
Sting: An End-to-End Self-Healing System for

Defending against Internet Worms

David Brumley1, James Newsome2, and Dawn Song3

1 Carnegie Mellon University, Pittsburgh, PA, USA dbrumley@cs.cmu.edu
2 Carnegie Mellon University, Pittsburgh, PA USA jnewsome@ece.cmu.edu
3 Carnegie Mellon University, Pittsburgh, PA, USA dawnsong@cmu.edu

1 Introduction

We increasingly rely on highly available systems in all areas of society, from the

economy, to military, to the government. Unfortunately, much software, including

critical applications, contains vulnerabilities unknown at the time of deployment,

with memory-overwrite vulnerabilities (such as buffer overflow and format string

vulnerabilities) accounting for more than 60% of total vulnerabilities [12]. These vul-

nerabilities, when exploited, can cause devastating effects, such as self-propagating

worm attacks which can compromise millions of vulnerable hosts within a matter

of minutes or even seconds [33, 59], and cause millions of dollars of damage [31].

Therefore, we need to develop effective mechanisms to protect vulnerable hosts from

being compromised and allow them to continue providing critical services, even un-

der aggressively spreading attacks on previously unknown vulnerabilities.

We need automatic defense techniques because manual response to new vul-

nerabilities is slow and error prone. Fast reaction is important because previously

unknown (“zero-day”) or unpatched vulnerabilities can be exploited orders of mag-

nitude faster than a human can respond by worms [9, 59]. Automatic techniques

have the potential to be more accurate than manual efforts because vulnerabilities

exploited by worms tend to be complex and require intricate knowledge of details

such as realizable program paths and corner conditions. Understanding the complex-

ities of a vulnerability has consistently proven very difficult and time consuming for

humans at even the source code level [11], let alone COTS software at the assembly

level.

Overview and Contributions. By carefully uniting a suite of new techniques, we

create a new end-to-end self-healing architecture, called Sting, as a first step towards

automatically defending against fast Internet-scale worm attacks.

At a high level, the Sting self-healing architecture enables programs to efficiently

and automatically (1) self-monitor their own execution behavior to detect a large

class of errors and exploit attacks, (2) self-diagnose the root cause of an error or

exploit attack, (3) self-harden to be resilient against further attacks, and (4) quickly

2 David Brumley, James Newsome, and Dawn Song

self-recover to a safe state after a state corruption. Furthermore, once a Sting host

detects and diagnoses an error or attack, it can generate a verifiable antibody, which is

then distributed to other vulnerable hosts, who verify the correctness of the antibody

and use it to self-harden against attacks on that vulnerability. We provide a more

detailed overview below.

First, we propose dynamic taint analysis to detect new attacks, and to provide

information about discovered attacks which can be used to automatically generate

antibodies that protect against further attacks on the corresponding vulnerability. Dy-

namic taint analysis monitors software execution at the instruction level to track what

data was derived from untrusted sources, and detect when untrusted data is used in

ways that signify that an attack has taken place. This technique reliably detects a

large class of exploit attacks, and does not require access to source code, allowing it

to be used on commodity software. This work is described in detail in [44, 45].

Once a new attack is detected, there are several types of antibodies that can be

generated, and several methods to generate them. We have investigated automatic

methods of generating input-filters by finding common byte-patterns in collected

worm samples, even for polymorphic worms. This work is described in detail in [42].

However, we have found that a worm author can severely cripple such methods by

including spurious features in samples of the worm [43].

In [10], we propose vulnerability-based signatures, in which signatures are cre-

ated based upon the vulnerability itself. Vulnerability signatures are input signatures

which provably have zero-false positives (or false negatives, if desired). Therefore,

vulnerability signatures are appropriate even in an adversarial environment where

malicious parties may try to mislead the signature creation algorithm.

In some circumstances input-based filters may not be practical. For example, per-

formance requirements may only allow for token-based signatures, but token-based

signatures may be too imprecise to be useful. Therefore, we propose an alternative

of automatically generating execution filters, which are specifications of where the

vulnerability lies in the vulnerable program. These are used to automatically insert

a small piece of instrumentation into the vulnerable program, which in turn allows

the vulnerable program to efficiently and reliably detect when that vulnerability is

exploited. This work is described in [40].

Once a new attack has been found, and an antibody generated for that attack, we

disseminate that antibody to other vulnerable hosts. These vulnerable hosts can verify

both that an attack exists and that the antibody successfully stops it by replaying the

attack against the antibody-protected software in a confined environment.

Finally, we integrate the above techniques to form Sting, an end-to-end self-

healing system for defending against zero-day worm attacks on commodity soft-

ware. In this system, users use light-weight detectors (such as address randomiza-

tion [3, 7, 8, 13, 22, 23, 66]) and random sampling to initially detect new attacks

with little performance cost. When a potential attack is detected, we then use dy-

namic taint analysis to perform automatic self-diagnosis, which verifies whether it is

truly an attack, and automatically generates an execution filter. That execution filter

is used to harden the vulnerable binary, and is distributed to others running the vul-

nerable software to allow them to also harden their own vulnerable binaries. When

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 3

Defense Strategies

Protection Local Containment

Proactive Protection Reactive Protection

Reactive Address Blacklisting Reactive Antibody Defense

Fig. 1. Worm Defense Strategy Taxonomy

an exploit is detected, the system performs diagnosis-directed self-recovery using

process checkpointing and recovery [58, 46].

Organization. In Section 2, we briefly describe the design space for worm defense

systems. Our analysis indicates that the best designs incorporate both a proactive

protection component and a reactive antibody component. This analysis motivates

our Sting architecture. We then describe TaintCheck in Section 3, which is one of the

primary mechanism we use to detect new exploits and vulnerabilities. In Section 4,

we discuss automatic input-based signature creation. We show many proposed al-

gorithms are fragile and can be mislead by an adversary into creating incorrect sig-

natures. We then describe a new class of signatures called vulnerability signatures

which are provably correct, even in an adversarial environment. In Section 5, we

describe an alternative to input-based filters called vulnerability-based execution fil-

ters (VSEF). Section 6 describes the complete Sting architecture and our experiences

creating it. We then present related work, and conclude.

2 Worm Defense Design Space

The design space for worm defense systems is vast. For example, should a worm

defense system try to contain infected machines from further propagation of the

worm, blacklist known infected hosts, or filter infection attempts? In [9], we propose

a taxonomy for worm defense strategies and perform theoretical and experimental

evaluation to compare different strategies in the design space. Our analysis shows a

hybrid scheme using proactive protection and a reactive antibody defense is the most

promising approach. Thus, we adopt this strategy in the Sting architecture.

2.1 Defense Strategy Taxonomy

We analyze a taxonomy of possible solutions in the worm defense design space in [9].

The taxonomy is depicted in Figure 1. At a high level, the four defense strategies are:

Reactive Antibody Defense. This approach reactively generates an antibody, which

is a protective measure that prevents further infections. The scheme is reactive

4 David Brumley, James Newsome, and Dawn Song

because the antibody is created based upon a known worm sample. Many input-

based filtering schemes such as in Section 4 and [28, 30, 42] are examples of

a reactive antibody defense since the input filters are created from known worm

samples. Vulnerability-specific execution filters (Section 5) are another example.

Proactive Protection. A proactive protection scheme is always in place and pre-

vents at least some worm infection attempts from succeeding. Running TaintCheck

on all programs, all the time is an example of a proactive protection scheme.

However, running TaintCheck all the time is unrealistic due to the potentially

high overhead. An example of a probabilistic proactive protection is address

space randomization [3, 7, 8, 13, 22, 23, 66], in which each infection attempt

succeeds with some probability p.

Reactive Address Blacklisting. Blacklisting generates a worm defense based upon

the address of an attacking host. For example, filtering any subsequent connec-

tions from a known infected host [35].

Local Containment. Local containment is a “good neighbor” strategy in which a

site filters outgoing infection attempts to other sites. Scan rate throttling schemes

such [62, 65] are an example of this strategy.

2.2 The Sting Architecture

We show in [9] that the most effective strategy in a realistic setting is combining

proactive protection with a reactive antibody defense. The intuition is that proactive

protection will slow down the initial worm outbreak, which allows time to develop

and deploy a permanent antibody.

Sting is designed around the hybrid proactive protection with reactive antibody

defense. Sting utilizes TaintCheck, address space randomization, and random sam-

pling as proactive protection mechanisms. The combination of these mechanisms

provides efficient probabilistic protection. Sting develops verifiable antibodies which

can be distributed and installed. The antibodies provide efficient protection against

subsequent infections.

3 Dynamic Taint Analysis for Automatic Detection of New

Exploits

Many approaches have been proposed to detect new attacks. These approaches

roughly fall into two categories: coarse-grained detectors, that detect anomalous

behavior, such as scanning or unusual activity at a certain port; and fine-grained de-

tectors, that detect attacks on a program’s vulnerabilities. While coarse-grained de-

tectors are relatively inexpensive, they can have frequent false positives, and do not

provide detailed information about the vulnerability and how it is exploited. Thus, it

is desirable to develop fine-grained detectors that produce fewer false positives, and

provide detailed information about the vulnerability and exploit.

Several approaches for fine-grained detectors have been proposed that detect

when a program is exploited. Most of these previous mechanisms require source code

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 5

or special recompilation of the program, such as StackGuard [18], PointGuard [17],

full-bounds check [26, 51], LibsafePlus [5], FormatGuard [16], and CCured [37].

Some of them also require recompiling the libraries [26, 51], or modifying the orig-

inal source code, or are not compatible with some programs [37, 17]. These con-

straints hinder the deployment and applicability of these methods, especially for

commodity software, because source code or specially recompiled binaries are of-

ten unavailable, and the additional work required (such as recompiling the libraries

and modifying the original source code) makes it inconvenient to apply these meth-

ods to a broad range of applications. Note that most of the large-scale worm attacks

to date are attacks on commodity software.

Thus, it is important to design fine-grained detectors that work on commodity

software, i.e., work on arbitrary binaries without requiring source code or specially

recompiled binaries. This goal is difficult to achieve because important information,

such as data types, is not generally available in binaries. As a result, existing ex-

ploit detection mechanisms that do not use source code or specially compiled binary

programs, such as LibSafe [6], LibFormat [50], Program Shepherding [29], and the

Nethercote-Fitzhardinge bounds check [38], are typically tailored for narrow types

of attacks and fail to detect many important types of common attacks.

We propose a new approach, dynamic taint analysis, for the automatic detection

of exploits on commodity software. In dynamic taint analysis, we label data origi-

nating from or arithmetically derived from untrusted sources such as the network as

tainted. We keep track of the propagation of tainted data as the program executes

(i.e., what data in memory is tainted), and detect when tainted data is used in danger-

ous ways that could indicate an attack. This approach allows us to detect overwrite

attacks, attacks that cause a sensitive value (such as return addresses, function point-

ers, format strings, etc.) to be overwritten with the attacker’s data. Most commonly

occurring exploits fall into this class of attacks. We have developed an automatic

tool, TaintCheck, to demonstrate our dynamic taint analysis approach.

3.1 Dynamic Taint Analysis

Our technique is based on the observation that in order for an attacker to change

the execution of a program illegitimately, he must cause a value that is normally

derived from a trusted source to instead be derived from his own input. For example,

values such as return addresses, function pointers, and format strings should usually

be supplied by the code itself, not from external untrusted inputs. In an overwrite

attack, an attacker exploits a program by overwriting sensitive values such as these

with his own data, allowing him to arbitrarily change the execution of the program.

We refer to data that originates or is derived arithmetically from an untrusted

input as being tainted. In our dynamic taint analysis, we first mark input data from

untrusted sources tainted, then monitor program execution to track how the tainted

attribute propagates (i.e., what other data becomes tainted) and to check when tainted

data is used in dangerous ways. For example, use of tainted data as a function pointer

6 David Brumley, James Newsome, and Dawn Song

or a format string indicates an exploit of a vulnerability such as a buffer overrun or

format string vulnerability 4, respectively.

Note that our approach detects attacks at the time of use, i.e., when tainted data

is used in dangerous ways. This significantly differs from many previous approaches

which attempt to detect when a certain part of memory is illegitimately overwritten

by an attacker at the time of the write. Without source code, it is not always possi-

ble at the time of a write to detect whether an illegitimate overwrite is taking place,

because it cannot always be statically determined what kind of data is being over-

written, e.g. whether the boundary of a buffer has been exceeded. Hence, techniques

that detect attacks at the time of write without source code are only applicable to

certain type of attacks and/or suffer from limited accuracy. However, at the time that

data is used in a sensitive way, such as as a function pointer, we know that if that

data is tainted, then a previous write was an illegitimate overwrite, and an attack has

taken place. By detecting attacks at the time of use instead of the time of write, we

reliably detect a broad range of overwrite attacks.

3.2 Design and Implementation Overview

We have designed and implemented TaintCheck, a new tool for performing dynamic

taint analysis. TaintCheck performs dynamic taint analysis on a program by running

the program in its own emulation environment. This allows TaintCheck to monitor

and control the program’s execution at a fine-grained level. We have two implemen-

tations of TaintCheck: we implemented TaintCheck using Valgrind [39]. Valgrind is

an open source x86 emulator that supports extensions, called skins, which can instru-

ment a program as it is run.5 We also have a Windows implementation of TaintCheck

that uses DynamoRIO [1], another dynamic binary instrumentation tool. For sim-

plicity of explanation, for the remainder of this section, we refer to the Valgrind

implementation unless otherwise specified.

Whenever program control reaches a new basic block, Valgrind first translates

the block of x86 instructions into its own RISC-like instruction set, called UCode.

It then passes the UCode block to TaintCheck, which instruments the UCode block

to incorporate its taint analysis code. TaintCheck then passes the rewritten UCode

block back to Valgrind, which translates the block back to x86 code so that it may be

4 Note that the use of tainted data as a format string often indicates a format string vulner-

ability, whether or not there is an actual exploit. That is, the program unsafely uses un-

trusted data as a format string (printf(user input) instead of printf(‘‘%s’’,

user input)), though the data provided by a particular user input may be innocuous.
5 Note that while Memcheck, a commonly used Valgrind extension, is able to assist in de-

bugging memory errors, it is not designed to detect attacks. It can detect some conditions

relevant to vulnerabilities and attacks, such as when unallocated memory is used, when

memory is freed twice, and when a memory write passes the boundary of a malloc-

allocated block. However, it does not detect other attacks, such as overflows within an area

allocated by one malloc call (such as a buffer field of a struct), format string attacks, or

stack-allocated buffer overruns.

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 7

executed. Once a block has been instrumented, it is kept in Valgrind’s cache so that

it does not need to be re-instrumented every time it is executed.

TaintTracker

TaintSeed TaintAssert

Data from
Socket

Buffer
Malloc’d

Detected!

Add

Untainted Data

(via double−free)

Copy

Use as

Fn Pointer

Attack

Fig. 2. TaintCheck detection of an attack. (Exploit Analyzer not shown).

To use dynamic taint analysis for attack detection, we need to answer three ques-

tions: (1) What inputs should be tainted? (2) How should the taint attribute propa-

gate? (3) What usage of tainted data should raise an alarm as an attack? To make

TaintCheck flexible and extensible, we have designed three components: TaintSeed,

TaintTracker, and TaintAssert to address each of these three questions in turn. Figure

2 shows how these three components work together to track the flow of tainted data

and detect an attack. Each component has a default policy and can easily incorpo-

rate user-defined policies as well. In addition, each component can be configured to

log information about taint propagation, which can be used by the fourth compo-

nent we have designed, the Exploit Analyzer. When an attack is detected, the Exploit

Analyzer performs post-analysis to provide information about the attack, including

identifying the input that led to the attack, and semantic information about the attack

payload. This information can be used to automatically generate antibodies against

the attack, including input-based filters (Section 4) and execution filters (Section 5).

4 Automatic Generation of Input-based Filters

We first describe previous attempts at automatically generating signatures by syn-

tax pattern-extraction techniques. These techniques find and create signatures based

on syntactic differences between exploits and benign inputs. Our experience shows

these methods are fragile, and thus not suitable in an adversarial environment where

an adversary may try to mislead the signature generation algorithm. We then in-

troduce vulnerability signatures, which produce signatures with zero false positives

(even in an adversarial setting). In addition, vulnerability signatures are generally of

a higher quality (i.e., more accurate and less fragile) than signatures generated by

syntax pattern-extraction techniques.

4.1 Limitations of Pattern-Extraction based techniques

First generation worms: identical byte strings. Motivated by the slow pace of

manual signature generation, researchers have recently given attention to automating

8 David Brumley, James Newsome, and Dawn Song

the generation of signatures used by IDSes to match worm traffic. Systems such as

Honeycomb [30], Autograph [28], and EarlyBird [56] monitor network traffic to

identify novel Internet worms, and produce signatures for them using pattern-based

analysis, i.e., by extracting common byte patterns across different suspicious flows.

These systems all generate signatures consisting of a single, contiguous substring

of a worm’s payload, of sufficient length to match only the worm, and not innocu-

ous traffic. The shorter the byte string, the greater the probability it will appear in

some flow’s payload, regardless of whether the flow is a worm or innocuous. These

syntax pattern-extraction signature generation systems all make the same underlying

assumption: that there exists a single payload substring that will remain invariant

across worm connections, and will be sufficiently unique to the worm such that it

can be used as a signature without causing false positives.

Second generation worms: polymorphism. Regrettably, the above payload in-

variance assumption is naı̈ve, and gives rise to a critical weakness in these previ-

ously proposed signature generation systems. A worm author may craft a worm that

substantially changes its payload on every successive connection, and thus evades

matching by any single substring signature that does not also occur in innocuous

traffic. Polymorphism techniques6, through which a program may encode and re-

encode itself into successive, different byte strings, enable production of changing

worm payloads. It is pure serendipity that worm authors thus far have not chosen

to render worms polymorphic; virus authors do so routinely [36, 61]. The effort re-

quired to do so is trivial, given that libraries to render code polymorphic are readily

available [2, 20].

In Polygraph [42], we showed that for many vulnerabilities, there are several

invariant byte strings that must be present to exploit that vulnerability. While us-

ing a single one of these strings would not be specific enough to generate an ac-

curate signature, they can be combined to create an accurate conjunction signature,

subsequence signature, or Bayes signature. We proposed algorithms that automati-

cally generate accurate signatures of these types, for maximally varying polymorphic

worms. That is, we assumed the worm minimized commonality between each in-

stance, such that only the invariant byte strings necessary to trigger the vulnerability

were present.

Third generation worms: Attacks on learning. The maximal variation model of

a polymorphic worm’s content bears further scrutiny. If one seeks to understand

whether a worm can vary its content so widely that a particular signature type, e.g.,

one comprised of multiple disjoint substrings, cannot sufficiently discriminate worm

instances from innocuous traffic, this model is appropriate, as it represents a worst

case, in which as many of a worm’s bytes vary randomly as possible. But the maxi-

mally varying model is one of many choices a worm author may adopt. Once a worm

author knows the signature generation algorithm in use, he may adopt payload vari-

ation strategies chosen specifically in an attempt to defeat that algorithm or class of

algorithm. Thus, maximal variation is a distraction when assessing the robustness of

6 We refer to both polymorphism and metamorphism as polymorphism, in the interest of

brevity.

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 9

a signature generation algorithm in an adversarial environment; some other strategy

may be far more effective in causing poor signatures (i.e., those that cause many false

negatives and/or false positives) to be generated .

In Paragraph [43], we demonstrated several attacks that make the problem of au-

tomatic signature generation via pattern-extraction significantly more difficult. The

approach taken by pattern-extraction based signature generation systems such as

Polygraph is to find common byte patterns in samples of a worm, and then apply

some type of learning algorithm to generate a classifier, or signature. Most research

in machine learning algorithms is in the context in which the content of samples is

determined randomly, or even by a helpful teacher, who constructs examples in an

effort to assist learning.

However, learning algorithms, when applied to polymorphic worm signature gen-

eration, attempt to function with examples provided by a malicious teacher. That is,

a clever worm author may manipulate the particular features found in the worm sam-

ples, innocuous samples, or both—not to produce maximal variation in payload, but

to thwart learning itself.

We demonstrate this concept in Paragraph [43] by constructing attacks against

the signature generation algorithms in Polygraph [42]. We have shown that these

attacks are practical to perform, and that they prevent an accurate signature from

being generated quickly enough to prevent wide-spread infection. From our analysis,

we conclude that generating worm signatures purely by syntax pattern-extraction

techniques seems limited in robustness against a determined adversary.

4.2 Automatic Vulnerability Signature Generation

A realistic signature generation mechanism should succeed in an adversarial environ-

ment without requiring assumptions about the amount of polymorphism an unknown

vulnerability may have. Thus, to be effective, the signature should be constructed

based on the property of the vulnerability, instead of an exploit (this observation has

been made by others as well [64]).

We show that signatures with zero false positives, even in an adversarial setting,

can be created by analyzing the vulnerability itself. We call these signatures vulner-

ability signatures [10]. Vulnerability signatures are provably correct with respect to

the goal of the administrator: they are constructed with zero false positives or zero

false negatives regardless of how the attacker may try and deceive the generation

algorithm.

Requirements for Vulnerability Signature Generation

We motivate our work and approach to vulnerability signatures in the following set-

ting: a new exploit is just released for an unknown vulnerability. A site has detected

the exploit through some means such as dynamic taint analysis (Section 3), and

wishes to create a signature that recognizes any further exploits. The site can fur-

nish our analysis with the tuple {P, T, x, c} where P is the program, x is the exploit

string, c is a vulnerability condition, and T is the execution trace of P on x. Since

10 David Brumley, James Newsome, and Dawn Song

our experiments are at the assembly level, we assume P is a binary program and T
is an instruction trace, though our techniques also work at the source-code level. Our

goal is to create a vulnerability signature which will match future malicious inputs

x′ by examining them without running P .

Vulnerability Signature Definition

A vulnerability is 2-tuple (P, c), where P is a program (which is a sequence of in-

structions 〈i1, · · · , ik〉), and c is a vulnerability condition (defined formally below).

The execution trace obtained by executing a program P on input x is denoted by

T (P, x). An execution trace is simply a sequence of actual instructions that are exe-

cuted. A vulnerability condition c is evaluated on an execution trace T . If T satisfies

the vulnerability condition c, we denote it by T |= c. The language of a vulnerability

LP,c consists of the set of all inputs x to a program P such that the resulting exe-

cution trace satisfies c. Let Σ∗ be the domain of inputs to P . Formally, LP,c is the

language defined by:

LP,c = {x ∈ Σ∗ | T (P, x) |= c}

An exploit for a vulnerability (P, c) is simply an input x ∈ LP,c, i.e., executing

P on input x results in a trace that satisfies the vulnerability condition c. A vulner-

ability signature is a matching function MATCH which for an input x returns either

EXPLOIT or BENIGN without running P . A perfect vulnerability signature satis-

fies the following property:

MATCH(x) =

{

EXPLOIT when x ∈ LP,c

BENIGN when x /∈ LP,c

As we show in Section 4.2, the language LP,c can be represented in many differ-

ent ways ranging from Turing machines which are precise, i.e., accept exactly LP,c,

to regular expressions which may not be precise, i.e., have an error rate.

Soundness and completeness for signatures.. We define completeness for a vul-

nerability signature MATCH to be ∀x : x ∈ LP,c ⇒MATCH(x) = EXPLOIT, i.e.,

MATCH accepts everything LP,c does. Incomplete solutions will have false nega-

tives. We define soundness as ∀x : x /∈ LP,c ⇒ MATCH(x) = BENIGN, i.e., MATCH

does not accept anything extra not in LP,c. 7 Unsound solutions will have false posi-

tives. A consequence of Rice’s theorem [24] is that no signature representation other

than a Turing machine can be both sound and complete, and therefore for other repre-

sentations we must pick one or the other. In our setting, we focus on soundness, i.e.,

we tolerate false negatives but not false positives. Vulnerability signature creation

algorithms can easily be adapted to generate complete by unsound signatures [10].

7 Normally soundness is ∀x : x ∈ S ⇒ x ∈ LP,c. Here we are stating the equivalent

contra-positive.

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 11

Vulnerability Signature Representation Classes

We explore the space of different language classes that can be used to represent

LP,c as a vulnerability signature. Which signature representation we pick determines

the precision and matching efficiency. We investigate three concrete signature rep-

resentations which reflect the intrinsic trade-offs between accuracy and matching

efficiency: Turing machine signatures, symbolic constraint signatures, and regular

expression signatures. A Turing machine signature can be precise, i.e., no false pos-

itives or negatives. However, matching a Turing machine signature may take an un-

bounded amount of time because of loops and thus is not applicable in all scenar-

ios. Symbolic constraint signatures guarantee that matching will terminate because

they have no loops, but must approximate certain constructs in the program such as

looping and memory aliasing, which may lead to imprecision in the signature. Reg-

ular expression signatures are the other extreme point in the design space because

matching is efficient but many elementary constructions such as counting must be

approximated, and thus the least accurate of the three representations.

Turing machine signatures. A Turing machine (TM) signature is a program T con-

sisting of those instructions which lead to the vulnerability point with the vulnerabil-

ity condition algorithm in-lined. Paths that do not lead to the vulnerability point will

return BENIGN, while paths that lead to the vulnerability point and satisfy the vul-

nerability condition return EXPLOIT. 8 TM signatures can be precise, e.g., a trivial

TM signature with no error rate is emulating the full program.

Symbolic constraint signatures. A symbolic constraint signature is a set of boolean

formulas which approximate a Turing machine signature. Unlike Turing machine

signatures which have loops, matching (evaluating) a symbolic constraint signature

on an input x will always terminate because there are no loops. Symbolic constraint

signatures only approximate constructs such as loops and memory updates statically.

As a result, symbolic constraint signatures may not be as precise as the Turing ma-

chine signature.

Regular expression signatures. Regular expressions are the least powerful signature

representation of the three, and may have a considerable false positive rate in some

circumstances. For example, a well-known limitation is regular expressions cannot

count [24], and therefore cannot succinctly express conditions such as checking a

message has a proper checksum or even simple inequalities such as x[i] < x[j].
However, regular expression signatures are widely used in practice.

Vulnerability Signature Generation

At a high level, our algorithm for computing a vulnerability signature for program

P , vulnerability condition c, a sample exploit x, and the corresponding instruction

trace T is depicted in Figure 3. Our algorithm for computing vulnerability signatures

is:

8 A path in a program is a path in the program’s control flow graph.

12 David Brumley, James Newsome, and Dawn Song

1. Pre-process the program before any exploit is received by:

a) Disassembling the program P . Disassemblers are available for all modern

architectures and OS’s.

b) Converting the assembly into an intermediate representation (IR). The IR

disambiguates any machine-level instructions. For example, an assembly

statement add a, b may perform a + b but also set a hardware overflow

flag. The IR captures both operations.

2. Compute a chop with respect to the execution trace T of a sample exploit. The

chop includes all paths to the vulnerability point including that taken by the

sample exploit [25, 48]. Intuitively, the chop contains all and only those program

paths any exploit of the vulnerability may take.

3. Compute the signature:

a) Compute the Turing machine signature. Stop if this is the final representa-

tion.

b) Compute the symbolic constraint signature from the TM signature. Stop if

this is the final representation.

c) Solve the regular expression signature from the symbolic constraint signa-

ture.

Create TM SigDisassemble Convert to IR
& Constraint Generation

Symbolic Execution Constraint

Solving

Exploit &
Trace Condition

Vulnerability
Binary

Program

Signature Generation PhasePre−processing Phase

Turing Machine Signature
Signature

Symbolic Constraint

Signature

Regular Expression

Compute Chop
Select paths from

Chop

Automatic Vulnerability Signature Generation

Fig. 3. A high level view of the steps to compute a vulnerability signature.

At a high level, the resulting signature is provably correct since only input strings

that can be proved to exploit the vulnerability are included, i.e., a TM signature

by construction accepts an input iff the input would exploit the original program;

the symbolic constraints are satisfiable iff the TM signature would accept the in-

put; and the regular expression contains only those strings that satisfy the symbolic

constraints.

Vulnerability Signature Results

We show in [10] that our automatically generated vulnerability signatures are of

much higher quality than those generated with syntax pattern-extraction techniques.

The higher quality is because given only a single exploit sample, our vulnerability

signature creation algorithm will deduce properties of other unseen exploits. For

example, in the atphttpd webserver vulnerability the get HTTP request method is

case-insensitive [47], and in the DNS TSIG vulnerability that there must be multiple

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 13

DNS “questions” (which is a field in DNS protocol messages) present for any exploit

to work [63].

5 Automatic Generation of Vulnerability-Specific Execution

Filters

In some situations input-based filters are not an appropriate solution. For some vul-

nerabilities, it is not possible to generate an input-based filter that is accurate, ef-

ficient, and of reasonable size. In addition, while one of the desirable properties

of input-based filters is that they can be evaluated off the host (e.g., by a network

intrusion detection system), this advantage is largely negated in cases where it is

impossible to perform accurate filtering without knowledge of state that is on the

vulnerable host, such as what encryption key is being used for a particular connec-

tion. On the other hand, various host-based approaches have been proposed which are

more accurate, but have other drawbacks. For example, previous approaches have fo-

cused on: (1) Patching: patching a new vulnerability can be a time-consuming task—

generating high quality patches often require source code, manual effort, and exten-

sive testing. Applying patches to an existing system also often requires extensive

testing to ensure that the new patches do not lead to any undesirable side effects on

the whole system. Patching is far too slow to respond effectively to a rapidly spread-

ing worm. (2) Binary-based full execution monitoring: many approaches have been

proposed to add protection to a binary program. However, these previous approaches

are either inaccurate and only defend against a small classes of attacks [6, 50, 29, 38]

or require hardware modification or incur high performance overhead when used to

protect the entire program execution [19, 44, 60, 15].

We propose a new approach for automatic defense: vulnerability-specific execution-

based filtering (VSEF). At a high-level, VSEF filters out exploits based on the pro-

gram’s execution, as opposed to filtering based solely upon the input string. However,

instead of instrumenting and monitoring the full execution, VSEF only monitors and

instruments the part of program execution which is relevant to the specific vulnera-

bility. VSEF therefore takes the best of both input-based filtering and full execution

monitoring: it is much more accurate than input-based filtering and much more effi-

cient than full execution monitoring.

We also develop the first system for automatically creating a VSEF filter for a

known vulnerability given only a program binary, and a sample input that exploits

that vulnerability. Our VSEF Filter Generator automatically generates a VSEF filter

which encodes the information needed to detect future attacks against the vulnerabil-

ity. Using the VSEF filter, the vulnerable host can use our VSEF Binary Instrumen-

tation Engine to automatically add instrumentation to the vulnerable binary program

to obtain a hardened binary program. The hardened program introduces very little

overhead and for normal requests performs just as the original program. On the other

hand, the hardened program detects and filters out attacks against the same vulner-

ability. Thus, VSEF protects vulnerable hosts from attacks and allow the vulnerable

hosts to continue providing critical services.

14 David Brumley, James Newsome, and Dawn Song

Using the execution trace of an exploit of a vulnerability, our VSEF automati-

cally generates a hardened program which can defend against further (polymorphic)

exploits of the same vulnerability. VSEF achieves the following desirable properties:

• Our VSEF is an extremely fast defense. In general, it takes a few milliseconds

for our VSEF to generate the hardened program from an exploit execution trace.

• Our VSEF filtering techniques provide a way of detecting exploits of a vulnera-

bility more accurately than input-based filters and more efficiently than full exe-

cution monitoring.

• Our techniques do not require access to source code, and are thus applicable in

realistic environments.

• Our experiments show that the performance overhead of the hardened program

is usually only a few percent.

• Our approach is general, and could potentially be applied to other faults such as

integer overflow, divide-by-zero, etc.

These properties make VSEF an attractive approach toward building an auto-

matic worm defense system that can react to extremely fast worms.

6 Sting Self-healing Architecture and Experience

We integrate the aforementioned new techniques with each-other and with existing

techniques to form a new end-to-end self-healing architecture, called Sting [41], as a

first step towards automatically defending against fast Internet-scale worm attacks.

Self−Harden

Self−Monitor

VSEF

Exploit

Msg Trace

SVAA

VSEF

Exploit

Msg Trace

SVAA

Dissemination
Sandboxed

Verification

Unverified

candidate

Verified

Sting Producer

SVAA

Candidate

Refine

Reject
candidate

Install

candidate

Hardened

Self−Harden

Sting Consumer

Self−Recover Self−Diagnose

Fig. 4. Sting distributed architecture

Figure 4 illustrates Sting’s distributed architecture. At a high level, the Sting

self-healing architecture enables programs to efficiently and automatically (1) self-

monitor their own execution behavior to detect a large class of errors and exploit

attacks, (2) self-diagnose the root cause of an error or exploit attack, (3) self-harden

to be resilient against further attacks, and (4) quickly self-recover to a safe state

after a state corruption. Further, once a Sting host detects and diagnoses an error

or attack, it generates a Self-Verifiable Antibody Alert (SVAA), to be distributed

to other vulnerable hosts, who verify the correctness of the antibody and use it to

self-harden against attacks against that vulnerability.

Our Sting self-healing architecture achieves the following properties: Our tech-

niques are accurate, apply to a large class of vulnerabilities and attacks, and enable

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 15

critical applications and services to continue providing high-quality services even

under new attacks on previously unknown vulnerabilities. Moreover, our techniques

work on black-box applications and commodity software since we do not require

access to source code. Furthermore, such a system integration allows us to achieve

a set of salient new features that were not possible in previous systems: (1) By in-

tegrating checkpointing and system call logging with diagnosis-directed replay, we

can quickly recover a compromised program to a safe and consistent state for a large

class of applications. In fact, our self-recovery procedure does not require program

restart for a large class of applications, and our experiments demonstrate that our

self-recovery can be orders of magnitude faster than program restart. (2) By inte-

grating faithful and zero side-effect system replay with in-depth diagnosis, we can

seamlessly combine light-weight detectors and heavy-weight diagnosis to obtain the

benefit of both: the system is efficient due to the low overhead of the light-weight

detectors; and the system is able to faithfully replay the attack with no side effect

for in-depth diagnosis once the light-weight detectors have detected an attack, which

are important properties lacking in previous work [14, 4]. Such seamless integra-

tion is also particularly important for retro-active random sampling, where randomly

selected requests can be later examined by in-depth diagnosis without the attacker

being able to tell which request has been sampled. This is a property that previous

approaches such as [4] do not guarantee.

Moreover, our self-healing approach not only allows a computer program to self-

heal, but also allows a community of nodes that run the same program to share au-

tomatically generated antibodies quickly and effectively. In particular, once a node

self-heals, it generates an Self-Verifiable Antibody Alerts containing an antibody that

other nodes can use to self-harden before being attacked. The antibody is a response

generated in reaction to a new exploit and can be used to prevent future exploits of

the underlying vulnerability. Moreover, the disseminated alerts containing the anti-

body are self-verifiable, so recipients of alerts need not trust each other. We call this

type of defense reactive anti-body defense, similar to Vigilante [14].

Our evaluation demonstrates that our system has an extremely fast response time

to an attack: it takes under one second to diagnose, recover from, and harden against

a new attack. And it takes about one second to generate and verify a Self-Verifiable

Antibody Alerts. Furthermore, our evaluation demonstrates that with reasonably low

deployment ratio of nodes creating antibodies (Sting producers), our approach will

protect most of the vulnerable nodes which can receive and deploy antibodies (Sting

consumers) from very fast worm attacks such as the Slammer worm attack.

Finally, despite earlier work showing that proactive protection mechanisms such

as address randomization are not effective as defense mechanisms [52], we show that

reactive anti-body defense alone (as proposed in [14]) is insufficient to defend against

extremely fast worms such as hit-list worms. By combining proactive protection and

reactive anti-body defense, we demonstrate for the first time that it is possible to

defend against even hit-list worms. We demonstrate that if the Sting consumers also

deploy address space randomization techniques, then our system will also be able to

protect most of the Sting consumers from extremely fast worm attacks such as hit-

16 David Brumley, James Newsome, and Dawn Song

0.1 0.01 0.005 0.001 0.0001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deployment Ratio

In
fe

ct
io

n
R

at
io

γ =5
γ =10
γ =20
γ =30
γ =50
γ =100

(a) Reactive Anti-body Defense

against Slammer(β = 0.1)

0.5 0.1 0.01 0.001 0.0001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deployment Ratio

In
fe

ct
io

n
R

at
io

γ =5
γ =10
γ =20
γ =30
γ =50
γ =100

(b) Hybrid Defense against Hit-

list(β = 1000)

0.5 0.1 0.01 0.001 0.0001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deployment Ratio

In
fe

ct
io

n
R

at
io

γ =5
γ =10
γ =20
γ =30
γ =50
γ =100

(c) Hybrid Defense against Hit-

list(β = 4000)

Fig. 5. Effectiveness of Community Defense

list worms. To the best of our knowledge, we are the first to demonstrate a practical

end-to-end approach which can defend against hit-list worms.

By developing and carefully uniting a suite of new techniques, we design and

build the first end-to-end system that has reasonable performance overhead, yet can

respond to worm attacks quickly and accurately, and enable safe self-recovery faster

than program restart. The system also achieves properties not possible in previous

work as described above. Furthermore, by proposing a hybrid defense strategy, a

combination of reactive anti-body defense and proactive protection, we show for the

first time that it is possible to defend against hit-list worms.

7 Evaluation

7.1 Reactive Anti-body Defense Evaluation

In this section, we evaluate the effectiveness of our reactive anti-body defense against

fast worm outbreaks, using the Slammer Worm and a hit-list worm as concrete ex-

amples. In particular, given a worm’s contact rate β (the number of vulnerable hosts

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 17

an infected host contacts within a unit of time), the effectiveness of our reactive anti-

body defense depends on two factors: the deployment ratio of Sting producers α (the

fraction of the vulnerable hosts which are Sting producers) and the response time r
(the time it takes from a producer receiving an infection attempt to all the vulnerable

hosts receiving the SVAA generated by the producer). We illustrate below the total

infection ratio (the fraction of vulnerable hosts infected throughout the worm break)

under our collaborative community defense vs. α given different β and r.

Defense against Slammer worm. Figure 5(a) shows the overall infection ratio vs.

the producer deployment ratio α for a Slammer worm outbreak (where β = 0.1 [34])

with different response time r. For example, the figure indicates that given α =
0.0001 and r = 5 seconds, the overall infection ratio is only 15%; and for α = 0.001
and r = 20 seconds, the overall infection ratio is only about 5%. This analysis shows

that our reactive anti-body defense can be very effective against fast worms such as

Slammer. Next we investigate the effectiveness of this defense against hit-list worms.

Defense against Hit-list worm. Figure 6(c) shows the result of a hit-list worm for

β = 1000 and β = 4000, and n = 100, 0009. From the figure we see that (ignoring

network delay) a hit-list worm can infect the entire vulnerable population (Sting

consumers) in a fraction of a second. This is similar to earlier estimates [33, 59]

which shows that a hit-list worm can propagate through the entire Internet within a

fraction of a second. Thus, our reactive anti-body defense alone will be insufficient

to defend against such fast worms because the anti-bodies will not be generated and

disseminated fast enough to protect the Sting consumers.

7.2 Proactive Protection against Hit-list Worm

Another defense strategy is a proactive one instead reactive. For example, for a large

class of attacks, address space randomization can provide proactive protection, al-

beit a probabilistic one. The attack, with high probability, will crash the program

instead of successfully compromise it. This probabilistic protection is an instant de-

fense, which does not need to wait for the anti-body to be generated and distributed.

However, because the protection is only probabilistic, repeated or brute-force attacks

may succeed. Figure 6(a) and 6(b) show the effectiveness of such proactive pro-

tection against hit-list worms when a certain fraction α of the total vulnerable hosts

deploy the proactive protection mechanism, where p = 1/212 (the probability of an

attack trial succeeding), and β = 1000 and β = 4000 respectively. As shown in the

figure, for β = 1000, when α = 0.5 50% of the vulnerable hosts deploy the proactive

protection defense, it will take about 10 seconds for the worm to infect 90% of the

vulnerable population; whereas if 100% of the vulnerable hosts deploy the proactive

protection defense, it only slows down the worm to about 45 seconds to infect 90%

of the vulnerable population. When β = 4000, the worm propagates even faster as

shown in Figure 6(b).

9 This is basically the same parameters as the Slammer worm, except that instead of a random

scanning worm, the worm is a hit-list.

18 David Brumley, James Newsome, and Dawn Song

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Time (in seconds)

in
fe

ct
ed

 m
ac

hi
ne

s
(%

)

α =0.5
α =0.9
α =0.99
α =1

(a) Proactive Protection against Hit-

list(β = 1000)

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Time (in seconds)

in
fe

ct
ed

 m
ac

hi
ne

s
(%

)

α =0.5
α =0.9
α =0.99
α =1

(b) Proactive Protection against Hit-

list(β = 4000)

0 0.004 0.008 0.012 0.016 0.02
0

10

20

30

40

50

60

70

80

90

100

Time (in seconds)

in
fe

ct
ed

 m
ac

hi
ne

s
(%

)

β =1000
β =4000

(c) Reactive Anti-body Defense

against Hit-list

Fig. 6. Defense Effectiveness Evaluation

Thus, proactive protection alone can slow down the worm propagation to a cer-

tain extent, but is clearly not a completely effective defense.

7.3 Hybrid Defense against Hit-list Worm: Combining Proactive Protection

and Reactive Anti-body Defense

As explained above, our reactive anti-body defense alone is not fast enough to de-

fend against hit-list worms. Thus, we propose a hybrid defense mechanism where

the Sting consumers deploy proactive protection mechanisms such as address space

randomization in addition to receiving SVAA using the reactive anti-body defense.

In both cases, we assume the probability that an infection attempt succeeds against

the proactive protection mechanism (e.g., guessing the correct program internal state

with address space randomization) is again 2−12.

Figure 5(b) and Figure 5(c) show the effectiveness of this hybrid defense ap-

proach, i.e., the overall infection ratio vs. the producer deployment ratio α, with dif-

ferent response time r, under two different Hit-list worm outbreaks (where β = 1000
and β = 4000 respectively). For example, the figures indicate that given α = 0.0001
and r = 10 seconds, the overall infection ratio is only 5%; for β = 1000 and 40%

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 19

for β = 4000; and for α = 0.0001 and r = 5 seconds, the overall infection ratio is

negligible (less than 1%) for both cases.

Our simulations show a total end-to-end time (self-detection, self-diagnosis, dis-

semination, and self-hardening) of about 5 seconds will stop a hit-list worm. Note

that our experiments show that self-detection and self-hardening are almost instanta-

neous, and the total time it takes for a producer to self-diagnose to create a SVAA and

for a consumer to verify a SVAA is under 2 seconds. Vigilante shows that the dis-

semination of an alert could take less than 3 seconds [14]. Thus our system achieves

an r = 2 + 3 = 5, demonstrating that our system is the first to effectively defend

against even hit-list worms.

8 Related Work

Antibody Generation Systems. Vigilante has independently proposed a distributed

architecture, where dynamic taint analysis is used to detect new attacks and automat-

ically generate verifiable antibodies [14]. It was a very nice piece of work. There are

several important technical differences between Vigilante and Sting. Unlike Sting,

Vigilante does not provide self-recovery, and also does not allow the seamless com-

bination of light-weight detectors and heavy-weight detectors. Vigilante automati-

cally generates a specific type of input-based filters, where Sting automatically pro-

duces a suite of different antibodies including a wider range of input-based filters

and execution-based filters which could provide higher accuracy.

Automatically generating patches when source code is available is explored by

Sidiroglou et. al. [53, 54].

Anagnostakis et. al. propose shadow honeypots to enable a suspicious request

to be examined by a more expensive detector [4]. However, their approach requires

source code access and manual identification of beginning and end of transactions

and thus does not work on commodity software. In addition, because they only re-

verse memory states but do not perform system call logging and replay, their ap-

proach can cause side effects. Moreover, because the suspicious request is handled

directly by the more expensive detector instead of the background analysis as in our

approach, the attacker could potentially detect when its attack request is being mon-

itored by a more expensive detector and thus end the attack prematurely and retry

later, whereas our retro-active random sampling addresses this issue.

Liang and Sekar [32] and Xu et. al. [67] independently propose different ap-

proaches to use address space randomization as a protection mechanism and auto-

matically generate a signature by analyzing the corrupted memory state after a crash.

Recovery. Our diagnosis-directed self-recovery provides a different point in the de-

sign space compared to previous work. For example, Rinard et. al. has proposed an

interesting line of research, failure-oblivious computing in which invalid memory op-

erations are discarded and manufactured values are returned [49]. Instead of rolling

back execution to a known safe point, Sidiroglou et al have explored aborting the

active function when an error is detected [55]. While interesting, these approaches

20 David Brumley, James Newsome, and Dawn Song

do not provide semantic correctness, and is thus unsuitable for automatic deploy-

ment on critical services. DIRA is another approach that modifies the source code so

that overwrites of control data structures can be rolled back and undone [57]. All of

these approaches require source code access, and thus cannot be used on commodity

software.

There is a considerable body of research on rollback schemes: see [46] for a

more detailed discussion. We choose to use FlashBack [58], a kernel-level approach

for transactional rollback that does not require access to source code and determin-

istically replays execution. Another approach is to use virtual machines (VM) for

rollback [21, 27]. This approach is more heavy-weight but has advantages such as it

is secure against kernel attacks. We plan to explore this direction in the future.

Rx proposes environmental changes to defend against failures, using execution

rollback and environment perturbation [46]. However, their approach does not sup-

port detailed self-diagnosis and self-hardening, and simply retries execution with

different environmental changes until the failure is successfully avoided.

Dynamic Taint Analysis. We use TaintCheck [44, 45] to perform dynamic taint

analysis on the binary for self-diagnosis. Others have implemented similar tools [14]

which can also be used. Hardware-assisted taint analysis has also been proposed [60,

19]. Unfortunately, such hardware does not yet exist, though we can take advantage

of any developments in this area.

9 Conclusion

We presented a self-healing architecture for software systems where programs (1)

self-monitor and detect exploits, (2) self-diagnose the root cause of the vulnerability,

(3) self-harden against future attacks, and (4) self-recover from attacks. We develop

the first architecture, called Sting, that realizes this four step self-healing architecture

for commodity software. Moreover, our approach allows a community to share an-

tibodies through Self-Verifiable Antibody Alerts, which eliminate the need for trust

among nodes. We validate our design through (1) experiments which shows our sys-

tem can react quickly and efficiently and (2) deployment models which show Sting

can defend against hit-list worms. To the best of our knowledge, we are the first

to design and develop a complete architecture capable of defending against hit-list

worms.

We are one of the first to realize a self-healing architecture that protects software

with light-weight techniques, and enables more sophisticated techniques to perform

accurate post-analysis. We are also the first to provide semantically correct recovery

of a process after an attack without access to its source code, and our experiments

demonstrate that our self-recovery can be orders of magnitude faster than program

restart which significantly reduces the down time of critical services under continu-

ous attacks.

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 21

References

1. Dynamorio. http://www.cag.lcs.mit.edu/dynamorio/.

2. K2, admmutate. http://www.ktwo.ca/c/ADMmutate-0.8.4.tar.gz.

3. PaX. http://pax.grsecurity.net/.

4. K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. Keromytis.

Detecting targeted attacks using shadow honeypots. In Proceedings in USENIX Security

Symposium, 2005.

5. Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus: Tools for runtime

buffer overflow protection. In USENIX Security Symposium, August 2004.

6. Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time defense against

stack smashing attacks. In USENIX Annual Technical Conference 2000, 2000.

7. Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: An efficient

approach to combat a broad range of memory error exploits. In Proceedings of 12th

USENIX Security Symposium, 2003.

8. Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for comprehen-

sive protection from memory error exploits. In Proceedings of the 14th USENIX Security

Symposium, 2005.

9. David Brumley, Li-Hao Liu, Pongsin Poosank, and Dawn Song. Design space and anal-

ysis of worm defense systems. In Proc of the 2006 ACM Symposium on Information,

Computer, and Communication Security (ASIACCS), 2006. CMU TR CMU-CS-05-156.

10. David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards

automatic generation of vulnerability-based signatures. 2006.

11. Cesar Cerrudo. Story of a dumb patch. http://argeniss.com/research/

MSBugPaper.pdf, 2005.

12. CERT/CC. CERT/CC statistics 1988-2005. http://www.cert.org/stats/

cert stats.html.

13. Monica Chew and Dawn Song. Mitigating buffer overflows by operating system random-

ization. Technical report, Carnegie Mellon University, 2002.

14. Manuel Cost, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao

Zhang, and Paul Barham. Vigilante: End-to-end containment of internet worms. In 20
th

ACM Symposium on Operating System Principles (SOSP 2005), 2005.

15. Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao

Zhang, and Paul Barham. Vigilante: End-to-end containment of internet worms. In Pro-

ceedings of the twentieth ACM symposium on Operating systems principles (SOSP), Oc-

tober 2005.

16. Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah-Hartman. FormatGuard:

automatic protection from printf format string vulnerabilities. In Proceedings of the 10th

USENIX Security Symposium, August 2001.

17. Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointGuard: Protecting

pointers from buffer overflow vulnerabilities. In 12th USENIX Security Symposium, 2003.

18. Crispin Cowan, Calton Pu, Dave Maier, Jonathon Walpole, Peat Bakke, Steve Beattie,

Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. StackGuard: automatic

adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the 7th

USENIX Security Symposium, January 1998.

19. Jedidiah R. Crandall and Fred Chong. Minos: Architectural support for software security

through control data integrity. In International Symposium on Microarchitecture, Decem-

ber 2004.

22 David Brumley, James Newsome, and Dawn Song

20. T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Von Underduk. Polymorphic shell-

code engine using spectrum analysis. http://www.phrack.org/show.php?p=

61&a=9.

21. George Dunlap, Samuel King, Sukru Cinar, Murtaza Basrai, and Peter Chen. Revirt:

Enabling intrusion analysis through virtual-machine logging and replay. In Proceedings

of the 2002 Symposium on Operating System Design and Implementation (OSDI), 2002.

22. Daniel C. DuVarney, R. Sekar, and Yow-Jian Lin. Benign software mutations: A novel

approach to protect against large-scale network attacks. Center for Cybersecurity White

Paper, October 2002.

23. Stephanie Forrest, Anil Somayaji, and David H. Ackley. Building diverse computer sys-

tems. In Proceedings of 6th workshop on Hot Topics in Operating Systems, 1997.

24. John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to automata theory,

langauges, and computation. Addison-Wesley, 2001.

25. D. Jackson and E.J. Rollins. Chopping: A generalization of slicing. In Proc. of the Second

ACM SIGSOFT Symposium on the Foundations of Software Engineering, 1994.

26. Richard Jones and Paul Kelly. Backwards-compatible bounds checking for arrays and

pointers in C programs. In Proceedings of the Third International Workshop on Auto-

mated Debugging, 1995.

27. Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M. Chen. Detecting past

and present intrusions through vulnerability-specific predicates. In Proceedings of the

2005 Symposium on Operating Systems Principles (SOSP), 2005.

28. Hyang-Ah Kim and Brad Karp. Autograph: toward automated, distributed worm signa-

ture detection. In Proceedings of the 13th USENIX Security Symposium, August 2004.

29. Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via

program shepherding. In Proceedings of the 11th USENIX Security Symposium, August

2002.

30. Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion detection signa-

tures using honeypots. In Proceedings of the Second Workshop on Hot Topics in Networks

(HotNets-II), November 2003.

31. Robert Lemos. Counting the cost of the slammer worm. http://news.com.com/

2100-1001-982955.html, 2003.

32. Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatures: A basis

for building self-protecting servers. In Proc. of the 12th ACM Conference on Computer

and Communications Security (CCS), 2005.

33. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and

Nicholas Weaver. Inside the slammer worm. In IEEE Security and Privacy, volume 1,

2003.

34. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and

Nicholas Weaver. Inside the slammer worm. In IEEE Security and Privacy, volume 1,

2003.

35. David Moore, Colleen Shannon, Geoffrey Voelker, and Stefan Savage. Internet quaran-

tine: Requirements for containing self-propagating code. In 2003 IEEE Infocom Confer-

ence, 2003.

36. Carey Nachanberg. Computer virus-antivirus coevolution. Communications of The ACM,

1997.

37. George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe retrofitting of

legacy code. In Proceedings of the Symposium on Principles of Programming Languages,

2002.

Sting: An End-to-End Self-Healing System for Defending against Internet Worms 23

38. Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking entire programs without

recompiling. In Proceedings of the Second Workshop on Semantics, Program Analy-

sis, and Computing Environments for Memory Management (SPACE 2004), Venice, Italy,

January 2004. (Proceedings not formally published.).

39. Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework. In

Proceedings of the Third Workshop on Runtime Verification (RV’03), Boulder, Colorado,

USA, July 2003.

40. James Newsome, David Brumley, and Dawn Song. Vulnerability-specific execution fil-

tering for exploit prevention on commodity software. In Proceedings of the 13
th Annual

Network and Distributed System Security Symposium (NDSS), 2006.

41. James Newsome, David Brumley, Dawn Song, and Mark R. Pariente. Sting: An end-to-

end self-healing system for defending against zero-day worm attacks on commodity soft-

ware. Technical Report CMU-CS-05-191, Carnegie Mellon University, February 2006.

42. James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating sig-

natures for polymorphic worms. In Proceedings of the IEEE Symposium on Security and

Privacy, May 2005.

43. James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature learning

by training maliciously. Technical Report CMU-CS-05-149, Carnegie Mellon University,

February 2006.

44. James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, anal-

ysis, and signature generation of exploits on commodity software. In Proceedings of

the 12th Annual Network and Distributed System Security Symposium (NDSS), February

2005.

45. James Newsome and Dawn Song. Dynamic taint analysis for automatic detection, analy-

sis, and signature generation of exploits on commodity software. Technical Report CMU-

CS-04-140, Carnegie Mellon University, May 2005.

46. Feng Qin, Joe Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: Treating bugs

as allergies—a safe method to survive software failures. In 20
th ACM Symposium on

Operating System Principles (SOSP).

47. r code. ATPhttpd exploit. http://www.cotse.com/mailing-lists/todays/att-0003/01-

atphttp0x06.c.

48. T. Reps and G. Rosay. Precise interprocedural chopping. In Proc. of the Third ACM

SIGSOFT Symposium on the Foundations of Software Engineering, 1995.

49. Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel Roy, Tudor Leu, and

William Beebee Jr. Enhancing server availability and security through failure-oblivious

computing. In Operating System Design & Implementation (OSDI), 2004.

50. Tim J Robbins. libformat. http://www.securityfocus.com/tools/1818,

2001.

51. Olatunji Ruwase and Monica Lam. A practical dynamic buffer overflow detector. In

Proceedings of the 11th Annual Network and Distributed System Security Symposium,

February 2004.

52. Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan

Boneh. On the effectiveness of address-space randomization. In Proceedings of the 11th

ACM Conference on Computer and Communications Security, October 2004.

53. Stelios Sidiroglou and Angelos D. Keromytis. A network worm vaccine architecture. In

Proceedings of the IEEE International Workshops on Enabling Technologies: Infrastruc-

ture for Collaborative Enterprises (WETICE), Workshop on Enterprise Security, pages

220–225, June 2003.

54. Stelios Sidiroglou and Angelos D. Keromytis. Countering network worms through auto-

matic patch generation. IEEE Security and Privacy, 2005.

24 David Brumley, James Newsome, and Dawn Song

55. Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D. Keromytis.

Building a reactive immune system for software services. In USENIX Annual Technical

Conference, 2005.

56. Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm

fingerprinting. In Proceedings of the 6th ACM/USENIX Symposium on Operating System

Design and Implementation (OSDI), December 2004.

57. Alexey Smirnov and Tzi cker Chiueh. DIRA: Automatic detection, identification, and

repair of control-hijacking attacks. In Proceedings of the 12
th annual Network and Dis-

tributed System Security Symposium (NDSS), 2005.

58. Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and Yuanyuan

Zhou. Flashback: A lightweight extension for rollback and deterministic replay for soft-

ware debugging. In Proceedings of the 2004 USENIX Technical Conference, 2004.

59. Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the Internet in your

spare time. In 11th USENIX Security Symposium, 2002.

60. G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Secure program execution via dy-

namic information flow tracking. In Proceedings of ASPLOS, 2004.

61. Peter Szor. Hunting for metamorphic. In Proceedings of the Virus Bulletin Conference,

2001.

62. Jamie Twycross and Matthew M. Williamson. Implementing and testing a virus throttle.

In Proceedings of 12th USENIX Security Symposium, August 2003.

63. US-CERT. Vulnerability note vu#196945 - isc bind 8 contains buffer overflow in

transaction signature (tsig) handling code. http://www.kb.cert.org/vuls/id/

196945.

64. Helen J Wang, Chuanxiong Guo, Daniel Simon, and Alf Zugenmaier. Shield:

Vulnerability-driven network filters for preventing known vulnerability exploits. In ACM

SIGCOMM, August 2004.

65. Matthew M. Williamson. Throttling viruses: Restricting propagation to defeat malicious

mobile code. In Proceedings of the 18th Annual Computer Security Applications Conf

erence, 2002.

66. Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent runtime randomiza-

tion for security. Technical report, Center for Reliable and Higher Performance Comput-

ing, University of Illinois at Urbana-Champaign, May 2003.

67. Jun Xu, Peng Ning, Chongkyung Kil, Yan Zhai, and Chris Bookholt. Automatic diagnosis

and response to memory corruption vulnerabilities, 2005.

