Sting: An End-to-End Self-healing System for Defending agast Zero-day
Worm Attacks on Commodity Software

James Newsome, David Brumley, Dawn Song, Mark R. Pariente

Carnegie Mellon University
Abstract

Complex computer systems are plagued with bugs and vulitidesh Worms such as SQL Slammer and
hit-list worms exploit vulnerabilities in computer progna and can compromise millions of vulnerable hosts
within minutes or even seconds, bringing down vulnerabhitéicat services.

In this paper, we propose an end-to-end self-healing apprmachieve the following goal: for a large
class of vulnerabilities and attacks, we can protect a |&naygtion of critical services and enable them to
be highly available even in the case of a zero-day hit-listrwoMoreover, our techniques do not require
access to source code and thus work on COTS software. Wevadhie goal by designing an end-to-end
self-healing approach: (1) programs use light-weight némqlnes to efficiently self-monitor the execution
behavior and reliably detect a large class of errors ando#@zpl(2) we use sophisticated techniques to
self-diagnose the root cause of detected errors and exp{8)tprograms self-harden to be resilient against
further attacks on the same vulnerability, and (4) safely efficiently self-recover to a safe state. Self-
hardening does not result in false positives of legitimedéfit, and adds little performance overhead.

Moreover, our approach allows a community of nodes to effttjeshare Self-Verifiable Antibody Alerts
(SVAAS), which are produced by the self-diagnosis enginedés can verify that SVAAs fix real vulner-
abilities without trusting the SVAA senders, and self-terdjuickly and efficiently based upon SVAAs.
By employing a new approach of combining proactive protectind reactive anti-body defense, we show
for the first time that it is possible to protect vulnerablegnams and enable critical services to remain
undisrupted even under extremely fast worm attacks sucli-fstiworms.

1 Introduction

We increasingly rely on highly available systems in all areé society, from the economy, to military,
to the government. For example, some estimates put the Eastwmtime for businesses at six million
dollars lost per hour downdp]. Unfortunately, much software, including critical apgations, contains
vulnerabilities unknown at the time of deployment, with noegroverwrite vulnerabilities (such as buffer
overflow and format string vulnerabilities) accounting feore than 60% of total vulnerabilitied§]. These
vulnerabilities, when exploited, can cause devastatiferts, such as self-propagating worm attacks which
can compromise all vulnerable hosts within a matter of n@swir even second34, 53], and cause millions

or even billions of dollars of damag8&Z]. Therefore, we need to develop effective mechanisms tblena
critical applications and services to remain highly aldéaand effective even under malicious attacks on
previously unknown vulnerabilities, such as a fast Intestale worm attacks.

Open Issues.Despite great research efforts done in the area of deferadjampst large scale worm attacks,
several central challenges remain unaddressed to sustgiratailability of vulnerable critical services
during a worm outbreak: (1) Can we protect a large fractiowuwherable critical services against fast
zero-day worm attacks and enable them to be highly availai@e through continuous attacks? (2) Once
a state-ful critical application is compromised, can wechlyi recover it to a safe and consistent state to
enable it to continue providing services and minimize doinme® (3) To effectively defend against fast
large scale worm attacks, light-weight detectors such dsead randomizatiord[9, 10, 16, 23, 25, 59

and heavy-weight diagnosis engines such as dynamic taatysas [L7, 40, 20, 55 have been proposed.
Can we seamlessly combine the two methods to obtain the befididth in a secure and safe way? (4)
Reactive anti-body defense such as Vigilaritg has been proposed where upon detection of an attack, an
alert will be generated and quickly disseminated to protatierable hosts from the attack. However, will
this approach be fast enough to beat fast worms? Hit-listngaran propagate through the entire Internet
within seconds. Can we devise an effective defense stratgainst such fast devastating attacks?

System Overview and Contributions.In this paper, by carefully uniting a suite of techniques pnapose a
new end-to-end self-healing architecture, calitithg as a first step towards addressing the above questions.

At a high level, the Sting self-healing architecture enalpeograms to efficiently and automatically
(1) self-monitor their own execution behavior to detectrgdaclass of errors and exploit attacks, (2) self-
diagnose the root cause of an error or exploit attack, (3hsetlen to be resilient against further attacks,
and (4) quickly self-recover to a safe state after a stateiption.

Our Sting self-healing architecture achieves the follgvmoperties: Our techniques are accurate, ap-
ply to a large class of vulnerabilities and attacks, and lenalitical applications and services to continue
providing high-quality services even under new attacks r@vipusly unknown vulnerabilities. Moreover,
our techniques work on black-box applications and commyastiftware since we do not require access
to source code. Furthermore, such a system integratiowslls to achieve a set of salient new features
that were not possible in previous systems: (1) By integgatiheckpointing and system call logging with
diagnosis-directed replay, we can quickly recover a comjsed program to a safe and consistent state for
a large class of applications. In fact, our self-recovencpdure does not require program restart for a large
class of applications, and our experiments demonstrateotiraself-recovery can be orders of magnitude
faster than program restart (Sectigh (2) By integrating faithful and zero side-effect systesplay with
in-depth diagnosis, we can seamlessly combine light-welgtectors and heavy-weight diagnosis to obtain
the benefit of both: the system is efficient due to the low ozadhof the light-weight detectors; and the
system is able to faithfully replay the attack with no sidieetffor in-depth diagnosis once the light-weight
detectors have detected an attack, which are importanegrep lacking in previous workl[s, 6] (A de-
tailed comparison with related work such as Vigilante islat@ in Section’7). Such seamless integration
is also particularly important foretro-active random samplingvhere randomly selected requests can be
later examined by in-depth diagnosis without the attackéndable to tell which request has been sampled
(Section2.2). This is a property that previous approaches sucléleddg not guarantee.

Moreover, our self-healing approach does not only allowramater program to self-heal, but also allow
community of nodes that run the same program to share tHeinealing results quickly and effectively. In
particular, once a node self-heals, it can create a Selfidale Antibody Alerts containing aantibodythat
other nodes can use to self-harden before being attackedlariitbody is a response generated in reaction
to a new exploit and can be used to prevent future exploite@iinderlying vulnerability. Moreover, the
disseminated alerts containing the antibody seH-verifiable so recipients of alerts need not trust each
other. We call this type of defenseactive anti-body defenssimilar to Vigilante [L7].

We have designed and implemented the whole system. Ouragieadildemonstrates that our system has
extremely fast response time to an attack: it takes undeseoend to diagnose, recover from, and harden
against a new attack. And it takes about one second to gerardtverify a Self-Verifiable Antibody Alerts.
Furthermore, our evaluation demonstrates that with reddpriow deployment ratio of nodes creating an-
tibodies (Sting producers), our approach will protect naighe vulnerable nodes which can receive and
deploy antibodies (Sting consumers) from very fast wormackt such as the Slammer worm attack.

Finally, despite earlier work showing that proactive potittn mechanisms such as address random-
ization are not effective as defense mechanisfi}, we show that reactive anti-body defense alone (as
proposed in17]) is insufficient to defend against extremely fast wormghsas hit-list worms. By combin-
ing proactive protection and reactive anti-body defensedemonstrate for the first time that it is possible
to defend against even hit-list worms. We demonstrate thitei Sting consumers also deploy address

space randomization techniques, then our system will atsablte to protect most of the Sting consumers
from extremely fast worm attacks such as hit-list worms. fi®lhest of our knowledge, we are the first to
demonstrate a practical end-to-end approach which candefgainst hit-list worms.

Despite the fact that several components in this Sting &rctuire have been proposetD] 38|, it takes
great care to design and build an end-to-end system to dératmthe feasibility of enabling stateful critical
services to be protected and highly available even durirg@day hit-list worm attack. This is precisely the
contribution of this paper: by carefully uniting a suite e€hniques, we design and build the first end-to-end
system that has reasonable performance overhead, yetsmondeto worm attacks quickly and accurately,
and enable safe self-recovery faster than program re3taet system also achieves properties not possible
in previous work as described above. Furthermore, by pingashybrid defense strategy, a combination
of reactive anti-body defense and proactive protectionshkasv for the first time that it is possible to defend
against hit-list worms. We hope such a holistic systemeling approach will encourage more end-to-end
systems to be built and evaluated to provide realistic nteasagainst large scale attacks.

2 Self-Healing Architecture: Requirements and Design

In this section we first provide an overview of our self-

healing architecture and discuss the properties and chal- @ewwﬂraﬂiv
lenges of our self-healing approach. We then describe o
design of each component in our self-healing architectur Fitered input

$ exploit detected
iBenlgn

epoch 1 pre-expl !
epoch -1 Self !
______ Diagnose .

VSEF Filter ||

2.1 Architecture Overview

ical applications and services to continue providing high}

quality service even under these malicious attacks, we pro- [, F—

pose a new self-healing approach to enable a computer pro- — [] v

gram to efficiently and automatically (Belf-monitorits | .33 engaehteenee

own execution behavior and detect errors or intrusions, (2

self-diagnosehe root cause of the error/intrusion, @If- Figure 1: The Sting Self-healing Architecture

hardento be resilient against further attacks, and $4)f-
recoverto a safe state. Our overall self-healing architecture
is given in Figurel.
There are many requirements and challenges to make thisagippractical and effective:

e High efficiency: There should be little overhead on normalgpam execution. For example, the
self-monitoring step should have low performance overhead

e High accuracy and coverage: The system should be effegaiast many different classes of exploits
and vulnerabilities.

e Work for black-box applications and COTS software: the vehapproach should not require access
to source code, or require specific configurations or settiramnges beyond what is normally required
by the program.

e Fast and effective response: the whole approach needspone:$o a new attack extremely fast and
effectively, so that the critical applications and sersican remain undisrupted under attacks.

e Safe: in particular the approach should not change the g@wani the program which can lead to
further attacks and unexpected program behavior. For eeaitiye self-hardening and self-recovery
step should not change the semantics of the program.

The Sting self-healing architecture is the first to meetalabove requirements simultaneously, meeting
the challenge of a holistic self-healing architecture.

2.2 Self-monitoring

Problem and Challenges.The self-monitoring engine needs to be able to detect newlattto trigger de-
tailed diagnosis, and record sufficient information to éaglst-attack diagnoses. Thus, our self-monitoring
engine has two components: a light-weight detection enginieh detects attacks and errors, and a self-
logging engine which logs relevant information about pamgrexecution for post-attack diagnosis and re-
covery. There are several challenges for self-monitor{aydetect attacks with minimal impact on perfor-
mance, (b) detection should have high coverage, and (c)esffig log information needed for post-attack
diagnosis and recovery.

2.2.1 Checkpointing and Logging

The self-logging engine performs periodic process cheickipg and continuous system-call logging. The
logs will be used in the self-diagnosis step to determicedliy replay an attack to determine the root cause
of an attack and in the self-recovery step to restore theranogo a safe state.

The self-logging engine performs process checkpointingasyng a copy of the active memory image.
A checkpoint acts like a shadow process, replicating theptetm process state of the process at the time
of checkpoint. The memory image includes the process’salithemory, register values, open file handles,
signal table, etc. The checkpoint is created periodicathee depending on the time elapsed or the number
of sessions elapsed. In order to save space and time, eastpolr is copy-on-write (COW) to minimize
the amount of copying between tifé andi — 1** checkpoint, as well as between the latest checkpoint and
the active process. A checkpoint will be used to rollbackpfagram into a previous process state during
self-diagnosis and recovery phases.

The system-call log records the system-call number, argtsnand return values. The system-call log
is used during diagnosis and recovery phases to replayaatiens with the operating system, i.e., during
diagnosis and recovery when a system call is executed wayrépt logged return value instead of actually
executing the real system call a second time. The systenogadinables us to replay the sequence of steps
in a past execution faithfully and also without introduciagy side-effects (e.g., a packet will not be sent
out twice).

2.2.2 Light-weight exploit detection

Light-weight detector vs. heavy-weight detector,The light-weight detection engine detects different
classes of exploit attacks and needs to be very efficient@mztibn without access to source code. Differ-
ent methods have been proposed to detect software explmkatwithout access to source code. They fall
into two main categories: light-weight detectors such asesk space randomization and system-call based
anomaly detection, and heavy-weight detectors such agmygrtaint analysis 17, 40, 20, 55]. The light-
weight detectors are efficient and often only adds a few p¢age of performance overhead at the most,
although they may miss certain attacks and do not providglddtinformation about the vulnerability and
the attack. The heavy-weight detectors, on the other haa@daurate and have high coverage and provide
detailed information about the vulnerability and the dfdwwever, they can have significant performance
overhead if used to check the entire program execud6h [Thus, it would be largely beneficial to be able
to combine light-weight detectors and heavy-weight detsdn a systematic manner and obtain the benefits
of both.

As we will describe in more detail in secti@3, we devise a novel method that allows us to benefit both
from the efficiency of light-weight detectors and from thewacy, coverage, and detailed analysis offered

4

by heavy-weight detectors. In our approach, we use only-ligdight detectors in the light-weight detection
engine so the performance overhead is low; the heavy-weliggictors are only used in the self-diagnosis
engine to perform post-mortem analysis. In addition to gidight-weight detectors to detect attacks, the
light-weight engine also randomly samples sessions todmndised by the diagnosis engine. This random
sampling guarantees the worst case probability that ackattdl be detected even if an attack detectable by
the heavy-weight detectors is missed by the light-weigkeaters.

Address Space Randomization as a Light-weight DetectorAs a concrete example, we use program
address space randomization as a light-weight detectouritight-weight detection engine (and we can
easily plug in other light-weight detectors such as systathbased anomaly detection). Because most ex-
ploit attacks require specific knowledge of the internatiestd a program to succeed, address-randomization
techniques can prevent an attacker from knowing the intestade of a program beforehand by random-
izing certain internal states of each process. Variousemddspace randomization techniques have been
proposed to efficiently randomize process internal stafdsowut access to program source code, including
randomizing run-time memory layou4,[9, 10, 16, 23, 25, 59] and global library entry pointsljg]. Many

of these techniques are already widely deployed in the Lommmunity such as in the Fedora Core Linux
distribution.

In address-space randomization, if the number of pos#isilavailable for randomization jsthen each
attack attempt succeeds with a probability!. For example, Shacham et. al. show that the current address
randomization implementations in Linux give$’ different randomization possibilities for a process, so
each attack attempt will succeed with a probability adbuf = 0.000015% [46].

When an attack attempt fails due to address randomizatamigues, it usually causes a crash of the
program such as a segmentation fault because it corrupfsrdicess’s internal state. Upon detecting the
error/crash, the light-weight detection engine will tregghe self-diagnosis step.

Retro-active Random Sampling. Address-randomization techniques in practice defendnagai wide-
range of attacks. However, certain types of attacks suatf@asiation leakage attacks require heavy-weight
detectors to detect. To handle these attacks, we propodemaeselection as another light-weight detection
technique. Sessions are sampled randomly with a certabapility. Selected sessions are then served as
normal, however, they are then analyzed in the diagnosimerig the background: they aretro-actively
“replayed” using the checkpoint and system call log undeeavi-weight detector which can then detect
whether there has been a real attack (details of diagnasdemscribed in the next section).

There are two important benefits to retro-active random sagip(1l) we can employ heavy-weight
detectors without affecting the performance of legitinraguests since detection is done in the background
on a small fraction of the sessions, and (2) attackers catetermine when heavy-weight detection is
under way. The last point is subtle: if Sting randomly seldclive network sessions to monitor under
heavy-weight detectors, then an attacker may be able tejudigther its session has been selected to be
monitored under heavy-weight detection by observing teparse time. If the attacker can detect when its
session is selected to be monitored under heavy-weighttdese he may then choose not to send the attack,
and retry the attack later with the expectation of not beimgsen by random sampling again. This evasion
attack shows that heavy-weight detectors cannot simplgaisgling to reduce their performance overhead,
and retro-active sampling is necessary to prevent the@vasiack.

2.3 Self-diagnosis

Problem and ChallengesThe self-diagnosis engine performs in-depth analysis terdene the root cause

of an attack and to provide detailed information and geeeaatibodies. The antibodies and information
provided by the self-diagnosis engine can then be usedftbalen the program to prevent future instances
of the attack from succeeding. The self-diagnosis mechaniseds to satisfy several requirements: (1)
able to perform post-mortem analysis since the self-diaigngtep is triggered after the attack; (2) accurate

detection and able to handle a wide range of vulnerabilags#s and exploits; (3) no need to access to source
code so it works with commodity software; (4) providing dieté information about the vulnerability and
the attack: in particular, it should be able to identify whariginal session has caused the attack and provide
sufficient information to enable automatic responses tertbfigainst further attacks; (5) sufficiently fast:
the self-diagnosis step is not performed on high througheqtiests, so it can be less efficient than the
light-weight detectors; however, it does need to be suffitigfast to enable a fast response to new attacks.

The self-diagnosis engine performs post-mortem analysising aranalyzerto examine the program’s
previous execution via a rollback and replay approach. Mwewe build our analyzer based on previous
work on dynamic taint analysis. The new contribution in th&f-diagnosis step is that by employing
rollback-and-replay, we can faithfully reproduce the @ktaxecution (even for stateful applications) and
guarantee no side-effects on the system, and thus providfe @sd faithful environment for post-mortem
analysis.

The diagnosis procedure. Once the self-diagnosis step is triggered (e.g., when aclats detected in
self-monitoring), the self-diagnosis engine first rollkathe program state to a previous checkpoint, then
replays the program execution using the system-call rajphalgr the analyzer to perform in-depth analysis.
Note that using system-call replay ensures that no sidetsfiwill happen during replay because system-
calls are not really executed. Also, rollback and replayuess that the previous execution is faithfully
reproduced. Thus, our system achieves two important piiepefior post-mortem analysis: (1) no side-
effect; (2) faithfully reproduce the attack execution. &ldhat this rollback-and-replay method handles
faithful replay of attack execution even for stateful apations; whereas a network-trace based replay will
not ensure a faithful replay of attack execution for stdtefiplications.

If the analyzer detects the attack which has triggered thgndisis step, it means that the attack has
happened after the last checkpoint. Otherwise, it meanghbanalyzer needs information from program
execution before the last checkpoint to detect the atthelself-diagnosis engine then rollbacks the program
state to a checkpoint before the last checkpoint and repiteeyprogram execution using system-call replay
under the analyzer again. This process continues untilrthlyzer detects the attack triggered the diagnosis
step.

After detecting the attack during replay, the analyzer grens detailed analysis, generates antibodies
which will be used in the self-hardening step, and identiffes original inputs and session which have
caused the attack (this information will be used in the sstbvery step). Note that with this approach, the
more expensive operation — diagnosis — is only performechvelineattack has happened (or when sessions
are sampled which is a small percentage of total traffic), thng the performance on normal program
execution is mostly unaffected.

The analyzer. The analyzer needs to be able to detect and analyze a wide orgploit attacks accurately
and without access to source code. As a concrete examplenpleyedynamic taint analysis in the analyzer.
Dynamic taint analysis has been recently proposed to nrgmit@ram execution and detect software exploit
attacks R0, 40, 55, 17]. Itis based on the observation that in order for an attattkehange the execution of
a program illegitimately, he must perform some fornowgérwrite attack That is, he needs to illegitimately
overwrite a security-sensitive value using values derifrech his own input. For example, values such
as return addresses and function pointers should usuakyglied by the code itself, not from external
untrusted inputs. However, an attacker may attempt to édlprogram by overwriting these values with
his own data.

Dynamic taint analysis has been implemented as a tool cabétCheck, and shown to accurately
detect a wide range of exploit attacks including buffer aweyformat string, and double free attackg)][
TaintCheck performs dynamic taint analysis on binary paatg by using program emulation, so it can detect
exploit attacks without the access to program source cdidsyiag it to be used on commodity software,
and without any recompilation. TaintCheck has been impigatefor Linux using the Valgrind run-time
monitoring tool B7], and for Windows using the DynamoRIO run-time monitoriogIt[1].

TaintCheck keeps track of what data is read from untrustacces by intercepting system calls, such as
r ead, and tracking what memaory locations they write to. Taint€inen keeps track of what data becomes
tainted by this untrusted data by insertiimgtrumentationinstructions to propagate the taint attribute after
certain instructions. For example, for data movementiesions (LOAD, STORE, MOVEetc) and data
arithmetic instructions (ADD, SUB, XORetc), the result will be tainted if and only if any operand is
tainted. TaintCheck also inserts extra instrumentatidiorkeevery point where data is used in a sensitive
way to check whether the data is not tainted. For examplégitks that addresses used as return addresses
and function pointers are not tainted before using thent.idftainted, TaintCheck signals that an attack has
taken place. For more details, please <& [

Diagnosis outputOnce the analyzer detects the attack, it performs bachtyagnalysis which traverses
the chain of operations which operated on tainted data bacsystarting from the detection point. By
performing this backtracing analysis, the analyzer idiegtithe list of instructions that operated on tainted
data which propagated until the detection point. From tifisrimation, the analyzer generate¥ SEFfilter
which includes: (1) the list of instruction addresses thuatticbuted to the taint propagation to the detection
point, and (2) the instruction address that detected thasaisf tainted data and thus detected the attack.
We describe in sectio.4 more details about VSEF and how the VSEF filter will be usedenegate a
hardened binary in the self-hardening step.

From the backtracing analysis, the analyzer also identifigigh original input in which session has
caused the attack. This information will then be used in #ikrecovery step which restores the program
into a safe state. More details are described in se&ifn

Finally, the self-diagnosis phase outputs a SVAA,
which includes the VSEF filter, the original exploif name: ATPHittpd 0.4b
message trace, and information about the program eXime: 2005-10-17 23:59:59 PST
ploited such as the name and version of the vulnerable, ser: 0x80b34a 0x80b40b ... 0x80cdcd
program. An example SVAA alert is shown in Fig-
ure2.

Exploit: GET /aaaaa......

Figure 2: Example SVAA for ATPhttpd
2.4 Self-harden

Problem and ChallengesThe self-diagnosis step generates an SVAA which contam¥ 8EF filter along
with the exploit message trace. In this section we descrilmehosts self-harden based upon self-generated
SVAA (where only the VSEF portion is used). In the next settiwe discuss verification of remotely
generated SVAA's. The self-hardening mechanism needdgisfysaeveral properties: (1) does not change
normal program execution behavior; (2) protects the program further attacks on the same vulnerability
as analyzed in the self-diagnosis step; (3) low performaweehead.

The self-hardening engine employs two methods to hardeprtbgram against further attacks on the
same vulnerability: (1) it instruments the program to gateea hardened binary which can detect further
attacks; (2) it generates input-based filters which can e ts match the inputs before they are passed
into the program to see whether the inputs are malicious,naalitious inputs will then be dropped. It
is in general extremely difficult to generate accurate irfipaged filters, (although partially-accurate input-
based filters which has zero false positives can be used msizgtions for the self-hardening problem by
filtering out part of the malicious inputs), and much easieddvise accurate hardened binary to effectively
defend against further attacks. Thus, due to space limitstiwe will focus on the approach of generating
a hardened binary as our self-hardening mechanism, incpkatj a method callegtulnerability-specific
execution-based filterin/SEF) [38]. Note that we include a brief overview of the self-hardegpshere
merely for completeness. Please referd| fand [24] for detalils.

VSEF We use a method calledulnerability-specific execution-based filteri(gSEF) to generate a hard-
ened binary by instrumenting the original vulnerable bhinasing information from the VSEF filter in the

SVAA. In particular, the hardened binary can be viewed atiggnal binary with a light-weight dynamic
taint analysis—instead of the full dynamic taint analystseve the entire program is instrumented to prop-
agate the taint attribute and detect misuse of tainted dagaybserve that only a few relevant instructions
need to be instrumented to detect attacks against a speadifierability.

The self-diagnosis step already identified the list of ingion addresses that need to be instrumented
for dynamic taint analysis: (1) the list of instruction aéslses that contributed to the taint propagation to the
detection point, and (2) the instruction address that titiethe misuse of tainted data and thus detected the
attack. These are the instructions that need to be insti@uidar dynamic taint analysis to detect similar
exploit attacks later.

We use a binary instrumentation engine to add instrumemntaiinstruction addresses that appear in the
VSEF filter. In particular, we add instrumentation to eac$trinction whose address appears in the VSEF
filter to propagate taint information, and inserts the appede safety check at the detection point given in
the VSEF filter (the instruction address that detected trsusei of tainted data). The result of this binary
instrumentation is a hardened binary.

VSEF-hardened binaries are able to reliably detect attagkinst the same vulnerability, even when
they have been modified by a polymorphic or metamorphic engitney do not have false positives other
than any that would also be present in full dynamic taint ysia) which is generally very few4p]. The
performance overhead of a VSEF-hardened binary is quitdl,dmegause only a few instructions need to
be instrumented. Additionally, VSEF filters can easily benbned to create hardened binaries that are
resilient to attacks against each of the correspondingevabilities. For a more detailed discussion of
VSEF’s properties, see Appendix

Input-based filters Input-based filters are commonly employed to filter out kn@xploits or suspicious
packets at the network edgg(] 50, 31, 40, 39]. Our self-diagnosis engine identifies the execution path
leading to the exploit, and how tainted data was propagated the point of input to the point where it was
misused. This information can be analyzed to produce ibpsed filters. These input-based filters can be
used in conjunction with the hardened binary to help impneedormance. In particular, it is possible to
generate filters that are guaranteed to have no false mssitiat may have false negatives. Dropping inputs
that such a filter matches poses no risk of dropping legigmatuests, and saves Sting from having to
perform self-recovery. For more information on how to gatetinput-based filters from the self-diagnosis
engine, seeZ4].

2.5 Self-Recovery

Problem and ChallengesOnce an attack is detected, the vulnerable program maydglte&in an unsafe
state. For example, its memory may already be corrupteds, Mreineed to devise mechanisms to bring the
program back into a safe state. The most straightforwardoagp is to simply kill the process and restart.
However, this approach has several limitations. Firstaréag a program may be slow (several seconds
or longer) and thus render the service unavailable durirggtitne [57]; for servers that require significant
caching of state in main memory, it requires a long periodroétto warm up the cache for full service
capacity [L1, 5]. Micro-rebooting [L2] alleviates this problem by only rebooting the failed comeuot, but

it requires substantial modifications to legacy softwareilewve would like to have an approach that works
on black-box applications. Restarting the process alsslémloss of current state, which can range from
annoying (dropped HTTP connections) to fatal (restartethiénmiddle of modifying a file, leaving it in an
inconsistent state).

Our Approach: Diagnosis-directed Self-recoveryWe propose a new method fgelf-recovery Upon

detecting an attack, the self-diagnosis step will identifyich original session has caused the attack. As-
suming the original session that caused the attack (iemtilicious session) started in epachnd lete;

represent the checkpoint at the end of epbehl. Our self-recovery will then rollback the system state to
checkpointe; 1. This step ensures that we've restored the program to a oiwopted internal state.

Next, we need to ensure that the program’s internal statensistent with all other external state. For
example, suppose the process was handling a legitimatesegoncurrently with the malicious request. If
there was communication with the legitimate user after kpeinte; |, we need to make sure the program’s
internal state still reflects this.

Note that all changes to external state are made by the pnograking system calls. As the program
is deterministically executing from the checkpoint, it wilake the same sequence of system calls. Each
time the process makes a system call, we coejday the return value of that system call without actually
making the system call. This would cause the program to réaelsame final state. However, we do not
want to replay the system calls corresponding to the attackexjuest, since that would cause us to reach
the unsafe state again. Therefore, we must return somatlifiegent for system calls corresponding to the
attack input.

Before replaying execution from the checkpoint, we givehesestem call in the system call log one of
three labels, which will affect how we treat that system dalling replay.

e Type 1: System calls that do not modify external state. Rather, #neyused to query external state.
These includegget t i meof day, st at, andr ead from local files. During replay, if the program
makes these system calls again, we return the originalrretaiues to keep the replay as close to
deterministic as possible.

e Type 2: System calls corresponding to malicious input. Our diagnokentifies these system calls.
Examples are ead, r ecv, andr ecvf rom We change the return values of these in such a way
that the program state does not become corrupted agaire miimizing how how much the current
execution state diverges from the logged execution.

e Type 3: System calls that modify external state, but do not cornedo receiving malicious input.
Examples are system calls that communicate with legitirmaggs, such asend andr ecv, system
calls that change the state of other processes, suchasfrom fifos,f or k, ki | | , et ¢, and system
calls that modify the file system suchwsi t e, unl i nk, etc We need to get the program back into
the state of having made these calls so that, for exampleed#rdt write something to a socket that it
already wrote during the original execution. Therefore,reteirn the original return values of these
calls during recovery.

Before replay, we place a cursor in the system call log cpmeding to where checkpoirt_; was
taken. As the program is executing, each time it makes arsystdl, we match it with the next system call
of that type after the cursor that was called with the samamaters. If such a system call is found, the
corresponding action is taken as described above, and therds advanced to the matching system call in
the log. If there is no matching system call in our log, we maiybe able to guarantee consistency between
the program’s internal state and external state. In suabscage can fall back on restarting the vulnerable
program. Once all the Type 3 system calls have been repléye@drogram’s internal state is consistent with
external state. That is, execution can be safely resumémbutibreaking the program’s normal semantics.

There are two cases which can cause us to be unable to bripgoipeam back to a consistent state. The
first case is when there are dependencies between requaestsged by the program. For example, suppose
that the program keeps a counter based on the number of tegeeged, and uses that counter as a session
ID. When we remove the malicious request during replay,rttay cause the counter to not be incremented,
and hence generate a different session ID for the next imuecrequest in the log. We detect this condition,
because when the session ID is sent to that legitimate usesew that the data sent in tisand system
call does not match the data sent originally. While it may bssjble to detect and repair some scenarios
such as this one, we default to the safe action of restattiegtocess.

The second case is when the malicious request resulted rimapent effects, such as writes to a file.
That is, there were Type 3 system calls made as a result ofdlieious request. When this is the case, these

9

/ Sting Consum\r

Self-Harden

Self-Monitor

Hardened
candidate

SVAA Sandboxe Verified Refine
%sirjnauo Verlflcallo Candidate
Unverified
Self-Harden
Reject Install

Sting Producer candidate candidate

VSEF

Exploit
Msg Trace

Exploit
Msg Trace

‘ Self—Recover‘ ‘ Self—Diagnosé I:>

SVAA SVAA

Figure 3: SVAA alert distribution architecture.

system calls may not occur again during replay, since we fieodhe malicious request. In many cases this
is harmless- such as writes to a system log or a temporanyfilether cases, it is possible to roll back the
corresponding external state, such as writes to a localhfderio other process has read yet. However, it
is nontrivial to reliably recognize and correctly deal wéthich cases, and a mistake could lead to incorrect
behavior of the program, which can be catastrophic in soremas®s. We therefore again default to the
safe action of restarting the process if we are unable tayegdl the Type 3 system calls in the log.

We expect that in many scenarios, neither of these casesaulllr, and we will be able to efficiently
put the program back into a safe and consistent state, alipitvio continue execution while guaranteeing
that its normal semantics are not brokewe reliably detect when recovery is potentially unsafe: mvtre
program does not make the same Type 3 system calls durirayreyth the same parameters, in the same
order. We then default to the safe action of restarting tlgnam.

3 Reactive Anti-body Defense

Hosts that deploy the full Sting self-healing architectcae detect attacks and generate antibodies to harden
themselves, and thus be resilient against attacks. We watl BostsSting producers Some hosts may
choose not to run the full Sting self-healing architecturevibould like to benefit from the alert and antibody
generated by the Sting producers; we call these IRistg consumersSting producers and Sting consumers
collectively form a community where the alert and antiboéyngrated by a Sting producer can then be
disseminated through a Sting alert and antibody disseimmamechanism to other Sting producers and
consumers to enable them to harden before any infectiomptse We call this type of defenggeactive
Anti-body DefenseThe overall picture for the antibody dissemination amttiire is given in Figur8.

An effective antibody dissemination system needs to erfateand robust antibody delivery, and also
should not require mutual trust among the participants. drigular, recipient’s should not blindly trust
SVAA's, as attackers or incompetent participants may giteim cause the recipient to accept a false alert
and antibody which blocks legitimate traffic. For example,adtacker should not be able to convince a
recipient that a VSEF catches only exploits but when deployatches legitimate executions as well.

Requirements and ChallengesA robust and secure alert and antibody should allow a radipe

e \erify the alert corresponds to a real vulnerability.

e \erify the proposed antibody catches exploits of the vidhdity.

¢ \erify the proposed antibody does not create false positive., will not block legitimate traffic.

e The verification procedure should be fast, so it allows tlegrent to deploy the antibody before any
infection attempt.

1An exception is systems that provideal-time performance guarantees, which are outside tiesuf this work.

10

We propose Self-Verifiable Antibody Alerts (SVAA) which aeve all the above properties. We use
SVAA in the Sting alert and antibody dissemination archiiez which allows for SVAA to be rapidly
created and disseminated by SVAA creators and securelffjecely SVAA consumers.

3.1 Generating Self-Verifiable Antibody Alerts

A Self-Verifiable Antibody Alerts contains the name and i@msof the vulnerable application, a VSEF
filter, and an exploit message trace that exercises the naldiliéy, as shown in Figur@. As described in
section2.3, the SVAA is generated by a Sting producer after it detectattatk and performs the self-
diagnosis step. The generation of a SVAA is fast, taking lisless than a second, as shown in secton

3.2 \Verifying Self-Verifiable Antibody Alerts

At a high level, recipients verify new SVAA’s in a sand-boxedvironment. If the SVAA verifies, the
included VSEF filter will be accepted and also refined (if msegy) and the node will deploy the new
antibody; otherwise, the SVAA will be rejected.

The Verification Procedure. Upon receiving a new SVAA, the recipient first checks to sdeifs running
the vulnerable program. If yes, it will use the VSEF filter etSVAA to build a hardened binary as
described in the self-harden step in Secttbhd Then the recipient verifies the SVAA by replaying the
exploit against the hardened binary within a sand-box enwvirent such as a virtual machine. The sand-box
must confine any (possibly legitimate) side-effects calmethe exploit. For example, in order to reach the
exploit point a program may read and write files, update sharemory, etc. We stress that the side-effects
may not be specific to the exploit and happen regardless ofhwhéhe input is malicious or not. All the
side effects should be confined in the virtual machine.

A SVAA is verified if the hardened binary generated using the contained VSteF ¢ihtches the con-
tained exploit (as explained in secti@m), else we say the SVAA is unverifiable.

If a SVAA is verified, it means that the hardened binary geteetaan detect real exploit attacks on
a real vulnerability of the recipient. However, it does naan that the hardened binary will be the most
efficient one to defend against attacks on this vulnergbilib particular, an attacker could try to send a
really long VSEF filter containing unnecessary instructialiresses to be instrumented and thus resulting
in an extremely inefficient hardened binary as a denialeofise attack. To defend such attacks, after a
SVAA is verified, we go through eefinemenstep. After replaying the exploit against the hardenedrlina
in the sandboxed environment, we can easily see which tigiruaddresses instrumented in the hardened
binary actually have operated on tainted data. If an inStmdnstrumented in the hardened binary did not
operate on tainted data, this means that this instructidmdi need to be instrumented in order to detect
the attack, and the recipient simply removes instrumesriatin this instruction from the hardened binary.
By construction, the refined hardened binary will detectetkigloit attack and the recipient will then install
the refined hardened binary. When the node further disseesiiae SVAA, it will remove the redundant
instruction addresses from the original VSEF filter.

The whole procedure of verifying a SVAA is shown in FiguBe As shown in sectior, verifying a
SVAA is extremely fast, usually taking less than a second.

Combining SVAA Combining multiple SVAA'’s is straight-forward: each SVAAwtains a list of in-
struction addresses that can be independently combinecddition, SVAA’s are idempotent: if a site
accidentally hardens based on two SVAA's for the same valnibity, the result is the same as hardening
based upon the larger of the two anti-body’s. Finally, umlijatches, multiple progressive SVAA'’s do not
need to be received in any particular order.

Security Analysis The SVAA verification procedure is secure, i.e., an attagkémot be able to introduce
a false alert and anti-body to affect recipients’ normalgpam execution. Attackers may try and introduce

11

false alerts into the system in one of four ways (or in comiodmd: (a) introduce alerts that block legiti-
mate traffic (invalid antibodies), (b) introduce valid adethat are longer than necessary (sub-optimal), (c)
introduce invalid alerts in which the anti-body does notdethe vulnerability, or (d) the alert is completely
invalid (exploit does not work). We describe how Sting hasdtach of these cases, thus SVAA’s guarantee
the desired properties.

A false alerts that contain non-working exploit or invalitl/8A (c and d above) is detected because the
hardened binary cannot be verified with th exploit. For (a3,nete that self-hardening does not introduce
false positives — VSEF instrumentation only returns anrenioen tainted data is used in an unsafe way.
The VSEF will not change how legitimate requests are precktass described in Secti@y). Therefore,
any SVAA filter that a recipient accepts contains at the leagSEF that verifies the exploit. Finally, an
attacker may attempt to introduce a sub-optimal VSEF (b @hae., the VSEF contains more instructions
to instrument than necessary to detect the exploit. Outisalto this problem is to introduce the refinement
step as described above.

Comparison to Vigilante The high-level idea described in this section is similar tgilénte [L7] which has
proposed alert verification as a necessary component fardagsemination. There are a few differences.
Our Self-Verifiable Antibody Alerts includes the actualidmdy, where the disseminated alert in Vigilante
only contains the alert, not the actual anti-body. By canitej the anti-body, our Self-Verifiable Antibody
Alerts verification and self-harden step could be fasten thavigilante where the receiver has to generate
the anti-body.

Moreover, Vigilante alerts modify the original exploit bgsntially “pasting” the address of a verifica-
tion routine into the code in place of the attackers cdd@. [Verification involves executing the program
given the modified exploit and seeing if the verified routisealled. Vigilante, like Sting, requires that the
vulnerable program be executed in a safe environment. a¥iggls method only applies to a limited class
of simple programs because pasting in new return values mesak lthe exploit. For example, the protocol
may contain a checksum over messages that is invalidated thvbeverification routine address is pasted in.
In this case Vigilante would have to perform additional anobably application-specific actions to create
a successful exploit that can be subsequently verified. Haratases the input could be decoded before
being used, so simply pasting the verification routine asklne the input results in the jump address being
overwritten with a completely different and unusable déegaf the verification routine address, and thus
the exploit will fail to jump to the verification function angence the verification procedure will fail. In
general, finding the right value to paste in the exploit tochityump to the verification function can involve
understanding and modeling how the input may be manipulayettie program until reaching the vulner-
ability point — an extremely difficult if not impossible tagksome cases. Our verification method is more
general as it does not require any modification of the explidéick. And Vigilante could simply use our
verification method to address the aforementioned issue.

3.3 SVAA Distribution

The design of SVAA enables a recipient to verify the validilyd quality of the disseminated alert and
anti-body. However, we also need to have a fast and robuserdisation mechanism to guarantee that
a legitimate SVAA can reach the Sting participants quickigrait is created. The dissemination system
should be robust against distributed denial-of-servitacks, and also should not be used by attackers as a
mechanism to disseminate the attack. There has been a giteatevof work done in building a fast and
robust dissemination/broadcast system such as securéopeeer systemss[l, 54, 14, 43, 7, 13] which we

can employ for our purpose. In this paper, due to space limits we consider the problem of building a
fast, robust, and secure dissemination system as out o staphence we do not describe the details here.
As a proof of concept, Vigilante describes a distributioohétecture utilizing secure peer-to-peer systems
which we can simply us€lp].

12

4 Implementation

Here we describe the implementation of the self-monitgraedf-diagnosis (including SVAA generation),
self-hardening, self-recovery, and SVAA verification caments.

4.1 Self-monitoring

There are many techniques that could be used as a light-tvééglctor in Sting. As a proof of concept,
we use the stack randomization that is already built intoHR&® in our experiments. When a process is
started, the stack is placed at a random offset. This catiseksthat inject code into the stack to crash with
high probability. Automated diversity mechanisms sucth@&sdne detect many attacks and have little or no
performance overhead when processing non-attack requEstse are many more sophisticated diversity
mechanisms that could easily be uséd} 10, 16, 23, 25, 59], some of which are already included in current
Linux distributions.

We build on top of FlashBacksp] to perform checkpointing and logging. FlashBack is a taoéffi-
ciently take checkpoints of a process, roll back the statebcess to a previous checkpoint, and perform
deterministic execution replay using a system call log égeted by a modified syscalltrackd]). We cus-
tomized FlashBack to fit into the Sting system, and extenteahility to handle multiple checkpoints, and
to correctly log and replay a wider range of system calls.

4.2 Self-diagnosis

We implement the self-diagnosis engine on top of the Taiatkidynamic taint analysis tood{)], which is
described in Sectio.3. We perform self-diagnosis by rolling back to a previousakpeint, and replaying
execution from that checkpoint, while using TaintCheck tnitoring the replayed execution.

TaintCheck is currently implemented using Valgrir@V], which performs run-time binary rewriting.
Unfortunately, while there is no fundamental reason whyoiild not be implemented, Valgrind’'s current
implementation is not able to attach to a running processulrcurrent prototype, we start the monitored
software under Valgrind, but only add TaintCheck instrutagan when performing self-diagnosis. This
is implemented by invalidating Valgrind’s cache of alredanslated instruction pages (which TaintCheck
initially didn’'t add instrumentation to), and adding thepagpriate instrumentation when Valgrind asks
TaintCheck to translate them again. However, it would baigitit-forward for us to implement TaintCheck
using a tool that is able to attach to running processes, asiéHN B4] or dyninst P], allowing the moni-
tored process to run natively except when self-diagnodigiisg performed.

TaintCheck also logs how tainted data is propagated. Wheattaok is detected, the self-diagnosis
engine performs backtracing analysis from the point thated data was misused to identify which request
is malicious, and to construct the VSEF filter- the list oftinstion addresses that propagated the tainted
data from the input point to the point where it was misusede malicious request and the VSEF filter are
included in the SVAA. The backtracing analysis also idegsifivhich calls in the system call log correspond
to receiving the attack request, which is used in self-recpv

4.3 Self-hardening

Part of the output of self-diagnosis is the VSEF filieg, the list of instruction addresses that TaintCheck
needs to instrument to detect attacks against that vuliligrab

We use the VSEF filter to harden the vulnerable binary in mgmeithout needing to restart the vul-
nerable process. We use the same technique as in self-diagiwonotify TaintCheck to invalidate the

13

translations for the code pages containing the instrucaoiresses in the VSEF filter, and then add the ap-
propriate instrumentation. Again, it would be straightwiard for us to use other tools such as PB4][or
dyninst P], which would allow us to attach to a natively running pracasd harden it without restarting it.

4.4 Self-recovery

The self-recovery engine first identifies the most recentigbaint that was taken before all system calls in
the system call log that correspond to the malicious requBEsese system calls are identified in the self-
diagnosis step when dealing with a new attack, or by the hadlbinary itself once it has been hardened.
The self-recovery engine then rolls back the state of thege®to that checkpoint.

As discussed in Sectio®.5, the next step is to allow the process to execute while re@pdafyom the
system call log, so as to get the process back into a statéstbahsistent with external state. For system
calls that do not modify external state (Type 1), and systalts that modify external state other than the
attacker’s state (Type 3), we replay the return values o$yiséem calls from the system call log.

We prevent the process from becoming corrupted again byfygingithe return values of the system
calls that correspond to communication with the attackgpéT2). In the case where the attack request is a
TCP stream, we accurately replay thecept from the system call log. However, the first time that a read
or write is attempted to the corresponding file descriptar,simulate that the connection has been closed
by the attacker. For example, we return O toesad system call. We expect that in most cases the process
will handle this smoothly, and move on & cept ing the next request.

When the attack request is a UDP message, we simply skipymegléhe correspondingecvfr om
That is, when the process makes trecvf r omcall during replay, and the nexecvf r omon that socket
in the system call log originally was the attack request, wgésiad move on to theextidenticalr ecvfr om
call in the system call log, and return that data. If therereresuch identical calls later in system call log,
and there are still Type 3 system calls that need to be reghldlgen we abort replay and restart the process.
If there are no more Type 3 system calls remaining to be replawe can resume normal execution- that is,
allow ther ecvf r omto execute normally, and wait for the next incoming request.

When all Type 3 system calls have been replayed, recoveryciessful, and we resume normal exe-
cution. As we showed in Secticgh5, we canguaranteecorrectness in this case. If the program makes a
system call that cannot be replayed (that is, there are nohingt system calls after the current position in
the system call log) before all Type 3 system calls have beplayed, then we cannot reliably bring the
program’s state into consistency with external state, @mté& cannot guarantee correctness of recovery. We
then abort replay, and instead fall back on restarting tbeqss.

4.5 SVAA Verification and Refinement

A Sting participant that receives an SVAA for a vulnerablegyam that it is running verifies it in the follow-
ing way. First, it uses the VSEF filter from the SVAA to generathardened binary candidate, as described
in the self-hardening step above. It should then run thedmad binary candidate in a sandboxed environ-
ment such as an isolated virtual machine. This could be im@fted using tools such as VMwa2g] or

Xen [8].

The next step is to execute the hardened binary candidate seindboxed environment, and send it the
attack request from the SVAA. In the simple case, the origieawork stream can be sent to the hardened
binary without modification. However, for protocols thantain state about the session, the network stream
may have to be modified. For example, the server may sendithé ah identifier (such as a handle to a
resource) that the client must use later in its network sireldsing the identifier from the logged network
stream instead of the identifier that the server actuallyrnetd could cause the attack to fail. Techniques for
successfully replaying a network stream are presente2iljn [

14

50 . . T | ! |
[|—- Self-recovery (100% Checkpoint)

40- |— Self-recovery (1% Checkpoint) |
- Restart
| Component | ATPhttpd | smbd | i
Self-diagnosis 394 ms | 651 ms 2%]
Self-hardening 195ms | 410 ms £ 20k i
Self-recovery 7.04ms | 12.3ms -
SVAA verification 589 ms | 1061 ms

Figure 4: Time for Sting responsetoanew attack %% 20 ~ 60 ~ 8 100
% Attack Requests

Figure 5: ATPhttpd performance under attack

If the hardened binary candidate does not detect an attaelSVAA is rejected. In this case, either the
exploit does not work, or the VSEF filter does not include tberexct set of instruction locations that need
to be instrumented to detect the attack.

When the hardened binary candidate does detect an attatlofghe output generated is the set of
instruction locations that were actually involved in prgpng the tainted data from the point of input
to the point where it was misused, and the instruction locatvhere it was misused. This is the set of
instruction locations that is instrumented in the final lesed binary. Hence, if an attacker distributes an
SVAA with a real attack but a larger set of instruction looas to instrument than is necessary (to trick
participants into creating slow hardened binaries), théndtep will identify the correct subset of locations
that actually must be instrumented.

5 Self-healing System Evaluation

We performed several experiments to verify the functiapalf Sting and to measure its performance. Our
experiments were performed on a Pentium 4 2.20 GHz with 1 GBAW. They were performed inside of
a VMware virtual machine (version 5.0) running RedHat 9.

As described in Sectiod.2, TaintCheck is currently unable to attach to a running mecéecause
Valgrind does not support it. It would be straightforward s to implement TaintCheck on other tools
that can attach to a running process, such as such as3B]idrjd Dyninst P]. For now, we use execution
under Valgrind with no added instrumentation as the basgetmsimulate being able to attach to a running
process.

We use two vulnerable servers in our evaluation. ATPhttdd42] is a web server that is vulnerable to
a buffer overflow attack. The Samba daemon (smbd) 2.2.8 imgas Windows file and print services, and
is also vulnerable to a buffer overflow attack.

5.1 Normal performance overhead

We first measure performance of the ATPhttpd and smbd semres monitored by Sting. The performance
overhead for using address space randomization in our iexgets is negligible, so the real performance
overhead comes from the checkpointing and system callhggghich we explain below.

We first measured the time taken to perform individual checks. We found the latency of the check-
point operation to be 1.74 ms for smbd and 2.99 ms for ATPhttpd

We next measure overall performance for each server whdarpeng self-monitoring. We measure
ATPhttpd's performance by measuring the time taken to s&0@® 1K static pages. We measure smbd’s
performance by using it to mount a file system, and then maggtire transactions per second achieved by

15

the postmark benchmark on that file system (using defaulhge}. For each experiment we measure the
cost of performing system call logging and taking a cheakiponce per 100 requests.

In our experiments, self-monitoring added 42.8% overheadinbd, and 51.5% for ATPhttpd. Thus,
we show that the performance overhead of our self-mongoisnorders of magnitude lower than using
heavy-weight detectors alon&(], with the additional benefit that the information storedsjf-monitoring
allows fast and safe recovery. We expect that we can furdtkrae the performance overhead significantly:
Similar experiments show an overhead of checkpointing gatém call logging at most 10926, 52.

5.2 Performance and Availability Evaluation under attack

We next measure the performance of Sting when protectingTRdttpd and smbd servers from attacks.

Response time to a new attackigure4 shows the time taken by each Sting component when first iageiv
the new attack. When a server first receives a new attackessldandomization causes the server to crash.
The self-diagnosis engine then rolls the process back tevaqus checkpoint and replays the attack while
monitoring with TaintCheck, which identifies the attackuegt and generates the SVAA. This self-diagnosis
step takes 394 ms for ATPhttpd, and 651 ms for smbd.

In the next step, the self-hardening module adds instrustientto the vulnerable binaries to reliably
detect other attacks against the same vulnerability inuhad. This self-hardening step takes 195 ms for
ATPhttpd, and 410 ms for smbd.

Next, the self-recovery module rolls back the process affairthe same checkpoint), modifies the
system call log so that the attack does not occur again, gidysethe rest of the system calls. This self-
recovery takes 7.04 ms for ATPhttpd and 12.3 ms for smbd.

Hence, the time taken to diagnose, recover from, and hagiins a new attack is roughly one second.

In the collaborative case, we then distribute the SVAA, \utgontains the attack request and the VSEF
filter. The time to generate a hardened binary candidate arnifythat it detects the attack is 589 ms for
ATPhttpd, and 1061 ms for smbd.

Availability and performance measure under a continuous aack We next evaluate the effectiveness and
performance of a Sting-protected ATPhttpd server undemnéiragous attack, once it has already generated
the hardened binary.

We first measure the performance cost of using the hardenadybiWe found that the latency to serve
a request for a 1K static page was only 6.33% higher than Wélvtiinerable binary.

Figure5 shows ATPhttpd’s performance when receiving a mix of lagdtie requests and attack requests.
We send the server 100 requests. Some fraction of thesetack etquests, and the rest are requests for a
static 1 K file. In the baseline case, the server is hardenaimstghe attack, but does not use self-recovery.
Note that a hardened program will detect an attack on the sainerability, however, by the time of the
detection, part of the memory state may have already beeuapted (although no harm is done yet). Hence,
the server must be restarted each time it receives an ataaottescribed below, some connections fail as a
result of the server being restarted. Failed connectiomsedried until they succeed. In contrast, the Sting
hardened binary server performs self-recovery each tineeéives an attack. We performed this experiment
both with taking a checkpoint before every request, and t@iking a checkpointing every 100th request.

Figure5 shows the results for this experiment. We measure the titadets for the server to complete
100 requests in the restart case vs. the self-recovery aas#own in the y-axis. In each experiment, we
vary the fraction of the requests that are attack requestsh@awvn in the x-axis. Overall, as the fraction of
attack requests increases, the performance of the reattsignificantly worsens compared to the Sting
self-recovery case. For example, when the fraction of kttaquest approachds the restart case has 5
times performance overhead as the Sting self-recovery, shsing that the self-recovery is much more
efficient than simple restart. In addition, in our experitseeach server restart results in approximately 20
failed connection attempts, and 1 dropped connection (wthie client had established before the server

16

1 1 1
——y=5 —5—y=5
09 —6—y=10 0.9 ——y=10 0.9
—e—y=20 —8—y=20
08 —e—y=30 o8 —6—y=30 o8
—+—y=50 —*—y=50
07 M 07 v
—a—y=100 —a—y=100

2 06 £ o6 £ 06

& P4

§ 05 § 05 § 0.5

] &

04 £ 04
03 03 03
02 02 02

0.1 01 01

01 0.01 0.005 0.001 0.0001 05 01 0.01 0.001 0.0001 05 01 0.01 0.001 0.0001
Deployment Ratio Deployment Ratio Deployment Ratio

(a) Reactive Anti-body Defense against (b) Hybrid Defense against Hit- (c) Hybrid Defense against Hit-
Slammer@ = 0.1) list(8 = 1000) list(8 = 4000)

Figure 6: Effectiveness of Community Defense

crashed). In contrast, the Sting-protected server is al@fficiently perform self-recovery without allowing
any legitimate connections to fail.

Note that checkpointing after every request is somewhaeregpensive when there are few attacks.
However, it reduces the cost of self-recovery, since thexena legitimate requests that need to be replayed
after the checkpoint. This suggests that in practice antagagpproach is most efficient, where checkpoints
are taken infrequently when not receiving any attacks, aaterfrequently when the frequency of attacks
rises.

6 Reactive Anti-body Defense and Proactive Protection agast Hit-list Worms

6.1 Reactive Anti-body Defense Evaluation

In this section, we evaluate the effectiveness of our reactnti-body defense against fast worm outbreaks,
using the Slammer Worm and a hit-list worm as concrete exasngh particular, given a worm'’s contact
rate 8 (the number of vulnerable hosts an infected host contadtsirma unit of time), the effectiveness
of our reactive anti-body defense depends on two factoes:ddployment ratio of Sting producetis(the
fraction of the vulnerable hosts which are Sting producans) the response time(the time it takes from

a producer receiving an infection attempt to all the vulbkrdosts receiving the SVAA generated by the
producer). We illustrate below the total infection ratibgtfraction of vulnerable hosts infected throughout
the worm break) under our collaborative community deferseavgiven different andr. Due to space
limitations, we leave the detailed analysis to Appendlixand only briefly highlight the evaluation result
below.

Defense against Slammer wornfrigure6(a) shows the overall infection ratio vs. the producer deplayme
ratio « for a Slammer worm outbreak (whese= 0.1 [36]) with different response time. For example, the
figure indicates that givea = 0.0001 andr = 5 seconds, the overall infection ratio is only 15%; and for
o = 0.001 andr = 20 seconds, the overall infection ratio is only about 5%. Tlmalgsis shows that our
reactive anti-body defense can be very effective agaisstwarms such as Slammer. Next we investigate
the effectiveness of this defense against hit-list worms.

Defense against Hit-list wormFigure7(c) shows the result of a hit-list worm fgt = 1000 and = 4000,
andn = 100, 000%. From the figure we see that (ignoring network delay) a kttviiorm can infect the entire
vulnerable population (Sting consumers) in a fraction d@ad. This is similar to earlier estimat@8[53]
which shows that a hit-list worm can propagate through th&esimternet within a fraction of a second.

2This is basically the same parameters as the Slammer worapethat instead of a random scanning worm, the worm is a
hit-list.

17

——a=05 ——p=1000
90 ——a=09 90 —6— B =4000

(%)
(%)

infected machines (%)

0 10 20 E) 40 50) 10 20 20 40 50 0,004 0.008 0016 0.02
Time

0.012
Time (in seconds) Time (in seconds) (in seconds)

(a) Proactive Protection against Hit- (b) Proactive Protection against Hit- (c) Reactive Anti-body Defense
list(8 = 1000) list(8 = 4000) against Hit-list

Figure 7: Defense Effectiveness Evaluation

Thus, our reactive anti-body defense alone will be insfitito defend against such fast worms because
the anti-bodies will not be generated and disseminatecefasigh to protect the Sting consumers.

6.2 Proactive Protection against Hit-list Worm

Another defense strategy is a proactive one instead reacthor example, for a large class of attacks,
address space randomization can provide proactive piateeibeit a probabilistic one. The attack, with
high probability, will crash the program instead of sucé@scompromise it. This probabilistic protection
is an instant defense, which does not need to wait for thebaaly to be generated and distributed. However,
because the protection is only probabilistic, repeatedrateforce attacks may succeed. Figud(e)and
7(b) show the effectiveness of such proactive protection aghitdist worms when a certain fractiom of
the total vulnerable hosts deploy the proactive proteati@chanism, wherg = 1/2'2 (the probability of
an attack trial succeeding), apd= 1000 and = 4000 respectively. As shown in the figure, f8r= 1000,
whena = 0.5 50% of the vulnerable hosts deploy the proactive proteddieiense, it will take about 10
seconds for the worm to infect 90% of the vulnerable popohativhereas if 100% of the vulnerable hosts
deploy the proactive protection defense, it only slows ddvenworm to about 45 seconds to infect 90% of
the vulnerable population. Wheh= 4000, the worm propagates even faster as shown in Fig(e

Thus, proactive protection alone can slow down the worm ggafion to a certain extent, but is clearly
not a completely effective defense.

6.3 Hybrid Defense against Hit-list Worm: Combining Proactve Protection and Reactive
Anti-body Defense

As explained above, our reactive anti-body defense alonetifast enough to defend against hit-list worms.
Thus, we propose a hybrid defense mechanism where the Simguimers deploy proactive protection
mechanisms such as address space randomization in additeceiving SVAA using the reactive anti-body
defense. In both cases, we assume the probability that ectiori attempt succeeds against the proactive
protection mechanism (e.g., guessing the correct prognggmial state with address space randomization)
is again2—'2,

Figure 6(b) and Figure6(c) show the effectiveness of this hybrid defense approach,the overall
infection ratio vs. the producer deployment ratiowith different response time under two different Hit-
list worm outbreaks (wherg = 1000 and 3 = 4000 respectively). For example, the figures indicate that
givena = 0.0001 andr = 10 seconds, the overall infection ratio is only 5%; fér= 1000 and 40% for
(8 = 4000; and forae = 0.0001 andr = 5 seconds, the overall infection ratio is negligible (lesath%) for
both cases.

18

Our simulations show a total end-to-end time (self-dedectself-diagnosis, dissemination, and self-
hardening) of about 5 seconds will stop a hit-list worm. Nibigt our experiments (Sectid) show that
self-detection and self-hardening are almost instantaseand the total time it takes for a producer to self-
diagnose to create a SVAA and for a consumer to verify a SVAMder 2 seconds. Vigilante shows that the
dissemination of an alert could take less than 3 secahds Thus our system achieves an= 2 + 3 = 5,
demonstrating that our system is the first to effectivelyeddfagainst even hit-list worms.

7 Related

Our work is most related to a nice recent work, Vigilant&][although the works are largely done inde-
pendently. There are several important technical diffegsrbetween the two as we explained earlier in
the paper. Unlike Sting, Vigilante does not provide setfeneery, and also does not allow the seamless
combination of light-weight detectors and heavy-weightdtors and thus lose the benefits as described in
Section2.2 The two systems generate different anti-bodies and dissg¢endifferent alerts as described in
Section2.4and 3. Finally, we show that reactive anti-body defense, sintidavigilante, is not fast enough

to defend against extremely fast worms such as hit-list vgoramd propose a hybrid defense strategy of
combining reactive anti-body defense with proactive prtide and demonstrate for the first time that it is
possible to defend agasint extremely fast worms such distitorms.

Several approaches have been recently proposed to autalyagenerate input-based filters either from
syntactic properties of the inpuB(, 31, 50, 39] or from program executiondD, 38]. However, as shown
in [19], these input-based filters fail to be effective in many sa&hield is an interesting approach that uses
hand-written protocol state machines to provide more ateurost-based filter§§].

Automatically generating patches when source code isabtailwas explored iM7, 48]. Since source
code is required, their methods are not applicable to COf @dtition, the generated patches cannot be
verified.

Our diagnosis-directed self-recovery provides a diffepaint in the design space compared to previous
work. For example, Rinard et. al. has proposed an integetitie of research, failure-oblivious computing
in which invalid memory operations are discarded and manurfad values are returned4]. Instead of
rolling back execution to a known safe point, Sidiroglou kehae explored aborting the active function
when an error is detectedq]. While interesting, these approaches do not provide sémearrectness, and
is thus unsuitable for automatic deployment on criticaliees. DIRA is another approach that modifies the
source code so that overwrites of control data structuresearolled back and undon&1]. All of these
approaches require source code access, and thus do not@@f S applications.

There is a considerable body of research on rollback scheseesf1] for a more detailed discussion.
We choose to use FlashBacdk’], a kernel-level approach for transactional rollback tthe¢s not require
access to source code and deterministically replays d@recutnother approach is to use virtual machines
(VM) for rollback [22, 29]. This approach is more heavy-weight but has advantages asid is secure
against kernel attacks. We plan to explore this directiciméfuture.

We use TaintCheck4[] to perform dynamic taint analysis on the binary for selighosis. Others
have implemented similar tool4T] which can also be used. Hardware-assisted taint analgsislso been
proposed %5, 20]. Unfortunately, such hardware does not yet exist, thoughcan take advantage of any
developments in this area.

Our use of address space randomization is different thalyzathin Shacham et alip]. Shacham et
al show address space randomization can be brute-forcdd;amtlude that randomization should not be
relied upon. Our modeling shows that despite this fact, egklspace randomization can be used to slow
down worms and is thus an important component in defendiaghagextremely fast worms.

Anagnostakis et. al. proposes a nice approach, shadow oty enable a suspicious request to be
examined by a more expensive detect®f. [However, their approach requires source code access and

19

manual identification of beginning and end of transactiams taus does not work on COTS and blackbox
applications. In addition, because they only reverse mgmiates but not perform system call logging and
replay, their approach can cause side effects. Moreoveause the suspicious request is handled directly
by the more expensive detector instead of the backgroungsisas in our approach, the attacker could
potentially detect when its attack request is being moedtdry a more expensive detector and thus end the
attack prematurely and retry later (as explained in Se@i@)) whereas our retro-active random sampling
addresses this issue.

Rx proposes a nice approach to use environmental changegetoddagainst failures and uses rollback
and perturbation to enable environmental changék [However, their approach does not support detailed
self-diagnosis and self-hardening, and simply retriefeidiht environmental changes.

Liang and Sekar33] and Xu et. al. 0] independently propose different approaches to use asldres
space randomization as a protection mechanism and autaihatjenerate a signature by analyzing the
corrupted memory state after a crash. However, their aisafysd applicability are limited. Liang and
Sekar's approach does not work for sophisticated prograhesenstatic binary analysis is difficult and they
do not provide detailed diagnosis and their signature @eioerdoes not work in many cases (for example,
if the inputs are processed or decoded before it is used teecawbuffer overflow). The analysis in Xu
et. al.'s approach is also limited, and their signatureegsaffrom similar problems as described i9]. In
addition, these approaches purely rely on the address spademization protection which can be evaded
by many attacks, while our approach enjoys the accuracyafyreeight (more accurate) detectors because
of the random sampling inspection in our approach. Finally,approach is much more general as we allow
different light-weight and heavy-weight detectors to heggled into our system.

8 Conclusion

We presented a self-healing architecture for softwareegystwhere programs (1) self-monitor and detect
exploits, (2) self-diagnose the root cause of the vulnétab{3) self-harden against future attacks, and
(4) self-recover from attacks. We develop the first archite; called Sting, that realizes this four step
self-healing architecture for commodity software. Moreowur approach allows a community to share
antibodies through Self-Verifiable Antibody Alerts, whieliminate the need for trust among nodes. We
validate our design through (1) experiments which showssgatem can react quickly and efficiently and
(2) deployment models which show Sting can defend agaitdishivorms. To the best of our knowledge,
we are the first to design and develop a complete architecapable of defending against hit-list worms.

We are the first to realize a self-healing architecture thatiggts software with light-weight techniques,
and enables more sophisticated techniques to performatequost-analysis. We are also the first to provide
semantically correct recovery of a process after an attattiout access to its source code, and our exper-
iments demonstrate that our self-recovery can be ordersagihitude faster than program restart which
significantly reduces the down time of critical servicesemcbntinuous attacks.

References

[1] Dynamorio.htt p: //ww. cag. | cs. m t. edu/ dynanori o/ .
[2] Dyninst. ww. dyni nst . or g.

[3] Metasploit.ht t p: / / www. met aspl oi t. org.

[4] PaX.http://pax.grsecurity.net/.

[5] The design and architecture of the microsoft clusteviser InProceedings of thé8th Annual International
Symposium on Fault-Tolerant Computji@98.

20

http://www.cag.lcs.mit.edu/dynamorio/
www.dyninst.org
http://www.metasploit.org
http://pax.grsecurity.net/

[6] K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinisli E. Markatos, and A. Keromytis. Detecting targeted
attacks using shadow honeypots.Aroceedings in USENIX Security Symposiae05.

[7] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. MoResilient overlay networks. I8! ACM SOSP
October 2001.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, &, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. IfProceedings of the Symposium on Operating Systems PesqlOSR)Oct. 2003.

[9] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfistaAn efficient approach to combat a broad range
of memory error exploits. IRProceedings of 12th USENIX Security Symposko3.

[10] S.Bhatkar, R. Sekar, and D. C. DuVarney. Efficient teghas for comprehensive protection from memory error
exploits. InProceedings of the 14th USENIX Security Symposi@5.

[11] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. OheHault tolerance under UNIXACM Transactions
on Computer System$989.

[12] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and Ax.Rdicroreboot a technique for cheap recovery. In
Proceedings of thé"* Symposium on Operating System Design and Implementages.

[13] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and Dllah. Secure routing for structured peer-to-peer
overlay networks. INSENIX Symposium on Operating System Design and Impletieent@SDI) 2002.

[14] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. ExploitiNetwork Proximity in Peer-to-peer Networks.
Technical Report MSR-TR-2002-82, Microsoft Research,200

[15] CERT/CC. CERT/CC statistics 1988-2008.t p: / / ww. cert.org/ stats/cert stats. htnl.

[16] M. Chew and D. Song. Mitigating buffer overflows by opmg system randomization. Technical report,
Carnegie Mellon University, 2002.

[17] M. Cost, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, Zhang, and P. Barham. Vigilante: End-to-end
containment of internet worms. B9** ACM Symposium on Operating System Principles (SOSP 20065.

[18] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Canaentain internet worms? kotNets 20042004.

[19] J. Crandall, Z. Su, S. F. Wu, and F. Chong. On derivingnawkn vulnerabilities from zero-day polymorphic and
metamorphic worm exploits. IRroc. 12th ACM Conference on Computer and Communicatiotsribe (CCS)
2005.

[20] J. R. Crandall and F. Chong. Minos: Architectural suppor software security through control data integrity.
In International Symposium on Microarchitectui@ecember 2004.

[21] W. Cui, V. Paxson, and N. Weaver. Network replayPimceedings of NDS2006.

[22] G.Dunlap, S.King, S. Cinar, M. Basrai, and P. Chen. Ref&@inabling intrusion analysis through virtual-machine
logging and replay. IProceedings of the 2002 Symposium on Operating SystemrDaseylmplementation
(OSDI), 2002.

[23] D. C. DuVarney, R. Sekar, and Y.-J. Lin. Benign softwamnatations: A novel approach to protect against
large-scale network attacks. Center for Cybersecurityté\haper, October 2002.

[24] A. for submission. Semantic-based automatic sigmafi@neration against zero-day exploits. Technical report,
Anonymized institution for submission, 2005.

[25] S. Forrest, A. Somayaiji, and D. H. Ackley. Building dige computer systems. Rroceedings of 6th workshop
on Hot Topics in Operating Systeni®997.

[26] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara. The tasgémusion recovery system. 2005 Symposium on
Operating System Principles (SOSB)05.

[27] H. W. Hethcote. The Mathematics of Infectious Diseasi&\M Review42(4):599-653, 2000.

[28] V.Inc. http://www. vimwar e. com .

21

http://www.cert.org/stats/cert_stats.html
http://www.vmware.com/

[29] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detegfpast and present intrusions through vulnerability-
specific predicates. IRroceedings of the 2005 Symposium on Operating Systemsieisn (SOSRR005.

[30] H.-A. Kim and B. Karp. Autograph: toward automated tdisuted worm signature detection. Rroceedings of
the 13th USENIX Security Symposjukugust 2004.

[31] C. Kreibich and J. Crowcroft. Honeycomb - creatingursion detection signatures using honeypot®rirceed-
ings of the Second Workshop on Hot Topics in Networks (HstNetNovember 2003.

[32] R.Lemos. Counting the cost of the slammer wolmt p: / / news. com com 2100- 1001- 982955. ht
2003.

[33] Z.Liang and R. Sekar. Fast and automated generatiottarfkasignatures: A basis for building self-protecting
servers. IrProc. of the 12th ACM Conference on Computer and Communpitatsecurity (CCSP005.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Loey, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamg&tinmentation. IfiProgramming Language Design
and Implementation (PLDJR005.

[35] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniéomd N. Weaver. Inside the slammer worm.IBEE
Security and Privacyvolume 1, 2003.

[36] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniéomd N. Weaver. Inside the slammer worm.IBEE
Security and Privagyvolume 1, 2003.

[37] N.Nethercote and J. Seward. Valgrind: A program suisém framework. IrProceedings of the Third Workshop
on Runtime Verification (RV'03Boulder, Colorado, USA, July 2003.

[38] J. Newsome, D. Brumley, D. Song, J. Chamcham, and X. Kovailnerability-specific execution filtering for
exploit prevention on commodity software. Rioceedings of thé3*" Annual Network and Distributed System
Security Symposium (NDSPO06.

[39] J. Newsome, B. Karp, and D. Song. Polygraph: Automdyicgenerating signatures for polymorphic worms. In
Proceedings of the IEEE Symposium on Security and Prij\iay 2005.

[40] J. Newsome and D. Song. Dynamic taint analysis for aatenuetection, analysis, and signature generation of
exploits on commodity software. IRroceedings of the 12th Annual Network and Distributed &gsbecurity
Symposium (NDSS¥ebruary 2005.

[41] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Trgdtirgs as allergies—a safe method to survive software
failures. In20** ACM Symposium on Operating System Principles (SOSP)

[42] Y. Ramin. ATPhttpd. http://www.redshift.comyramin/atp/atphttpd/.

[43] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Tapcdlly-Aware Overlay Construction and Server
Selection. InProceedings of IEEE INFOCOM002.

[44] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and W.B. Enhancing server availability and security
through failure-oblivious computing. I@perating System Design & Implementation (OSR004.

[45] D. Scott. Assessing the costs of application downtih®98.

[46] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, BnBoneh. On the effectiveness of address-
space randomization. IRroceedings of the 11th ACM Conference on Computer and Camations Security
October 2004.

[47] S. Sidiroglou and A. D. Keromytis. A network worm vaceiarchitecture. IfProceedings of the IEEE Interna-
tional Workshops on Enabling Technologies: Infrastruettar Collaborative Enterprises (WETICE), Workshop
on Enterprise Securifypages 220-225, June 2003.

[48] S. Sidiroglou and A. D. Keromytis. Countering networlonms through automatic patch generatioliEEE
Security and Privacy2005.

[49] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. KeraisyBuilding a reactive immune system for software
services. INUJSENIX Annual Technical Conferen@905.

22

http://news.com.com/2100-1001-982955.html

[50] S. Singh, C. Estan, G. Varghese, and S. Savage. Autdmaaienm fingerprinting. Technical report, December
2004.

[51] A. Smirnov and T. cker Chiueh. DIRA: Automatic detectjddentification, and repair of control-hijacking
attacks. InProceedings of the2'" annual Network and Distributed System Security Symposiid$6) 2005.

[52] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhelashback: A lightweight extension for rollback and
deterministic replay for software debugging.Rroceedings of the 2004 USENIX Technical ConfercR064.

[53] S. Staniford, V. Paxson, and N. Weaver. How to Own therimét in your spare time. Ihlth USENIX Security
Symposiun2002.

[54] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balshnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. IRroceedings of the ACM SIGCOMM 2Q®an Diego, CA, USA, August
2001.

[55] G. E. Suh, J. Lee, and S. Devadas. Secure program earaudi dynamic information flow tracking. IRro-
ceedings of ASPLQ2004.

[56] syscalltrackht t p: // syscal | track. sour cef orge. net/ how. ht m .

[57] W. Vogels, D. Dumitriu, A. Agrawal, T. Chia, and K. Guo.c&8ability of the microsoft cluster service. In
Proceedings of the"? USENIX Windows NT Symposiuh998.

[58] H. J. Wang, C. Guo, D. Simon, and A. Zugenmaier. Shieldingrability-driven network filters for preventing
known vulnerability exploits. IRCM SIGCOMM August 2004.

[59] J. Xu, Z. Kalbarczyk, and R. K. lyer. Transparent rurgirandomization for security. Technical report, Center
for Reliable and Higher Performance Computing, Universitillinois at Urbana-Champaign, May 2003.

[60] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatdiagnosis and response to memory corruption
vulnerabilities, 2005.

[61] B. Zhao, K. Kubiatowicz, and A. Joseph. Tapestry: Anrdstructure for Fault-Resilient Wide-Area Location
and Routing. Technical Report UCB//CSD-01-1141, Uniugrsf California at Berkeley, April 2001.

A Worm Modeling for Defense Evaluation

Notation. Worm propagation can be well described with the classic &utfde-Infected (SI) epidemic modetT].

Let 5 be the average contact rate at which a compromised hostatentalinerable hosts to try to infect thembe
time, N the total number of vulnerable hosts. Lét) represent the total number of infected hosts at timeet o be

the fraction of vulnerable hosts which are Sting producand, the remaining population are Sting consumers. (Note
that for simplicity, we assume that all the vulnerable hgsigicipate in Sting as producers or consumers; it can be
easily extended to the case where some vulnerable hoststg@riizipate in Sting.) Lef; be the total number of
producers contacted by at least one infection attempt &titim

A.1 Defense against Slammer Worm

From the S| model, befor&, whereP(T,) = 1 (before any Sting producer is contacted by an infectiomgity we
have:

O _ s16)1 - - 1y/) (1)
D) _ apr(1 - P(1)/ (o) 2)

We can solve the above equation Tt Once a Sting producer is contacted with an infection atteitpkes time
r1 until the producer creates a SVAA using self-diagnosis,thad it takes time until the SVAA can be disseminated
to all other vulnerable hosts. It takes timgfor a Sting consumer to verify the SVAA and install the antily. Let
r = r1 + ro + 73, and we call- the response time of Sting. Thus, after titfig+ r, all the vulnerable hosts have
received and installed the anti-body and become immuneetevtirm outbreak. Thus, the total number of infected

23

http://syscalltrack.sourceforge.net/how.html

hosts throughout the worm outbreaklidy, + r), andI (7 + r)/N is the infection ratio. We plot the infection ratio
vs. « for differentr in Figure6(a), using the parameters of Slammer worm (where 0.1 and N = 100000 [36]).

A.2 Defense against Hit-list Worm

We showed above that the Sting collaborative communityrdsefés extremely effective against some of the fastest
scanning worms such as the Slammer worm attack. Howeveeyvtr faster worms such as a hit-list worm or flash
worm which can reach all the vulnerable hosts within secptisSting reactive anti-body defense may not be fast
enough when the fraction of producers is low. To addressproblem, we propose a hybrid defense where the
Sting consumers would deploy a proactive protection meishasuch as address randomization defense in addition to
participate in Sting to receive SVAA. The proactive proi@etmechanism such as address randomization techniques
alone does not provide a complete defense, it simply makestack harder to succeed, e.g., the attacker needs to do
multiple trials until it guesses the correct program ingstate. When combining the proactive protection mechanis
with the Sting reactive anti-body defense, the proactiedégmtion mechanism can slow down the worm outbreak until
the Sting reactive anti-body defense can create and dinaderthe SVAA to all the vulnerable hosts. We illustrate the
analysis below.

Let p be the probability that each infection attempt could sudoe® a vulnerable host deploying a proactive
protection mechanism such as address randomization. é&fowhere P(7,) = 1 (before any Sting producer is
contacted by an infection attempt), we have:

MO sor)(1 — o~ 10)/3) ®3)
P _ a1t - P/ (o))

Similar to the analysis in SectioA.1, we can solve the above equations Gy, and then calculate the total
number of infected hosts throughout the worm outbré@k +), andI (T, + r)/N is the infection ratio. We plot
the infection ratio vsa for differentr in Figure6(b) and6(c), assuming = 2-'2, N = 100000, and3 = 1000 and
4000 respectively.

B VSEF

When the hardened binary is run, the added instrumentat@pagates taint information as the program executes. If
the detection point is reached, the added instrumentakieoks to see if the sensitive operand (e.g., return address o
function pointer) is tainted. When the self-hardened hjrisirun with benign input, then taint information will not be
used in a sensitive way (by definition) at the exploit poird #me program will execute as normal.

Since we are not instrumenting all data movement and ariilanmstructions, locations that have been marked as
tainted may be overwritten with untainted data by uninsguotad instructions. This could lead to false positives if,
for example, a stack-based buffer marked as tainted is pbpipthe stack, and is later overwritten with a (legitimate)
return address, without being marked untainted. We prawenproblem by recording the value that a location takes
on when we mark it as tainted. When we later check to see ifdlation is still tainted, we can check to see if it still
has the same value. If not, then it has been overwritten byharstrtumented instruction, and we mark it as no longer
tainted.

Performance. Note that the execution overhead of the hardened programjpional to the number of instructions
instrumented. Our experiments show that the number ofliatms that need to be instrumented is usually small, and
as a result the performance overhead of a hardened binasyadlyismall, e.g., only a few percentage.

Accuracy. The VSEF-hardened binary has no false positives. Theretignmgomarked as tainted by the instrumenta-
tion that was not actually derived from untrusted input, dndng detection we already determined that the attacker
should not be able to write to the sensitive value being gedhrd

A false negative is when the same vulnerability is exploitétthout being reported. This can occur if the tainted
input is propagated along a different code path than in tihepka exploit, or if the overwritten sensitive value is
misused at a different location. Nof@oly,metg-morphic variants created by tools such as MetaSp8itfill be
detected from a single filter. The reason is s{ipbly,metg-morphic variants differ in the payload which would be
executed strictly after exploit point. Only an exploit tiepolymorphic in the execution path exploited will be migse

24

We expect that there is a relatively small number of suchiplessariants for a particular vulnerability, and that the
attacker must identify them manually or by static analy$ifie vulnerable binary38].

Combining filters. We may want to combine several different VSEF’s. For exang#ingle binary may have several
vulnerabilities that are not all discovered simultanepugle want to harden the binary as each new vulnerability is
discovered. Another example is vulnerabilities that caeXercised via several different code paths. We want to be
able to re-harden the binary as each new code path is digmblegrthe detector.

We combine VSEF filters by a simple union: any instructiotelisin either of the filters should be instrumented.
The simplicity and efficiency of combining filters is a niceoperty for defense systems using our approach since it
means the system does not become complex as new vulnéealdliid attackers are discovered.

25

	Introduction
	Self-Healing Architecture: Requirements and Design
	Architecture Overview
	Self-monitoring
	Checkpointing and Logging
	Light-weight exploit detection

	Self-diagnosis
	Self-harden
	Self-Recovery

	Reactive Anti-body Defense
	Generating Self-Verifiable Antibody Alerts
	Verifying Self-Verifiable Antibody Alerts
	SVAA Distribution

	Implementation
	Self-monitoring
	Self-diagnosis
	Self-hardening
	Self-recovery
	SVAA Verification and Refinement

	Self-healing System Evaluation
	Normal performance overhead
	Performance and Availability Evaluation under attack

	Reactive Anti-body Defense and Proactive Protection against Hit-list Worms
	Reactive Anti-body Defense Evaluation
	Proactive Protection against Hit-list Worm
	Hybrid Defense against Hit-list Worm: Combining Proactive Protection and Reactive Anti-body Defense

	Related
	Conclusion
	Worm Modeling for Defense Evaluation
	Defense against Slammer Worm
	Defense against Hit-list Worm

	VSEF

