deg(f) − |S ∩ T |. Note that a is a root of gcd(f, g) and
(x−a)`a | gcd(f, g) if and only if a appears `a times in S∩T . Moreover, because
u is distributed uniformly in Rγ [x], with overwhelming probability the roots of u
do not represent any element from P (as explained in the beginning of Section 4).
Thus, the computed polynomial f∗r+g∗s is a polynomial representation of S∩T .
Note that this technique for computing the intersection of two multisets can be
extended to simultaneously compute the intersection of an arbitrary number of
multisets in a similar manner. Also, given f ∗ r + g ∗ s, one cannot learn more
information about S and T than what can be deduced from S ∩ T , as formally
stated in the following theorem:

Theorem 2. Let TTP1 be a trusted third party which receives the private input
multiset Si from player i for 1 ≤ i ≤ n, and then returns to every player the

intersection multiset S1 ∩ · · · ∩ Sn directly. Let TTP2 be another trusted third
party, which receives the private input multiset Si from player i for 1 ≤ i ≤ n,
and then: (1) calculates the polynomial representation fi for each Si; (2) chooses
ri ← Rk[x]; (3) computes and returns to each player

∑n
i=1 fi ∗ ri.

There exists a PPT translation algorithm such that, to each player, the results
of the following two scenarios are distributed identically: (1) applying translation
to the output of TTP1; (2) returning the output of TTP2 directly.

Proof (Proof sketch). Let the output of TTP1 be denoted T . The translation
algorithm operates as follows: (1) calculates the polynomial representation g of
T ; (2) chooses the random polynomial u← R2k−|T |[x]; (3) computes and returns
g ∗ u.

Element Reduction. We define the operation of element reduction (by d) of
multiset S (denoted Rdd(S)) as follows: for each element a that appears b times
in S, it appears max{b − d, 0} times in the resulting multiset. We compute the
polynomial representation of Rdd(S) as:

f (d) ∗ F ∗ r + f ∗ s

where r, s ← Rdeg(f)[x] and F is any polynomial of degree d, such that
∀a∈P F (a) 6= 0. Note that a random polynomial of degree d in R[x] has this
property with overwhelming probability.

To show that formal derivative operation allows element reduction, we require
the following lemma:

Lemma 2. Let f ∈ R[x], where R is a ring, d ≥ 1.

1. If (x− a)d+1 | f , then (x− a) | f (d).
2. If (x− a) | f and (x− a)d+1 6 | f , then (x− a) 6 | f (d).

Lemma 2 is a standard result [24]. By this lemma and gcd(F, f) = 1, an
element a is a root of gcd(f (d), f) and (x − a)`a | gcd(f (d), f) if and only if a
appears `a times in Rdd(S). By Lemma 1, f (d) ∗ F ∗ r + f ∗ s = gcd(f (d), f) ∗ u,
where u is distributed uniformly in Rγ [x] for γ = 2k − |Rdd(S)|. Thus, with
overwhelming probability, any root of u does not represent any element from
P . Therefore, f (d) ∗ F ∗ r + f ∗ s is a polynomial representation of Rdd(S), and
moreover, given f (d) ∗ F ∗ r + f ∗ s, one cannot learn more information about
S than what can be deduced from Rdd(S), as formally stated in the following
theorem:

Theorem 3. Let F be a publicly known polynomial of degree d such that
∀a∈P F (a) 6= 0. Let TTP1 be a trusted third party which receives a private
input multiset S, and then returns the reduction multiset Rdd(S) directly. Let
TTP2 be another trusted third party, which receives a private input multiset
S, and then: (1) calculates the polynomial representation f of S; (2) chooses
r, s← Rk[x]; (3) computes and returns f (d) ∗ F ∗ r + f ∗ s.

There exists a PPT translation algorithm such that the results of the following
two scenarios are distributed identically: (1) applying translation to the output
of TTP1; (2) returning the output of TTP2 directly.

Proof (Proof sketch). Let the output of TTP1 be denoted T . The translation
algorithm operates as follows: (1) calculates the polynomial representation g of
T ; (2) chooses the random polynomial u← R2k−|T |[x]; (3) computes and returns
g ∗ u.

Operations with Encrypted Polynomials. In the previous section, we prove
the security of our polynomial-based multiset operators when the polynomial
representation of the result is computed by a trusted third party (TTP2). By
using additively homomorphic encryption, we allow these results to be imple-
mented as protocols in the real world without a trusted third party (i.e., the
polynomial representation of the set operations is computed by the parties col-
lectively without a trusted third party). In the algorithms given above, there
are three basic polynomial operations that are used: addition, multiplication,
and the formal derivative. We give algorithms in this section for computation of
these operations with encrypted polynomials.

For f ∈ R[x], we represent the encryption of polynomial f , Epk(f), as the
ordered list of the encryptions of its coefficients under the additively homomor-
phic cryptosystem: Epk(f [0]), . . . , Epk(f [deg(f)]). Let f1, f2, and g be polyno-
mials in R[x] such that f1(x) =

∑deg(f1)
i=0 f1[i]xi, f2(x) =

∑deg(f2)
i=0 f2[i]xi, and

g(x) =
∑deg(g)

i=0 g[i]xi. Let a, b ∈ R. Using the homomorphic properties of the
homomorphic cryptosystem, we can efficiently perform the following operations
on encrypted polynomials without knowledge of the private key:

– Sum of encrypted polynomials: given the encryptions of the polynomial
f1 and f2, we can efficiently compute the encryption of the polynomial
g := f1 + f2, by calculating Epk(g[i]) := Epk(f1[i]) +h Epk(f2[i]) (0 ≤ i ≤
max{deg(f1),deg(f2)})

– Product of an unencrypted polynomial and an encrypted polynomial: given
a polynomial f2 and the encryption of polynomial f1, we can efficiently com-
pute the encryption of polynomial g := f1 ∗ f2, (also denoted f2 ∗h Epk(f1))
by calculating the encryption of each coefficient
Epk(g[i]) := (f2[0] ×h Epk(f1[i])) +h . . . +h (f2[i] ×h Epk(f1[0])) (0 ≤ i ≤
deg(f1) + deg(f2)).

– Derivative of an encrypted polynomial: given the encryption of polynomial
f1, we can efficiently compute the encryption of polynomial g := d

dxf1, by cal-
culating the encryption of each coefficient Epk(g[i]) := (i+1) ×h Epk(f1[i+
1]) (0 ≤ i ≤ deg(f1)− 1).

– Evaluation of an encrypted polynomial at an unencrypted point: given the
encryption of polynomial f1, we can efficiently compute the encryption of
a := f1(b), by calculating
Epk(a) := (b0 ×h Epk(f1[0])) +h . . . +h (bdeg(f) ×h Epk(f1[deg(f1)])).

It is easy to see that with the above operations on encrypted polynomials, we
can allow the computation of the polynomial representations of set operations
described in Section 4.2 without the trusted third party (TTP2) while enjoying

the same security. As an example, we design in Section 5, a protocol for the Set-
Intersection problem, and discuss several other selected applications in Section 7.

5 Application I: Private Set-Intersection

Problem Definition. Let there be n parties; each has a private input set Si

(1 ≤ i ≤ n) of size k. We define the Set-Intersection problem as follows: all
players learn the intersection of all private input multisets without gaining any
other information; that is, each player learns S1 ∩ S2 ∩ · · · ∩ Sn.

We design a protocol, secure against a coalition of honest-but-curious adver-
saries, in Section 5.1. We then describe variations of the problem and how to
extend this protocol to be secure against malicious adversaries in Section 7.

5.1 Set-Intersection Protocol

Protocol: Set-Intersection-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly colluding,
each with a private input set Si, such that |Si| = k. The players share the secret
key sk, to which pk is the corresponding public key to a homomorpic cryptosys-
tem.

1. Each player i = 1, . . . , n
(a) calculates the polynomial fi = (x− (Si)1) . . . (x− (Si)k)
(b) sends the encryption of the polynomial fi to players i + 1, . . . , i + c
(c) chooses c + 1 polynomials ri,0, . . . , ri,c ← Rk[x]
(d) calculates the encryption of the polynomial φi = fi−c∗ri,i−c + · · ·+fi−1∗

ri,i−1 + fi ∗ ri,0, utilizing the algorithms given in Sec. 4.2.
2. Player 1 sends the encryption of the polynomial λ1 = φ1, to player 2
3. Each player i = 2, . . . , n in turn

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 + φi by utilizing

the algorithms given in Sec. 4.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Pn

i=1 fi ∗“Pc
j=0 ri+j,j

”
to all other players.

5. All players perform a group decryption to obtain the polynomial p.
6. Each player i = 1, . . . , n determines the intersection multiset: for each a ∈ Si,

he calculates b such that (x− a)b|p ∧ (x− a)b+1 6 |p. The element a appears
b times in the intersection multiset.

Fig. 1. Set-Intersection protocol for the honest-but-curious case.

Our protocol for the honest-but-curious case is given in Fig. 1. In this pro-
tocol, each player i (1 ≤ i ≤ n) first calculates a polynomial representation

fi ∈ R[x] of his input multiset Si. He then encrypts this polynomial fi, and
sends it to c other players i+1, . . . , i+c. For each encrypted polynomial Epk(fi),
each player i + j (0 ≤ j ≤ c) chooses a random polynomial ri+j,j ∈ Rk[x]. Note
that at most c players may collude, thus

∑c
j=0 ri+j,j is both uniformly dis-

tributed and known to no player. They then compute the encrypted polynomial(∑c
j=0 ri+j,j

)
∗h Epk(fi). From these encrypted polynomials, the players com-

pute the encryption of p =
∑n

i=1 fi ∗
(∑c

j=0 ri+j,j

)
. All players engage in group

decryption to obtain the polynomial p. Thus, by Theorem 2, the players have
privately computed p, a polynomial representing the intersection of their private
input multisets. Finally, to reconstruct the multiset represented by polynomial
p, the player i, for each a ∈ Si, calculates b such that (x−a)b|p ∧ (x−a)b+1 6 |p.
The element a appears b times in the intersection multiset.

Security Analysis. We show that our protocol is correct, as each player learns the
appropriate answer set at its termination, and secure in the honest-but-curious
model, as no player gains information that it would not gain when using its input
in the ideal model. A formal statement of these properties is as follows:

Theorem 4. In the Set-Intersection protocol of Fig. 1, every player learns the
intersection of all players’ private inputs, S1 ∩ S2 ∩ · · · ∩ Sn, with overwhelming
probability.

Theorem 5. Assuming that the additively homomorphic, threshold cryptosys-
tem Epk(·) is semantically secure, with overwhelming probability, in the Set-
Intersection protocol of Fig. 1, any coalition of fewer than n PPT honest-but-
curious players learns no more information than would be gained by using the
same private inputs in the ideal model with a trusted third party.

We provide proof sketches for Theorems 4 and 5 in [18].

6 Application II: Private Over-Threshold Set-Union

Problem Definition. Let there be n players; each has a private input set Si

(1 ≤ i ≤ n) of size k. We define the Over-Threshold Set-Union problem as follows:
all players learn which elements appear in the union of the players’ private input
multisets at least a threshold number t times, and the number of times these
elements appeared in the union of players’ private inputs, without gaining any
other information. For example, assume that a appears in the combined private
input of the players 15 times. If t = 10, then all players learn a has appeared 15
times. However, if t = 16, then no player learns a appears in any player’s private
input. This problem can be computed as Rdt−1(S1 ∪ · · · ∪ Sn).

In Section 6.1, we design a protocol for the Over-Threshold Set-Union prob-
lem, secure against honest-but-curious adversaries. This protocol is significantly
more efficient than utilizing general multiparty computation (the best previous
solution for this problem). We describe a variation of the problem and security
against malicious adversaries in Section 7.

6.1 Over-Threshold Set-Union Protocol

Protocol: Over-Threshold Set-Union-HBC
Input: There are n ≥ 2 honest-but-curious players, c < n dishonestly collud-
ing, each with a private input set Si, such that |Si| = k. The players share the
secret key sk, to which pk is the corresponding public key for a homomorphic
cryptosystem. The threshold number of repetitions at which an element appears
in the output is t. F is a fixed polynomial of degree t − 1 which has no roots
representing elements of P .

1. Each player i = 1, . . . , n calculates the polynomial fi = (x − (Si)1) . . . (x −
(Si)k)

2. Player 1 sends the encryption of the polynomial λ1 = f1 to player 2
3. Each player i = 2, . . . , n

(a) receives the encryption of the polynomial λi−1 from player i− 1
(b) calculates the encryption of the polynomial λi = λi−1 ∗ fi by utilizing

the algorithm given in Sec. 4.2.
(c) sends the encryption of the polynomial λi to player i + 1 mod n

4. Player 1 distributes the encryption of the polynomial p = λn =
Qn

i=1 fi to
players 2, . . . , c + 1

5. Each player i = 1, . . . , c + 1
(a) calculates the encryption of the t − 1th derivative of p, denoted p(t−1),

by repeating the algorithm given in Sec. 4.2.
(b) chooses random polynomials ri, si ← Rnk[x]
(c) calculates the encryption of the polynomial p ∗ si + F ∗ p(t−1) ∗ ri and

sends it to all other players.
6. All players perform a group decryption to obtain the polynomial Φ = F ∗

p(t−1) ∗
`Pc+1

i=1 ri

´
+ p ∗

`Pc+1
i=1 si

´
.

7. Each player i = 1, . . . , n, for each j = 1, . . . , k
(a) chooses a random element bi,j ← R
(b) calculates ui,j = bi,j × Φ((Si)j) + (Si)j

8. All players distribute/shuffle the elements ui,j (1 ≤ i ≤ n, 1 ≤ j ≤ k) such
that each player learns all of the elements, but does not learn their origin.
Each element a ∈ P that appears b times in the shuffled elements is an element
in the threshold set that appears b times in the players’ private inputs.

Fig. 2. Over-Threshold Set-Union protocol for the honest-but-curious case.

We describe our protocol secure against honest-but-curious players for the
Over-Threshold Set-Union problem in Fig. 2. In this protocol, each player i
(1 ≤ i ≤ n) first calculates fi, the polynomial representation of its input mul-
tiset Si. All players then compute the encryption of polynomial p =

∏n
i=1 fi,

the polynomial representation of S1 ∪ · · · ∪ Sn. Players i = 1, . . . , c + 1 then
each chooses random polynomials ri, si, and calculates the encryption of the
polynomial F ∗ p(t−1) ∗ ri + p ∗ si as shown in Fig. 2. All players then calculate

the encryption of the polynomial Φ = F ∗ p(t−1) ∗
(∑c+1

i=1 ri

)
+ p ∗

(∑c+1
i=1 si

)
and perform a group decryption to obtain Φ. As at most c players may dis-
honestly collude, the polynomials

∑c+1
i=1 ri,

∑c+1
i=1 si are uniformly distributed

and known to no player. By Theorem 3, Φ is a polynomial representation of
Rdt−1(S1 ∪ · · · ∪ Sn).

Each player i = 1, . . . , n then chooses bi,j ← R and computes ui,j =
bi,j × Φ((Si)j) + (Si)j (1 ≤ j ≤ k). Each element ui,j equals (Si)j if (Si)j ∈
Rdt−1(S1∪ · · ·∪Sn), and is otherwise uniformly distributed over R. The players
then shuffle these elements ui,j , such that each player learns all of the elements,
but does not learn which player’s set they came from. The shuffle can be eas-
ily accomplished with standard techniques [4, 17, 8, 13, 22], with communication
complexity at most O(n2k). The multiset formed by those shuffled elements that
represent elements of P is Rdt−1(S1 ∪ · · · ∪ Sn).

Security Analysis We show that our protocol is correct, as each player learns the
appropriate answer set at its termination, and secure in the honest-but-curious
model, as no player gains information that it would not gain when using its
input in the ideal model with a trusted third party. A formal statement of these
properties is as follows:

Theorem 6. In the Over-Threshold Set-Union protocol of Fig. 2, with over-
whelming probability, every honest-but-curious player learns each element a
which appears at least t times in the union of the n players’ private inputs,
as well as the number of times it so appears.

Theorem 7. Assuming that the additively homomorphic, threshold cryptosys-
tem Epk(·) is semantically secure, with overwhelming probability, in the Over-
Threshold Set-Union protocol of Fig. 2, any coalition of fewer than n PPT
honest-but-curious players learns no more information than would be gained by
using the same private inputs in the ideal model with a trusted third party.

We provide proof sketches for Theorems 6 and 7 in [18].

7 Other Applications

Using the encrypted polynomial techniques of Section 4, we may construct effi-
cient protocols for functions composed of multiset intersection, union, and ele-
ment reduction. These functions are described by the following grammar:

Υ ::= s | Rdd(Υ) | Υ ∩ Υ | s ∪ Υ | Υ ∪ s,

where s represents any multiset held by some player, and d ≥ 1. Note that
any monotone function on multisets can be expressed using the grammar above,
and thus our techniques for privacy-preserving set operations are truly general.
Additional techniques allow arbitrary composition of multiset operations are
described in [18].

We design a protocol for Cardinality Set-Intersection, using polynomial eval-
uation. We describe a protocol for the Threshold Set-Union problem, a variant of
Over-Threshold Set-Union. We also design protocols for several more variations
on the Over-Threshold Set-Union problem, determining the subset relation, and
for evaluation of boolean CNF formulas using our techniques; constructions and
proofs are given in [18].

7.1 Cardinality Set-Intersection

We may use the technique of polynomial evaluation to design protocols for vari-
ants on the multiset functions previously described; this is closely related to tech-
niques utilized in [12]. In the Cardinality Set-Intersection problem, each player
learns |S1 ∩ · · · ∩ Sn|, without learning any other information. Our protocol for
Cardinality Set-Intersection on sets proceeds as our protocol for Set-Intersection,
given in Section 5, until the point where all players learn the encryption of p,
the polynomial representation of S1 ∩ · · · ∩ Sn. Each player i = 1, . . . , n then
evaluates this encrypted polynomial at each unique element a ∈ Si, obtaining
βa, an encryption of p(a). He then blinds each encrypted evaluation p(a) by cal-
culating β′a = ba ×h βa. All players then distribute and shuffle the ciphertexts
β′a constructed by each player, such that all players receive all ciphertexts, with-
out learning their source. The players then decrypt these ciphertexts, finding
that nb of the decryptions are 0, implying that there are b unique elements in
S1 ∩ · · · ∩ Sn. Due to space constraints, we describe the details of our protocols
for this problem in [18].

7.2 Threshold Set-Union

Using our techniques, we design efficient solutions to variations of the Over-
Threshold Set-Union problem, including the Threshold Set-Union problem,
where each player learns which elements appear in Rdt−1(S1 ∪ · · · ∪Sn) without
gaining any other information. Note that this differs from the Over-Threshold
Set-Union problem in that the players do not learn the number of times any ele-
ment appears in Rdt−1(S1∪ · · ·∪Sn). Our protocol for the Threshold Set-Union
problem follows our protocol for Over-Threshold Set-Union until all players have
learned the encryption of the polynomial Φ, the polynomial representation of
Rdt−1(S1 ∪ · · · ∪ Sn). Each player i = 1, . . . , n then evaluates this encrypted
polynomial at each element a = (Si)j , obtaining Ui,j , an encryption of Φ(a).
He then chooses bi,j ← R, and calculates U ′

i,j = bi,j ×h Ui,j +h (Si)j . Each
element U ′

i,j is an encryption of (Si)j if (Si)j ∈ Rdt−1(S1 ∪ · · · ∪ Sn), and is
otherwise uniformly distributed over R. All players then shuffle and distribute
U ′

i,j (1 ≤ i ≤ n, 1 ≤ j ≤ k), such that all players receive all ciphertexts, without
learning their source. Shuffling can be easily accomplished with standard tech-
niques [4, 17, 8, 13, 22], with communication complexity at most O(n2k). The
players then perform a calculation so that if any two shuffled ciphertexts are
encryptions of the same plaintext, one will reveal the correct plaintext element,
and the other will yield a uniformly distributed element of R. Thus each element

of Rdt−1(S1 ∪ · · · ∪ Sn) is revealed exactly once. Due to space constraints, we
describe the details of our protocols for the Threshold Set-Union problem and
several other variants in [18].

7.3 Private Subset Relation

Problem Statement. Let the set A be held by Alice. The set B may be the
result of an arbitrary function over multiple players’ input sets (for example
as calculated using the grammar above). The Subset problem is to determine
whether A ⊆ B without revealing any additional information.

Let λ be the encryption of the polynomial p representing B. Note that A ⊆
B ⇔ ∀a∈A p(a) = 0. Alice thus evaluates the encrypted polynomial λ at each
element a ∈ A, homomorphically multiplies a random element by each encrypted
evaluation, and adds these blinded ciphertexts to obtain β′. If β′ is an encryption
of 0, then A ⊆ B. More formally:

1. For each element a = Aj (1 ≤ j ≤ |A|), the player holding A:
(a) calculates βj = λ(a)
(b) chooses a random element bj ← R, and calculates β′j = bj ×h βj

2. The player holding A calculates β′ = β′1 +h . . . +h β′|A|
3. All players together decrypt β′ to obtain y. If y = 0, then A ⊆ B.

This protocol can be easily extended to allow the set A to be held by multiple
players, such that A = A1∪· · ·∪Aν , where each set Ai is held by a single player.

7.4 Security Against Malicious Parties

We can extend our Set-Intersection protocol in Figure 1, secure against honest-
but-curious players, to one secure against malicious adversaries by adding
zero-knowledge proofs or using cut-and-choose to ensure security. By adding
zero-knowledge proofs to our Over-Threshold Set-Union and Cardinality Set-
Intersection protocols secure against honest-but-curious adversaries, we extend
our results to enable security against malicious adversaries. Due to space con-
straints, we provide details of these protocols, as well as security analysis, in [18].

Acknowledgments: We extend our thanks to Dan Boneh, Benny Pinkas, David
Molnar, David Brumley, Alina Oprea, Luis von Ahn, and anonymous reviewers
for their invaluable comments. We especially thank Benny Pinkas for suggestions
on the presentation of this paper.

References

1. M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of STOC, 1988.

2. Fabirce Boudot, Berry Schoenmakers, and Jacques Traore. A fair and efficient so-
lution to the socialist millionaires’ problem. Discrete Applied Mathematics, 111:77–
85, 2001.

3. Jan Camenisch. Proof systems for general statements about discrete logarithms.
Technical Report 260, Dept. of Computer Science, ETH Zurich, Mar 1997.

4. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24:84–8, 1981.

5. David Chaum, Jan-Hendrick Evertse, Jeroen van de Graaf, and Rene Peralta.
Demonstrating possession of a discrete log without revealing it. In A.M. Odlyzko,
editor, Proc. of Crypto, pages 200–212. Springer-Verlag, 1986.

6. R. Cramer, I. Damg̊ard, and J. Buus Nielsen. Multiparty computation from thresh-
old homomorphic encryption. In Proc. of Eurocrypt, pages 280–99. Springer-Verlag,
2001.

7. Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-party
computation from any linear secret sharing scheme. In Proc. of Eurocrypt. Springer-
Verlag, May 2000.

8. Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new
one. In Proc. of Eurocrypt, pages 557–72. Springer-Verlag, 2000.

9. Ronald Fagin, Moni Naor, and Peter Winkler. Comparing information without
leaking it. Communications of the ACM, 39:77–85, 1996.

10. P. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting
of lotteries. In Proc. of Financial Cryptography, 2000.

11. Pierre-Alain Fouque and David Pointcheval. Threshold cryptosystems secure
against chosen-ciphertext attacks. In Proc. of Asiacrypt, pages 573–84, 2000.

12. Michael Freedman, Kobi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Proc. of Eurocrypt, volume LNCS 3027, pages 1–19. Springer-
Verlag, May 2004.

13. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Proc. of
Crypto, pages 368–87. Springer-Verlag, 2001.

14. Rosario Gennaro and Victor Shoup. Securing threshold cryptosystems against
chosen ciphertext attack. Journal of Cryptology, 15:75–96, 2002.

15. Oded Goldreich. The foundations of cryptography – volume 2.
http://www.wisdom.weizmann.ac.il/ oded/foc-vol2.html.

16. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and Systems Science, 28:270–99, 1984.

17. M. Jakobsson. A practical mix. In Proc. of Eurocrypt, pages 448–61. Springer-
Verlag, 1998.

18. Lea Kissner and Dawn Song. Private and threshold set-intersection. Technical
Report CMU-CS-05-113, Carnegie Mellon University, February 2005.

19. Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equality
test. In Proc. of Asiacrypt, pages 416–33, 2003.

20. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, October 1996.

21. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In
Proc. ACM Symposium on Theory of Computing, pages 245–54, 1999.

22. A. Neff. A verifiable secret shuffle and its application to e-voting. In ACM CCS,
pages 116–25, 2001.

23. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Proc. of Asiacrypt, pages 573–84, 2000.

24. Victor Shoup. A computational introduction to number theory and algebra.
http://shoup.net/ntb/.

25. Andrew C-C Yao. Protocols for secure computations. In Proc. of FOCS, 1982.

A Proof of Lemma

Theorem 1: Let f, g be polynomials in R[x] where R is a ring, deg(f) =
deg(g) = α, and gcd(f, g) = 1. Let r =

∑β
i=0 r[i]xi and s =

∑β
i=0 s[i]xi, where

∀0≤i≤β r[i]← R, ∀0≤i≤β s[i]← R (independently) and β ≥ α.
Let u = f ∗ r + g ∗ s =

∑α+β
i=0 u[i]xi. Then ∀0≤i≤α+β u[i] are distributed

uniformly and independently over R.

Proof. For clarity, we give a brief outline of the proof before proceeding to the
details. Given any fixed polynomials f, g, u, we calculate the number z of r, s pairs
such that f ∗ r + g ∗ s = u. We may then check that, given any fixed polynomials
f, g, the total number of possible r, s pairs, divided by z, is equal to the number
of possible result polynomials u. This implies that, if gcd(f, g) = 1 and we choose
the coefficients of r, s uniformly and independently from R, the coefficients of
the result polynomial u are distributed uniformly and independently over R.

We now determine the value of z, the number of r, s pairs such that f ∗
r + g ∗ s = u. Let us assume that there exists at least one pair r̂, ŝ such that
f ∗ r̂ + g ∗ ŝ = u. For any pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u, then

f ∗ r̂ + g ∗ ŝ = f ∗ r̂′ + g ∗ ŝ′

f ∗ (r̂ − r̂′) = g ∗ (ŝ′ − ŝ)

As gcd(f, g) = 1, we may conclude that g|(r̂− r̂′) and f |(ŝ′− ŝ). Let p∗g = r̂− r̂′

and p∗f = ŝ′− ŝ. We now show that each polynomial p, of degree at most β−α,
determines exactly one unique pair r̂′, ŝ′ such that f ∗ r̂′ + g ∗ ŝ′ = u. Note that
r̂′ = r̂ − g ∗ p, ŝ′ = ŝ + f ∗ p; as we have fixed f, g, r̂, ŝ, a choice of p determines
both r̂′, ŝ′ . If these assignments were not unique, there would exist polynomials
p, p′ such that either r̂′ = r̂ − g ∗ p = r̂ − g ∗ p′ or ŝ′ = ŝ + f ∗ p = ŝ + f ∗ p′;
either condition implies that p = p′, giving a contradiction. Thus the number of
polynomials p, of degree at most β − α, is exactly equivalent to the number of
r, s pairs such that f ∗ r + g ∗ s = u. As there are |R|β−α+1 such polynomials p,
z = |R|β−α+1.

We now show that the total number of r, s pairs, divided by z, is equal to
the number of result polynomials u. There are |R|2β+2 r, s pairs. As |R|2β+2

z =
|R|2β+2

|R|β−α+1 = |R|α+β+1, and there are |R|α+β+1 possible result polynomials, we
have proved the theorem true.

