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Abstract

A system for private stream searching, introduced by Ostrovsky and Skeith [18], allows a client to
provide an untrusted server with an encrypted search query. The server uses the query on a stream of
documents and returns the matching documents to the client while learning nothing about the nature of
the query. We present a new scheme for conducting private keyword search on streaming data which re-
quires O(m) server to client communication complexity to return the content of the matching documents,
where m is the size of the documents. The required storage on the server conducting the search is also
O(m). The previous best scheme for private stream searching was shown to have O(m log m) communi-
cation and storage complexity. Our solution employs a novel construction in which the user reconstructs
the matching files by solving a system of linear equations. This allows the matching documents to be
stored in a compact buffer rather than relying on redundancies to avoid collisions in the storage buffer as
in previous work. This technique requires a small amount of metadata to be returned in addition to the
documents; for this the original scheme of Ostrovsky and Skeith may be employed with O(m log m) com-
munication and storage complexity. We also present an alternative method for returning the necessary
metadata based on a unique encrypted Bloom filter construction. This method requires O(m log(t/m))
communication and storage complexity, where t is the number of documents in the stream. The latter
method results in much lower communication in most practical situations. In particular, if the number of
matching documents is expected to be a fixed fraction of the stream length, the latter method results in
the optimal O(m) overall communication and storage complexity with near optimal constant factors. In
this paper we describe our scheme, prove it secure, analyze its asymptotic performance, and describe a
number of extensions. We also provide an experimental analysis of its scalability in practice. Specifically,
we consider its performance in the demanding scenario of providing a privacy preserving version of the
Google News Alerts service.

1 Introduction

The Internet currently has several different types of sources of information. These include conventional
websites, time sensitive web pages such as news articles and blog posts, newsgroup posts, online auctions,
and web based forums or classified ads. One common link between all of these sources is that searching
mechanisms are vital for a user to be able to distill the information relevant to him.

Most search mechanisms involve a client sending a set of search criteria (e.g., a textual keyword) to a
server and the server performing the search over some large data set. However, for some applications a client
would like to hide his search criteria, i.e., which data he is interested in. A client might want to protect
the privacy of his search queries for a variety of reasons ranging from npersonal privacy to protection of
commercial interests. Such privacy issues were brought into the spotlight in 2005 when the U.S. Department
of Justice subpoenaed records of search terms from popular web search engines. The sensitivity of search
terms was highlighted again in 2006 when AOL Research released a database of about 20 million search
queries on the Internet, revealing a great deal of compromising information about 658,000 AOL users.

A naive method for allowing private searches is to download the entire resource to the client machine
and perform the search locally. This is typically infeasible due to the large size of the data to be searched,
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the limited bandwidth between the client and the remote host, or to the unwillingness of the other party to
disclose the entire resource to the client.

In many scenarios the documents to be searched are being continually generated and are already being
processed as a stream by remote servers. In this case it would be advantageous to allow clients to establish
persistent searches with the servers where they could be efficiently processed. Content matching the searches
could then be periodically returned to the clients. For example, Google News Alerts system [2] emails users
whenever web news articles crawled by Google match their registered search keywords. In this paper we
develop an efficient cryptographic system which allows services of this type while provably maintaining the
secrecy of the search criteria. We go on to evaluate its practical feasibility using a private Google News
Alerts service as an example application.

Private Stream Searching Recently, Ostrovsky and Skeith defined the problem of “private filtering”,
which models the situations described above. They gave a scheme based on the homomorphism of the Paillier
cryptosystem [19, 9] providing this capability [18]. First, a public dictionary of keywords D is fixed. To
construct a query for the disjunction of some keywords K ⊆ D, the user produces an array of ciphertexts, one
for each w ∈ D. If w ∈ K, a one is encrypted; otherwise a zero is encrypted. A server processing a document
in its stream may then compute the product of the query array entries corresponding to the keywords found
in the document. This will result in the encryption of some value c, which, by the homomorphism, is non-
zero if and only if the document matches the query. The server may then in turn compute E (c)

f
= E (cf),

where f is the content of the document, obtaining either an encryption of (a multiple of) the document or
an encryption of zero.

Ostrovsky and Skeith propose the server keep a large array of ciphertexts as a buffer to accumulate
matching documents; each E (cf) value is multiplied into a number of random locations in the buffer. If
the document matches the query then c is non-zero and copies of that document will be placed into these
random locations; otherwise, c = 0 and this step will add an encryption of 0 to each location, having no effect
on the corresponding plaintexts. A fundamental property of their solution is that if two different matching
documents are ever added to the same buffer location, a collision will result and both copies will be lost. If
all copies of a particular matching document are lost due to collisions then that document is lost, and when
the buffer is returned to the client, he will not be able to recover it.

To avoid the loss of data in this approach one must make the buffer sufficiently large so that this event
does not happen. This requires that the buffer be much larger than the expected number of required
documents. In particular, Ostrovsky and Skeith show that a given probability of successfully obtaining all
matching documents may be obtained with a buffer of size O(m log m),1 where m is the number of matching
documents. While effective, this scheme results in inefficiency due to the fact that a significant portion of
the buffer returned to the user consists of empty locations and document collisions.

Our Approach In this paper we present a new private stream searching scheme which achieves the optimal
O(m) communication from the server to the client and server storage overhead in returning the content of
the matching documents, given any fixed probability of successfully retrieving all matching documents.
Some metadata (normally much smaller than the documents themselves) may be returned with the original
O(m log m) communication and storage. We also present an alternative technique for returning the metadata
requiring O(m log(t/m)) communication and storage. This latter technique results in the optimal O(m)
overal complexity with near optimal constant factors in applications where each document matches the
query with some probability, independent of the other documents. One disadvantage of the latter technique
is a step in reconstructing the matching documents on the client with O(t) time complexity. However, this
step consists only of computing t hash values, which is greatly outweighed by other costs in practice. These
efficiency improvements and tradeoffs are summarized in Table 1.

The new results are based on the combination of several novel techniques. Like the approach of Ostrovsky
and Skeith we give an encrypted dictionary, and non-matching documents have no effect on the encrypted

1Specifically, they define a correctness parameter γ and use a buffer of size O(γm). They show that a given success probability
may be achieved with a γ that is O(log m).
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Private stream Storage and comm. Storage and comm. Client recon-
searching scheme (for bulk content) (for metadata) struction time

Ostrovsky-Skeith [18] O(m log m) O(m log m) O(m log m)

Our scheme (simple metadata) O(m) O(m log m) O(m log m)

Our scheme (Bloom filter) O(m) O(m log(t/m)) O(t + m log(t/m))

Table 1: For m matches in a stream of t documents, the new scheme re-
trieves the bulk content of the documents with linear overhead. Two alter-
natives are available for retrieving necessary metadata.

contents. However, rather than using a large buffer and attempting to avoid collisions, each matching
document in our system is copied randomly over approximately half of the locations across the buffer. A
pseudo-random function, g, whose key is shared by the client and server, will determine pseudo-randomly
with probability 1

2
whether the document is copied into a given location, where the function takes as inputs

the document number (document number i is the ith document seen by the server) and buffer location.
While any one particular buffer location will not likely contain sufficient information to reconstruct any
one matching document, with high probability all the information from all the matching documents can be
retrieved from the whole system by the client given that the client knows the number of matching documents
and that the number of matching documents is less than the buffer size. The client can do this by decrypting
the buffer and then solving a linear system to retrieve the original documents.

To do so, the client must obtain a list of the indices of the documents in the stream which matched
the query. The first method for accomplishing this (hereafter termed the simple metadata construction) is
based on the original Ostrovsky-Skeith construction. To employ the alternative method (hereafter termed
the Bloom filter construction), the server maintains a separate encrypted Bloom filter that efficiently keeps
track of which document numbers were matched. The Bloom filter construction provides a compact way of
representing the set indices of matching documents and normally requires much less space than the simple
metadata construction.

1.1 Related Work

Private searching may be viewed as the flip side of searching on encrypted data [21, 3, 11]; in this case the
data is unencrypted and the query is encrypted. Goh applied Bloom filters in a way that allows a server to
store encrypted-searchable data in a more efficient manner.

However, searching on encrypted data is quite different from private searching. In the problem of searching
on encrypted data the data is hidden from the server, while in private searching the data is known to the
server and the client’s queries must remain hidden. Private searching is actually most closely related to
the topics of single-database private information retrieval [8, 15, 5, 6] and oblivious transfer [17, 16]. One
incompatibility between previously proposed PIR schemes and the present problem is that PIR schemes have
thus far required communication dependent on the size of the entire database rather than the size of the
portion retrieved. In some streaming settings, a private searching scheme with communications independent
of the size of the stream or database is desirable. Another difference between the PIR and private search
settings is that most PIR constructions model the database to be searched as a long bitstring and the queries
as indices of bits to be retrieved. In contrast, the system proposed in this paper and that of Ostrovsky and
Skeith allow queries based on a search for keywords within text. Both these schemes may also retrieve pieces
of data by index, however. The text associated with a block of data in the database against which queries are
matched is arbitrary, so by simply including strings of the form “blocknumber:1”, “blocknumber:2”, . . . in the
text associated with each block of data, they may be explicitly retrieved by appropriate queries. There has
been some consideration of search or retrieval by keyword rather than index in the PIR literature [7, 14, 10],
but none of these systems has communication dependent only on the size of the data retrieved rather than
some function of the length of the database or stream.
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2 Definitions and Preliminaries

In this section we describe the problem of private searching and make appropriate definitions. We also briefly
review Paillier’s cryptosystem and the definition of a pseudo-random function family.

2.1 Problem Definition

In a private searching scheme a client will create an encrypted query for the set of keywords that he is
interested in. The client will give this encrypted query to the server. The server will then run a search
algorithm on a stream of files2 while keeping an encrypted buffer storing information about files for which
there is a keyword match. The encrypted buffer will then be returned to the client (periodically) to enable
the client to reconstruct the files that have matched his query keywords. We call a file a matching file if
it matches at least one keyword in the set of keywords that the client is interested in. The key aspect of a
private searching scheme is that a server is capable of conducting the search even though it does not know
which set of keywords the client is interested in. We now formally describe a private stream search scheme.
A scheme for private stream search scheme consists of the following three algorithms.

QueryConstruction (λ, ε, m, K) The QueryConstruction algorithm is run by a client to prepare an en-
crypted list of keywords that he would like the server to search for. The algorithm takes as input a security
parameter λ, a correctness parameter ε, an upper bound on the number files to retrieve m, and an unen-
crypted set of strings K that are to be used as the search keywords. The algorithm outputs a public key
Kpub, a private key Kpriv , and an encrypted query Q. The client then sends Kpub, Q to the server. The
correctness parameter ε may be used to select various algorithm parameters to ensure that up to m files will
be correctly retrieved with high probability. These additional parameters are also sent to the server.

StreamSearch (Kpub, Q, f1, . . . , ft, W1, . . . , Wt) The StreamSearch algorithm is run by a server to perform
a private keyword search on behalf of the client on a stream of files. The algorithm takes as input an encrypted
query Q, a public key Kpub, and a stream of files ~f = (f1, f2, . . . , ft) and corresponding sets of keywords

that describe each file ~W = (W1, . . . , Wt). Normally each set Wi is derived from the corresponding file fi as
a preprocessing step. The algorithm updates a buffer of encrypted results R after processing each file and
eventually sends it back to the client.

FileReconstruction (Kpriv, R) The FileReconstruction algorithm is used to extract the set of match-
ing files from the returned encrypted buffer. The algorithm FileReconstruction takes as input the private
key Kpriv and a buffer of encrypted results R. It outputs the set of matching files { fi

∣

∣ |K ∩Wi| > 0 }.

To define privacy for a private stream search scheme, consider the following game between a challenger
and an adversary. The adversary gives the challenger two sets of keyword strings K0, K1. The challenger
then flips a coin β, runs the QueryConstruction (λ, ε, m, Kβ), and gives the public key and the encrypted
query Q to the adversary. The adversary then outputs a guess β ′. We say that an adversary has advantage
ε if |P (β = β′)− 1

2
| ≥ ε

Definition 1. We say that a private searching scheme is semantically secure if for all PPT adversaries A,
the advantage of A is negligible in the security parameter, λ.

We establish that the proposed system satisfies this definition in Section 4.3.

2.2 Preliminaries

Paillier’s Cryptosystem We now provide a brief review of the most important features of the Paillier
cryptosystem. The Paillier cryptosystem is a public key cryptosystem; as in RSA the public key n is the

2We use the name “file” as a general term for the data chunk that is to be returned. The type of data will vary by application.
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product of two large primes. The factorization of n is the private key. In this paper the encryption of a
plaintext m with the public key (there is only one public key in use in this paper, the one generated by the
client when constructing a private search) is denoted E (m), and the decryption of a ciphertext c with the
private key is denoted D (c). Plaintexts are represented by elements of the group Zn and ciphertexts are
represented by elements of the group Z

∗
n2 , so E : Zn → Z

∗
n2 and D : Z

∗
n2 → Zn. Note that ciphertexts are

twice as large as plaintexts.3

The key property of the Paillier cryptosystem upon which the entire system is based is its homomorphism.
For any a, b ∈ Zn, it is the case that D (E (a) · E (b)) = a + b. That is, multiplying ciphertexts has the
effect of adding the corresponding plaintexts. This allows one to perform rudimentary computations on
encrypted values. Our construction may be adapted to use any public key, homomorphic cryptosystem, but
for concreteness, we assume the use of the Paillier cryptosystem throughout the rest of the paper.

Pseudo-Random Functions In our construction we use a pseudo-random function family G : KG ×Z×
Z→ {0, 1}. Roughly speaking, G will take in a key k and two integers and output a pseudo random bit. We

let g = Gk where k
R
←− KG.

The security of a pseudo-random function family G : KG×Z×Z→ {0, 1} is defined by the following game

between a challenger and an adversary A. A challenger chooses a random key k
R
←− KG and lets g = Gk.

The challenger then flips a binary coin β. At this point the adversary submits to make oracle queries to the
challenger over the domain. If β = 0 the challenger will respond by evaluating the function g on the input,
whereas if β = 1 it will respond with random bit to all new queries, while giving the same response if the
same query is asked twice. Finally, the adversary outputs a guess β ′. We define the adversary’s advantage
in this game as:

AdvA = |Pr[β = β′]− 1/2|

We say that a pseudo random function is (ωt, ωq, ε)- secure if no ωt time adversary, that makes at most
ωq oracle queries, has advantage at greater than ε. As explained in Section 4, the “security” of the pseudo
random function family employed in our scheme is actually only necessary to prove correctness properties.
Privacy is unaffected.

3 New Constructions

We now describe the algorithms of the new private search scheme and give an analysis of complexity and
security properties. For ease of exposition, we first describe the version of the scheme using the Bloom filter
construction, then give the modifications necessary to employ the simple metadata construction. Addition-
ally, we defer discussion of several special failure cases to the next section.

3.1 Client’s QueryConstruction Procedure

Figure 1 gives the algorithm for producing the encrypted query, QueryConstruction. A public dictionary
of potential keywords

D = {w1, w2, . . . , w|D|}

is assumed to be available. Constructing the encrypted query for some disjunction of keywords K ⊆ D then
proceeds as in the scheme of Ostrovsky and Skeith, regardless of whether the simple metadata constructing
or Bloom filter construction will be used. The client generates a key pair, then for each i ∈ 1, . . . , |D|,
defines qi = 1 if wi ∈ K and qi = 0 if wi /∈ K. The values q1, q2, . . . , q|D| are encrypted (rerandomizing each

encryption) and put in the array Q = (E (q1) , E (q2) , . . . , E
(

q|D|

)

), which forms the final encrypted query.

3This property of inflating messages by encrypting them is improved in Damg̊ard-Jurik generalization of the Paillier cryp-
tosystem [9]. In their scheme the plaintext and ciphertext spaces are Zns and Z

∗
ns+1 for any s ∈ {1, 2, . . .}. However, the

constraints in this paper are likely to make the original situation of s = 1 preferable in practice.
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Algorithm: QueryConstruction

Input: Set of keywords K.
Output: Query array Q = (E (q1) , E (q2) , . . . , E

`

q|D|

´

), public key n.

Generate a Paillier key pair n, Kpriv.

for i := 1, 2, . . . , |D| :
if wi ∈ K :

qi := 1
else :

qi := 0
Q[i] := E (qi)

Figure 1: The algorithm for setting up an encrypted query.

In Section 5.2 we give an alternative form for the encrypted queries which eliminates the public dictionary
D. The client then sends Q and the public key n to the server.

3.2 Server’s StreamSearch Procedure (Bloom Filter Construction)

Figure 2 gives the full algorithm run by the server, StreamSearch. In addition to the public key and Q, the
client may provide the server with the parameters `F , `I , and k, which affect correctness and performance
(see below and Section 4).

State The server must maintain three buffers as it processes the files in its stream. These buffers are
hereafter referred to as the data buffer, the c-buffer, and the matching-indices buffer and denoted F , C,
and I respectively. Each of these is an array of elements from the ciphertext space Z

∗
n2 , with F and C of

length `F and I of length `I . For simplified notation here and in subsequent explanations, we assume that
each document is at most n bits and therefore fits within a single plaintext in Zn. For longer documents
requiring s elements of Zn, we would let F be an `F × s array and subsequent operations involving a file
updating F are performed blockwise.

The data buffer will store the matching files in an encrypted form which can then be used by the client
to reconstruct the matching files. In particular, the data buffer will contain a system of linear equations in
terms of the content of the matching files in an encrypted form. This system of equations will later be solved
by the client to obtain the matching files.

The c-buffer stores in an encrypted form the number of keywords matched by each matching file. We
call the number of keywords matched for a file the c-value of the file. The c-buffer will be used during
reconstruction of the matching files from the data buffer by the client. As in the case of the data buffer,
the c-buffer stores its information in the form of a system of linear equations. The client will later solve the
system of linear equations to reconstruct the c-values.

The matching-indices buffer is an encrypted Bloom filter that keeps track of the indices of matching
files in an encrypted form. More precisely, the matching-indices buffer will be a encrypted representation of
some set of indices {α1, . . . , αr} where {α1, . . . , αr} ⊆ {1, . . . , t}. Here r is the number of files which end up
matching the query.

Each of these buffers begins with all its elements initialized to encryptions of zero. We now detail how
they are updated as each file is processed.

Processing Steps To process the ith file fi, the server takes the following steps.
Step 1: Compute encrypted c-value. First, the server looks up the query array entry Q[j] corresponding to
each word wj found in the file. The product of these entries is then computed. Due to the homomorphic
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Algorithm: StreamSearch

Input: Q, n, sequence of files f1, . . . , ft with corresponding
keyword sets W1, . . . Wt, size of data buffer `F , size of
matching indices buffer `I , number of hash functions k.

Output: Data buffer F , coefficients buffer C, matching indices buffer I.

Initialize F and C as `F element arrays and I as an `I element array of
members of Z

∗
n2 . Initialize each element of F , C, and I to E (0).

for i := 1, 2, . . . , t :
c := E (0)
for wj ∈ Wi :

c := c · Q[j] mod n2

e := cfi mod n2

for j := 1, 2, . . . , `F :
if g(i, j) = 1 :

F [j] := F [j] · e mod n2

C[j] := C[j] · c mod n2

for j := 1, 2, . . . , k :
` := hj(i) mod `I

I[`] := I[`] · c mod n2

Figure 2: The algorithm for running the private search, using the Bloom filter construction.

property of the Paillier cryptosystem, this product is an encryption of c-value of the file, i.e., the number of
distinct members of K found in the file. That is,

∏

wj∈Wi

Q[j] = E

(

∑

wj∈Wi

qj

)

= E (ci)

where Wi is the set of distinct words in the ith file and ci is defined to be |K ∩Wi|. Note in particular that
ci 6= 0 if and only if the file matches the query.

Step 2: Update data buffer. The server computes E (cifi) using the homomorphic property of the Paillier
cryptosystem.

E (ci)
fi = E (cifi) =

{

E (cifi) if fi matches the query

E (0) otherwise.

The server multiplies the value E (cifi) into a subset of the locations in the data buffer according to the
following procedure. Let G be a family of pseudo-random functions that map Z × Z to {0, 1}. Randomly

select g
R
←− G (this should be done once upon initialization and the same g used for all files). The algorithm

multiplies E (cifi) into each location j in the data buffer where g(i, j) = 1. Suppose for example we are
updating the third location in the data buffer with the second file. Assume that first file was also multi-
plied into this location, i.e., g(1, 3) = g(2, 3) = 1. Each of the two files may or may not match the query.
Suppose in this example that f1 matches the query, but f2 does not. Before processing f2 we have that
D (F [3]) = c1f1. After multiplying in E (c2f2), D (F [3]) = c1f1 + c2f2. But c2 = 0 since f2 does not match,
so it is still the case that D (F [3]) = c1f1 and the data buffer is effectively unmodified. This mechanism
allows the data buffer to accumulate linear combinations of matching files while discarding all non-matching
files.
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Step 3: Update c-buffer. The value E (ci) is multiplied into each of the locations in the c-buffer in a similar
fashion as E (cifi) was used to update the data buffer. In particular, the server multiplies the value E (ci)
into each location j in the c-buffer where g(i, j) = 1.

Step 4: Update matching-indices buffer. The server then multiplies E (ci) further into a fixed number of loca-
tions in matching-indices buffer. This is done using essentially the standard procedure for updating a Bloom
filter. Specifically, we use k hash functions h1, . . . , hk to select the k locations where E (ci) will be added.
For optimal efficiency, the client should select the parameter k as b `I log 2

m
c, where m is the number of files

they expect to retrieve [4]. The locations of the matching-indices buffer that a matching file i is multiplied
into are take to be h1(i), h2(i), . . . , hk(i). Again, if the fi does not match, ci = 0 so the matching-indices
buffer is effectively unmodified.

After completing the aforementioned steps for a fixed number of files t in its stream, the server sends its
three buffers back to the client. Also, the server should return the function g.

3.3 Client’s FileReconstruction Procedure (Bloom Filter Construction)

Figure 3 gives the algorithm run by the client upon completion of the private search and receipt of the three
buffers F , C, and I , FileReconstruction.
Step 1: Decrypt buffers. The client first decrypts the values in the three buffers using the Paillier decryption
algorithm with its private key Kpriv , obtaining decrypted buffers F ′, C ′, and I ′.

Step 2: Reconstruct matching indices. For each of the indices i ∈ {1, 2, . . . , t}, the client computes h1(i), h2(i), . . . , hk(i)
and checks the corresponding locations in the decrypted matching-indices buffer; if all these locations are
non-zero, then i is added to the list α1, α2, . . . , αβ of potential matching indices. Note that if ci 6= 0, then i
will be added to this list. However, due to the false positive feature of Bloom filters, we may obtain some
additional indices. Now we may check for overflow, which occurs when the number of false positives plus
the number of actual matches r exceeds `F . At this point if β < `F , we continue to add indices to the list
until it is of length `F . Here the function pick denotes the operation of selecting an arbitrary member of a
set. Note that we will not run out of indices since t ≥ `F .

Step 3: Reconstruct c-values of matching files. Given our superset of the matching indices {α1, α2 . . . , α`F
},

the client next solves for the values of cα1
, cα2

, . . . , cα`F
. This is accomplished by solving the following system

of linear equations for ~c,
A · ~c = C ′ (1)

where A is the matrix with the i, jth entry set to g(αi, j), C ′ is the vector of values stored in the decrypted
c-buffer, and ~c is the column vector (cαi

)i=1,...,`F
.4 Now the exact set of matching indices {α′

1, α
′
2 . . . , α′

r}
may be computed by checking whether cαi

= 0 for each i ∈ {1, . . . , `F }. Before proceeding, we replace all
zeros in the vector ~c with ones.

As an example of Step 3, suppose there are four spots in the decrypted c-buffer (i.e., `F = 4), seven files
are processed, and we have established the following list of potentially matching indices: {α1, α2, α3, α4} =
{1, 3, 5, 7}. Then given

A =









1 0 1 0
1 1 0 1
1 0 0 1
0 1 1 0









, C ′ =









2
3
1
3









4The possibility of the matrix A being singular is considered in the next section.
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Algorithm: FileReconstruction

Input: F , C, I, k.
Output: The matching files fα′

1
, fα′

2
, . . . , fα′

r
.

Decrypt each element of F , C, and I to obtain F ′, C′, and I ′ .

β := 0
for i := 1, 2, . . . , t :

for j := 1, 2, . . . , k :
` := hj(i) mod `I

if I ′[`] = 0 : next i
β := β + 1
αβ := i

if β > `F :
output “Error, overflow.”, exit

while β < `F :
β := β + 1
αβ := pick({1, . . . , t} \ {α1, α2, . . . , αβ−1})

A :=
h

g(αi, j)
i

i:=1,2,...,`F
j:=1,2,...,`F

if A is singular :
output “Error, singular matrix.”, exit

~c := A−1 · C′

{α′
1, α

′
2, . . . , α

′
r} = {α1, α2, . . . , α`F

} \ { αi | cαi
= 0 }

for i ∈ { αi | cαi
= 0 } :

cαi
:= 1

~f := diag(~c)−1 · A−1 · F ′

output fα′
1
, fα′

2
, . . . , fα′

r

Figure 3: The algorithm for recovering the matching files after the completion of a private search when using
the Bloom filter construction.

we may compute

cα1
= c1 = 1

cα2
= c3 = 2

cα3
= c5 = 1

cα4
= c7 = 0 .

We then see that there were three matching files (r = 3): f1, f3, and f5.

Step 4: Reconstruct matching files. Finally, the content of the matching files fα′
1
, fα′

2
, . . . , fα′

r
may be

determined by solving the linear system

A · diag(~c) · ~f = F ′ (2)

where

diag(~c) =

(

c1 0 ···
0 c2

...
. . .

)

.

We directly compute ~f = diag(~c)−1 · A−1 · F ′. Note that diag(~c) is never singular because we previously
ensured that no zeros appear in ~c. The content of the matching files appears as fα′

1
, fα′

2
, . . . , fα′

r
; the other
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entries in ~f will be zero. Continuing the example above (and making up a value of F ′), this corresponds to
solving the following equations

f1 + f5 = 32

f1 + 2f3 + f7 = 32

f1 + f7 = 10

2f3 + f5 = 44 ,

thereby determining that f1 = 10, f3 = 11, and f5 = 22 (and f7 = 0, but this value is ignored).

3.4 Simple Metadata Construction

Now that we have defined the version of the scheme incorporating the (more complicated) Bloom filter
construction, we may easily describe the differences between this version of the scheme and the variant
using the simple metadata construction. In applications where the expected number of matching documents
is fixed and independent of the stream length, this latter variant is preferable since it does not require
communication and storage dependent on the stream length. To produce this effect, we abandon the Bloom
filter used in the matching-indices buffer and instead use the Ostrovsky-Skeith construction to store the
matching indices. We briefly describe this technique below; for details (including an analysis of collision
detection) refer to [18].

Let `I = γm, where γ is selected based on the desired error bound ε. Fix a set of hash functions
h1, h2, . . . , hγ . Also, let each entry in the matching-indices buffer I be a pair of ciphertexts in Z

∗
n2 rather

than a single ciphertext. To update I when processing the ith file in StreamSearch, compute the following.

for j := 1, 2, . . . , γ :
` := hj(i) mod `I

I [`][1] := I [`][1] · c mod n2

I [`][2] := I [`][2] · ci mod n2

To recover the set of matching indices in FileReconstruction, the client decrypts each pair of entries in I .
When a pair I ′[k][1] and I ′[k][2], k ∈ {1, . . . `I} is non-zero (and not a collision), the client may recover the
index of a matching file as i = I ′[k][2]/I ′[k][1]. When using this technique, the c-buffer is omitted. We may
set `F = m; otherwise, the data buffer is used as before. There are now no false positives for streams of any
length.

4 Analysis

In this section, we analyze the correctness and complexity of both variants of our scheme and prove their
security.

4.1 Correctness and Complexity (Bloom Filter Construction)

First we will consider the correctness and complexity of the variant employing the Bloom filter construction.
In particular, we will show that given a desired success probability bound 1− ε, if the number of matching
documents is at most m, then by using communication and storage overhead O(m log(t/m)), our scheme
will enable the user to correctly reconstruct all the matching documents from a stream of t documents with
probability at least 1− ε.

In order to perform the analysis to demonstrate the above point, we first analyze the different failure
cases where the user will fail to reconstruct the matching documents. From the reconstruction procedure,
we can see that the client fails to reconstruct the matching files when the two systems of linear equations
A · ~c = C ′ (Eq. 1) and A · diag(~c) · ~f = F ′ (Eq. 2) cannot be correctly solved. This failure only happens in
two cases:

10



1. The matrix A is singular. In this case, we will not be able to compute A−1 and solve the system of
linear equations.

2. There are more than `F − r false positives when the set of matching indices is computed using the
Bloom filter. In particular, if in Step 2 in the FileReconstruction procedure, the number of matching
indices β reconstructed from the Bloom filter I ′ is greater than `F , then we have more variables than
the number of linear equations and thus we will not be able to solve the system of linear equations
A · ~c = C ′.

We show below that by picking the parameters `F and `I correctly, we can guarantee that the probability
of the above two failure cases can be bounded to be below ε. We demonstrate this by proving the following
three lemmas.

Lemma 1. For a given 0 < ε < 1, there exists n = o(log(1/ε)), such that for any n′ > n, an n′×n′ random
(0, 1)-matrix is singular with probability at most ε.

Proof. Note that an n × n, random (0,1)-matrix is singular with negligible probability in n. This was first
conjectured by Erdös and proven in the 60’s by J. Komlós [13]. The specific bound has since been improved
several times, recently reaching O

((

3
4

+ o(1)
)n)

[12, 22, 23]. Thus, it is easy to see that the above lemma
holds.

Lemma 2. Let G : KG × Z × Z → {0, 1} be a (ωt, ωq , ε/8)-secure pseudo-random function family. Let

g = Gk, where k
R
←− KG. Let `F = o(log(1/ε)) such that an `F × `F random (0, 1)-matrix is singular with

probability at most ε/4. Then the matrix

A =
[

g(i, j)
]

i=1,...,`F

j=1,...,`F

is singular with probability at most ε/2.

Intuitively, this lemma bounds the failure probability that the matrix A is singular. We provide the proof
in Appendix B. Additionally, we note that for a given constant ε the size of the `F will be linear in m.

Lemma 3. Given `F > m + 8 ln(2/ε), let `I = O(m log(t/m)), and assume the number of matching files is
at most m out of a stream of t. Then the probability that the number of reconstructed matching indices β is
greater than `F is at most ε/2.

Given the false positive rate of a Bloom filter, the proof is straightforward; we provide it in Appendix C.
Together, Lemma 2 and Lemma 3 provide the primary result:

Theorem 1. If `F = o(log(1/ε)) + O(m), `F > m + 8 ln(2/ε), `I = O(m log(t/m)), and G : KG × Z× Z→
{0, 1} is a (ωt, ωq , ε/8)-secure pseudo-random function family, then when the number of matching files is at
most m in a stream of t, the new scheme using the Bloom filter construction guarantees that the client can
correctly reconstruct all matching files with probability at least 1− ε.

Proof. By Lemma 2, the probability that the matrix A is singular is at most ε/2. By Lemma 3, the probability
that the reconstruction of the matching indices will yield more than `F matching indices is at most ε/2. Since
these are the only two failure cases as explained earlier, the total failure probability, the probability that the
client would fail to reconstruct the matching files, is at most ε.

4.2 Correctness and Complexity (Simple Metadata Construction)

We now consider the complexity in the case of using the simple metadata construction

Theorem 2. If `F = o(log(1/ε)) + O(m), `F > m + 8 ln(2/ε), `I = O(m(log m + log(1/ε))), and G :
KG × Z × Z → {0, 1} is a (ωt, ωq, ε/8)-secure pseudo-random function family, then when the number of
matching files is at most m, the new scheme using the simple metadata construction guarantees that the
client can correctly reconstruct all matching files with probability at least 1− ε.
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Proof. Briefly, the argument for Theorem 2 may be applied again, except that we no longer need Lemma 3.
Instead, we refer to the analysis in [18] that demonstrates that the probability of an overflow in the alternative
matching-indices buffer may be bounded below ε with `I = γm where γ = O(log m + log(1/ε)), producing
an overall communication and storage complexity of O(m log m).

Note that our scheme still produces a constant factor improvement over Ostrovsky-Skeith in this case.
If each file requires s plaintext blocks (i.e., is of length ns bits), then we reduce communication and storage
by a factor of approximately log(sm) for large files. This is accomplished by retrieving the bulk of the
content through the efficient data buffer and only retrieving document indices through the less efficient
matching-indices buffer.

4.3 Security

The security of the proposed scheme (in both variants) according to Definition 1 is straightforward. Intu-
itively, since the server is only provided with an array of encryptions of ones and zeros, the scheme should
be as secure as the underlying cryptosystem.

Theorem 3. If the Paillier cryptosystem is semantically secure, then the proposed private searching scheme
is semantically secure according to Definition 1.

In Appendix D we provide a proof. The proof is straightforward and proceeds as in the case of Ostrovsky and
Skeith. Since the proof depends only on the form of the encrypted query, the variant of the scheme which
will be used is irrelevant. Note that this theorem establishes security based on the decisional composite
residuosity assumption (DCRA), since the Paillier cryptosystem has been proven semantically secure based
on that assumption [19].

5 Extensions

Here we describe a number of extensions to the proposed system which provide additional features or vary
performance tradeoffs.

5.1 Bloom Filter Space Saving

For security it will generally be necessary to use a modulus n of at least 1024 bits (e.g., as required by the
standards ANSI X9.30, X9.31, X9.42, and X9.44 and FIPS 186-2) [20]. If the Bloom filter construction is
used, the fact that the c-values will never approach 21024 reveals that most of its space is wasted. A simple
technique can be used to reclaim some of this space. If we assume that the sums of c-values appearing in
each location in I will be less than 216, for example, we may use each group element to represent n

16
array

entries. In the case of n = 1024, this reduces the size of I by a factor of 64. When we need to multiply a
value E (c) into the Bloom filter in the StreamSearch algorithm, we use the following technique. To multiply
it into the ith location in I , we let i1 = b i

64
c and i2 = i mod 64. Then we compute

I [i1] := I [i1] ·E (c)
216i2

which has the result of shifting c into the i2th 16-bit block within the group element in I [i1]. After the
client decrypts I , they may simply break up each element into 64 regions of 16 bits. This space savings
comes at an additional computation cost, however. The server will need to perform k additional modular
exponentiations for each file it processes.
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5.2 Hashing Keywords

In some applications, the predetermined set of possible keywords D may be unacceptable. Many of the
strings a user may want to search for are obscure (e.g., names of particular people or other proper nouns)
and including them in D would already reveal too much information. Since the size of encrypted queries
is proportional to |D|, it may not be feasible to fill D with, say, every person’s name, much less all proper
nouns.

In such applications an alternative form of encrypted query may be used. Eliminating D, we allow K
to be any finite subset of Σ∗, where Σ is some alphabet. Now in QueryConstruction, we pick a length
`Q for the array Q and initialize each element to E (0). Then for each w ∈ K, we use a hash function
h : Σ∗ → {1, . . . , `Q} to select a location h(w) in Q and set Q[h(w)] := E (1). As before we rerandomize each
encryption. To process the ith file in StreamSearch, the server may now compute E (ci) =

∏

w∈Wi
Q[h(w)].

The rest of the scheme is unmodified. Using this extension, it is possible for a file fi to spuriously match the
query if there is some word w′ ∈ Wi such that h(w′) = h(w) for some w ∈ K. The possibility of such false
positives is the key disadvantage of this approach.

An advantage of this alternative approach, however, is that it is possible to extend the types of possible
queries. Previously only disjunctions of keywords in D were allowed, but in this case a limited sort of
conjunction of strings may be achieved. To support queries of the form “w1 w2” where w1, w2 ∈ Σ∗, we
change the way each Wi is derived from the corresponding file fi. In addition to including each word found
in the file fi, we include all adjacent pairs of words in Wi (note that this approximately doubles the size of
Wi). It is easy to imagine further extensions along these lines. In particular, it is possible to match against
binary data by simply including blocks of the contents of fi in Wi.

5.3 Arbitrary Length Files

In applications where the files are expected to vary significantly in length, an unacceptable amount of space
may be wasted by setting an upper bound on the length of the files and padding smaller files to that length.
Here we describe a modification to the scheme which eliminates this source of inefficiency by storing each
block of a file separately. For convenience, we describe it in terms of the version of the scheme employing
the Bloom filter; applying this technique to the other variant is straightforward.

In this extension QueryConstruction takes two upper bounds on the matching content. We let m1 be
an upper bound on the number of matching files and m2 be an upper bound on the total length of the
matching files, expressed in units of Paillier plaintext blocks. As before, the c-buffer is of length O(m1)
and the matching-indices buffer is of length O(m1 log(t/m1)) (or, using the alternative construction given in
Section 3.4, O(m1 log m1)). The data buffer is now set to length O(m2), and each entry in the data buffer is
now a single ciphertext rather than an array fixed to an upper bound on the length of each file. We introduce
a new buffer on the server called the length buffer, which is an array L set to length O(m1). Intuitively, the
length buffer will be used to store the length of each matching file, and the data buffer will now be used to
store linear combinations of individual blocks from each file rather than entire files.

We briefly describe how this is accomplished in more concrete terms. Replace the corresponding portion
of StreamSearch with the following, where `C = O(m1) is the length of the c-buffer and length buffer,
`F = O(m2) is the length of the data buffer, ĝ : Z

3 → {0, 1} is an additional pseudo-random function, di is
the length of the ith file in the stream, and the di blocks of the file are denoted fi,1, fi,2, . . . , fi,di

.

e := cdi mod n2

for j := 1, 2, . . . , `C :
if g(i, j) = 1 :

C[j] := C[j] · c mod n2

L[j] := L[j] · e mod n2

for j1 := 1, 2, . . . , di :
e := cfi,j1 mod n2
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for j2 := 1, 2, . . . , `F :
if ĝ(i, j1, j2) = 1 :

F [j2] := F [j2] · e mod n2

The client may use a modified version of FileReconstruction to recover the matching files. As before, the
matching-indices buffer I is used to determine a superset of the indices of matching files, and a matrix A of
length `C is constructed based on these indices using g. The vector ~c is again computed as ~c := A−1 · C ′.
The client next computes the lengths of the matching files as ~d := diag(~c)−1 · A−1 · L′. If

∑

i di > `F , the
combined length of the files is greater than the prescribed upper bound and the client aborts. Otherwise,
the data buffer now stores a system of `F ≥ m2 linear equations in terms of the individual blocks of the
matching files. Briefly, the blocks may be recovered by constructing a new matrix Â, filling its entries by
evaluating ĝ over the indices of the blocks of the matching files. The blocks of the matching files are then
computed as ~f := diag(~c ′)−1 · Â−1 · F ′, where ~c ′ is as ~c but with the ith entry repeated di times.

Using this extension, space may be saved if the matching files are expected to vary in size. Some
information about the number expected to match and their total size is still needed to set up the query, but
the available space may now be distributed arbitrarily amongst the files.

5.4 Merging Parallel Searches

Another extension makes multiple server, distributed searches possible. Suppose a collection of servers each
have their own stream of files. The client wishes to run a private search on each of them, but does not wish
to separately download and decipher a full size buffer of results from each. Instead, the client wants the
servers to remotely merge their results before returning them.

This can be accomplished by simply having each server separately run the search algorithm, then mul-
tiplying together (element by element) each of the arrays of resulting ciphertexts. This merging step can
take place on a single collecting server, or in a hierarchical fashion. A careful investigation of the algorithms
reveals that the homomorphism ensures the result is the same as it would be if a single server had searched
the documents in all the streams. Care must be taken, however, to ensure the uniqueness of the document
indices across multiple servers. This can be accomplished by, for example, having servers prepend their IP
address to each document index. Also, it is of course necessary for the buffers on each server to be of the
same length.

Note that if the client splits their query and sends it to each of the remote servers, a different set of
keywords may be used for each stream. Alternatively, a server may split a query to be processed in parallel
for efficiency without the knowledge or participation of the client.

6 Practical Performance Analysis

To better assess the applicability of the new private stream searching scheme in practical scenarios, we now
give a detailed analysis of a realistic application. Specifically, we consider the case of making a private version
of Google’s News Alerts service [2] using the new construction. According to the Google News website, their
web crawlers continuously monitor approximately 4,500 news websites. These include major news portals
such as CNN along with many websites of newspapers, local television stations, and magazines. In this
setting, we analyze four aspects of the resources necessary for a private search: the size of the query sent
to the server (sq), the size of the storage buffers kept by the server while running the search and eventually
transmitted back to the client (sb), the time for the server to process a single file in its stream (tp), and the
time for the client to decrypt and recover the original matching files from the information he receives from
the server (tr). Due to the potential sensitivity of search keywords, we will not use a public dictionary and
we instead assume the use of the hashing extension described in Section 5.2.

Since we may assume that the client does not know ahead of time which news articles will arise to match
their query, we will suppose that each article matches it independently with some fixed proabability. This
results in the number of matching files m being a fixed fraction of number searched t, and so we will use the
Bloom filter construction to obtain O(m) overall communication and storage complexity.
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θ sq optimized sq

0.1 1.3 MB 0.3 MB
0.01 13.1 MB 3.6 MB
0.001 132.8 MB 36.6 MB

Table 2: Size of the encrypted query neces-
sary to achieve a given spurious match rate
before and after optimizations.

6.1 Query Space

If we assume a 1024-bit Paillier key, then the encrypted query Q is 256`Q bytes, since each element from

the set of ciphertexts Z
∗
n2 is dlog2 ne

4
bytes, where n is the public modulus. The smaller `Q is, the more files

will spuriously match the query. Specifically, we obtain the following formula for the the probability θ that
a non-matching file fi will nevertheless result in a non-zero corresponding E (c) (rearranged on the right to
solve for `Q).

θ = 1−

(

1−
|K|

`Q

)|Wi|

`Q =
|K|

1− (1− θ)
1

|Wi|

We performed a sampling of the news articles linked by Google News and found that the average distinct
word count is about 540 per article. This produces the false positive rates for several query sizes listed in
Table 2. The first column specifies a rate of spurious matches θ and the second column gives the size sq of
the minimal Q necessary to achieve that rate for a single keyword search. Additional keywords increase sq

proportionally (e.g., |K| = 2 would double the value of sq). It should be apparent that this is a significant
cost; in fact, it turns out that sq is the most significant component in the total resource usage of the system
under typical circumstances.

Two measures may be taken to reduce this cost. First, note that the majority of distinct words occurring
in the text of a news article are common English words that are not likely to be useful search terms. Given
this observation, the client may specify that the server should ignore the most commonly occurring words
when processing each file. A cursory review of the 3000 most common English words (based on data from
the British National Corpus [1]) confirms that none are likely to be useful search terms. Ignoring those words
reduces the average distinct word count in a news article to about 200.

The second consideration in reducing sq is that a smaller Paillier key may be acceptable. While 1024 bits
is generally accepted to be the minimum public modulus secure for a moderate time frame (e.g., as required
by the standards ANSI X9.30, X9.31, X9.42, and X9.44 and FIPS 186-2) [20], it is important to realize that
a compromise of the Paillier key would not immediately result in the revelation of K. Instead, it would allow
the adversary to mount a dictionary attack, checking potential members of K against Q. Since a string not

in K that is checked against Q will match anyway with probability |K|
`Q

, an attacker may also need some prior

knowledge about potential search terms if they are to gain useful information about K. Without any such
knowledge, checking a very large set of potential words against Q would result in too many false positives
to be useful. Given this consideration, if the client decides a smaller key length is acceptable, sq will be
reduced. The third column in Table 2 gives the size of the encrypted query using a 768-bit key and pruning
out the 3000 most common English words from those searched.

Despite the significant cost of sq in our system, the cost to obtain a comparable level of security is likely
much greater in the system of Ostrovsky and Skeith. In that case sq = 256|D|, where |D| is the set of all
possible keywords that could be searched. In order to reasonably hide K ⊆ D, |D| may have to be quite
large. For example, if we wish to include names of persons in K, in order to keep them sufficiently hidden
we must include many names with them in D. If D consists of names from the U.S. population, sq will be
over 70 GB. It is important to emphasize, however, that the system is not truely stream length independent
when using the keyword hashing technique. Checking longer streams may result in more false positives, but
when using a public dictionary as in Ostrovsky and Skeith, no false positives are possible.
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Figure 4: Server to client communication after a period of searching in the previous
scheme and the new scheme (note difference in scale).

6.2 Storage Buffers Space

We now turn to the size of the buffers maintained by the server during the search and then sent back to the
client. This cost, sb, is both a storage requirement of the server conducting the search and a communication
requirement at the end of the search. We assume fixed length files for this application rather than employing
the extension of Section 5.3. To store the data buffer F , the c-buffer C, and the matching-indices buffer I ,
the server then uses

sb = 256(s`F + `F + `I).

bytes, where s is the number of number of plaintexts from Zn required to represent an article and we assume
the use of 1024-bit key.

The client will specify `F and `I based on the number of documents they expect their search to match in
one period and the desired correctness guarantees. In the case of Google news, we may estimate that each
of the 4,500 crawled news sources produces an average of 30 articles per day [2]. If the client retrieves the
current search results four times per day, then the number of files processed in each period is t = 33, 750.
Now the client cannot know ahead of time how many articles will match their query, so they instead estimate
an upper bound m. Based on this estimate, the analysis in Section 4 may be used to select values for `F

and `I that ensure the probability of an overflow is acceptably small. In these experiments, we determined
the minimum values for `F and `I empirically.

A range of desired values of m were considered and the results are displayed in Figure 4(b). In each
case, `F and `I were selected so that the probability of an overflow was less than 0.01. Also, the spurious
match rate θ was taken to be 0.001, and the news articles were considered to be 5 KB in size (text only,
compressed). Note that sb is linear with respect to the size of the matching files. More specifically, the data
displayed in Figure 4(b) reveals that it is about 2.4 times the size of the matching files. For comparison, the
space stored by the server and returned to the client using the Ostrovsky-Skeith scheme for private searching
in this scenario is shown in Figure 4(a).5 Note that this graph differs in scale from Figure 4(b).

To summarize, in the proposed system sb ranges from about 564 KB to about 6.63 MB when the expected

5The paper describing this system did not explicitly state a minimum buffer length for a given number of files expected to
be retrieved and a desired probability of success, but instead gave a loose upper bound on the length. Rather than using the
bound, we ran a series of simulations to determine exactly how small the buffer could be made while maintaining an overflow
rate below 0.05.

16



tp with tp with
m 768-bit key 1024-bit key

2 359 ms 600 ms
8 362 ms 600 ms

32 373 ms 603 ms
128 420 ms 617 ms
512 593 ms 669 ms

Table 3: The time necessary for the server to
process a file.

number of matching files ranges from 2 to 512 and the overflow rate is held below 0.01. In the Ostrovsky-
Skeith scheme, sb would range from about 282 KB to 110 MB.

6.3 File Stream Processing Time

Next we consider the time tp necessary for the server to process each file in its stream. This is essentially
determined by the time necessary for modular multiplications in Z

∗
n2 and modular exponentiations in Z

∗
n2

with exponents in Zn. To roughly estimate these times, benchmarks were run on a modern workstation.
The processor was a 64-bit, 3.2 Ghz Pentium 4. We used the GNU Multiple Precision Arithmetic Library
(GMP), a library for arbitrary precision arithmetic that is suitable for cryptographic applications. With
768-bit keys, multiplications and exponentiations took 3.9µs and 6.2 ms respectively. With 1024-bit keys,
the times increased to 6.3µs and 14.7 ms.

The first step carried out for in processing the ith file in the StreamSearch procedure is computing
E (c); this takes |Wi| − 1 multiplications. We again use |Wi| = 540 as described in Section 6.1. Computing
E (cfi) requires s modular exponentiations. Updating the data buffer requires an average of s · `F

2
modular

multiplications, updating the c-buffer requires another `F

2
multiplications, and updating the matching-indices

buffer requires k = b `I log 2

m
c multiplications. The time necessary for these steps is given for several values

of m in Table 3. The majority of tp is due to the s modular exponentiations. Since the Ostrovsky-Skeith
scheme requires the same number of modular exponentiations, the processing time for each file would be
similar.

6.4 File Recovery Time

Finally, we consider the time necessary for the client to recover the original matching files after a period of
searching, tr. This time is composed of the time to decrypt the returned buffers and the time to setup and
solve a system of linear equations, producing the matching documents. A decryption requires 1536 modular
multiplications with a 1024-bit key and 1152 with a 768-bit key [9]. The times necessary to decrypt the
buffers are given in the third column of Table 6.4. This time is typically less than a minute, but can take as
long as five with many files.

The most straightforward way to solve the system of linear equations is by performing LUP decomposition
over Zn. Although LUP decomposition of an n × n matrix is expensive (Θ(n3)), practical cases are quite
feasible. A naive implementation resulted in the benchmarks shown in the fourth column of Table 6.4. The
total time to recover the matching files is given in the final column of Table 6.4.

Although the time spent in matrix inversions is a significant additional cost of the new scheme over
Ostrovsky-Skeith, it is more than offset by the reduced buffer size and resulting reduction in decryption
time. In Ostrovsky-Skeith, the times to decrypt the buffer returned to the client in this scenario range from
6.79 seconds for m = 2 to 45.5 minutes for m = 512, using a 768-bit key. With a 1024-bit key, the buffer
decryption times range from 10.8 seconds to 1.21 hours.
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key length m decryption time inversion time total time

768 2 14 s <0.1 s 14 s
768 8 15 s <0.1 s 15 s
768 32 23 s <0.1 s 23 s
768 128 54 s 1.4 s 55 s
768 512 2.7 m 1.8 m 4.5 m

1024 2 23 s <0.1 s 23 s
1024 8 26 s <0.1 s 26 s
1024 32 38 s <0.1 s 38 s
1024 128 1.4 m 21 s 1.8 m
1024 512 4.4 m 2.9 m 7.3 m

Table 4: Time (in seconds and minutes) necessary to recover the original documents
from the returned results.

7 Conclusion

The primary contribution of our scheme is achieving the optimal linear overhead in returning the bulk content
of matching files to the client. Our scheme also requires either O(m log m) or O(m log(t/m)) space to return
some metadata, depending on the variant used. In the common streaming case of each document matching
independently from other documents, the latter variant results in the optimal O(m) complexity, with near
optimal constant factors. With the former variant, significant constant factor improvements are made over
the previous scheme of Ostrovsky and Skeith. Both versions of our scheme achieve the increased efficiency
through a novel technique for efficiently spreading the matching documents throughout the buffer of results,
the latter also employing a unique encrypted Bloom filter construction. Finally, we proved correctness and
security results for the scheme and noted some extensions.

We have also given a detailed example demonstrating the new techniques in applications not previously
practical. In particular, we have considered the case of conducting a private search on essentially all news
articles on the web as they are generated, estimating this number to be 135,000 articles per day. In order
to establish the private search, the client has a one time cost of approximately 10 MB to 100 MB in upload
bandwidth. Several times per day, they download about 500 KB to 7 MB of new search results, allowing up
to about 500 articles per time interval. After receiving the encrypted results, the client’s PC spends under
a minute recovering the original files, or up to about 7 minutes if many files are retrieved. To provide the
searching service, the server keeps about 500 KB to 7 MB of storage for the client and spends roughly 500 ms
processing each new article it encounters. In this scenario, the previous scheme would require up to twelve
times the communication and take up to four times as long for the client to recover the results.
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A Terms and Notation

For easy reference, we provide a single list of the terms and variables introduced and defined throughout the
text.

client the person or machine conducting a private search, i.e., generating a private query and eventually
recovering the content that matched the query

server the person or machine carrying out the private search on the behalf of the client

n Paillier public key (n = p1p2, where p1 and p2 are large, secret primes)

s an upper bound on the length of a file as a number of elements from Zn, i.e., if files are at most b bits,
then s = d b

dlog2 nee

t number of files processed by the server before returning buffers to the client

ρ false positive rate of the Bloom filter I

D global dictionary of potential keywords

K the set of keywords forming the query

wi the ith word in D

qi the ith entry in the query array (before encryption), corresponds to wi

fi the ith file checked by the server

Wi the words present in or associated with the ith file6

ci the number of distinct keywords matched by the ith file, i.e., |K ∩Wi|

m an upper bound on the number of files which may be retrieved

r the number of files which actually match the query

Q the encrypted query, an array of |D| elements from Z
∗
n2

F the data buffer, an array of `F elements, each of which is an array of s elements from Z
∗
n2

C the coefficients buffer, an array of `F elements from Z
∗
n2

I the matching indices buffer, an array of `I elements from Z
∗
n2

k the number of hash functions to be used with the matching indices buffer, set to b `I log 2
m
c

sq the size of the query sent to the server

sb the size of the storage buffers kept by the server while running the search and eventually transmitted
back to the client

tp the time for the server to process a single file in its stream

tr the time for the client to decrypt and recover the original matching files from the information it receives
from the server

6In the case of text documents, this is essentially the file itself; in the case of binary files, this set of words may be metadata
bundled with the file (e.g., the ID3 tag of an MP3 file).
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B Proof of Lemma 2

Lemma 2. Let G : KG × Z × Z → {0, 1} be a (ωt, ωq , ε/8)-secure pseudo-random function family. Let

g = Gk, where k
R
←− KG . Let `F = o(log(1/ε)) such that an `F × `F random (0, 1)-matrix is singular with

probability at most ε/4. Then the matrix

A =
[

g(i, j)
]

i=1,...,`F

j=1,...,`F

is singular with probability at most ε/2.

Proof. We know that an `F × `F random (0, 1)-matrix is singular with probability at most ε/4. However,
in our scheme, A is not a random matrix, but a matrix constructed using the pseudo-random function g.
Thus, we need the additional proof step to show that the matrix A we constructed using the pseudo-random
function g also satisfies the non-singular property with overwhelming probability, otherwise, we could break
the pseudo-random function. This proof step is as follows.

Now assume for contradiction that the matrix A is singular with probability greater than ε/2. Then
we show that we can construct an adversary B with AdvB > ε/8 with polynomial number of queries and
polynomial time, and thus contradicting the original assumptions of G.

To do so, we play the following game. We flip a coin θ ∈ {0, 1} with a half and half probability, the
adversary B is given one of two worlds in which he can make a number of queries to a given oracle. If θ = 1,

B is given world one, where g = Gk, k
R
←− KG , and the oracle responds to a query (i, j) with g(i, j). If θ = 0,

the adversary B is given world two, where the oracle responds to a query (i, j) by picking a random function
R mapping (i, j) to {0, 1}, i.e., by flipping a coin b ∈ {0, 1} with a half and half probability and returning b
(using a table of previous queries to ensure consistency). After a series of queries, the adversary B guesses
which world he is in. The adversary B makes his guess using the following strategy: First, the adversary B
constructs a matrix A by querying the oracle for all (i, j) where i ∈ {1, . . . , `F } and j ∈ {1, . . . `F }; then the
adversary B checks if A is singular. If yes, he guesses that he is in world one. If not, he guesses that he is
in world two.

Thus, we can compute the advantage of such an adversary B.

AdvB = |Pr[Bg = 1]− Pr[BR = 1]| = |1/2 Pr[A is singular|θ = 1]− 1/2 Pr[A is singular|θ = 0]| .

From the above assumptions, Pr[A is singular|θ = 1] > ε/2, and Pr[A is singular|θ = 0] < ε/4, thus
AdvB > ε/8, contradicting the original assumptions of G.
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C Proof of Lemma 3

Lemma 3. Given `F > m + 8 ln(2/ε), let `I = O(m log(t/m)), and assume the number of matching files is
at most m, the probability that the number of reconstructed matching indices β is greater than `F is at most
ε/2.

Proof. The number of reconstructed matching indices β equals to the number of truly matching files plus
the number of false positives from the reconstruction using the Bloom filter. Thus, we need to bound this
number of false positives to be at most `F −m.

The false positive rate ρ of the Bloom filter storing m entries is as follows [4].

ρ =

(

1

2

)

`I log 2

m

(3)

Thus, the expectation of the number of false positives is ρt. For simplicity, let’s set ρt = (`F −m)/2.
Thus `I = m(log 2)−2 log( 2t

`F −m
). Since `F is set to be linear in m, with `I = O(m log(t/m)) the expected

number of false positives can be bounded far from `F .
Moreover, we can model the number of false positives with a binomial random variable X with rate

parameter ρ and approximate it with a Gaussian centered at the expected number of false positives. From
Chernoff bounds, we can derive that Pr[X > `F −m] < exp(−(`F −m)/8). Thus, with `F > m + 8 ln(2/ε),
we can show that this probability is bounded by ε/2. Thus, we show that the above lemma holds.
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D Proof of Theorem 3

Here we provide a proof of the semantic security of the proposed private searching system assuming the
semantic security of the Paillier cryptosystem. The proof is simple; in fact it proceeds in the same way as
the proof of semantic security in Ostrovsky and Skeith’s scheme [18]. The same proof applies whether we
are using encrypted queries of the original form proposed by Ostrovsky and Skeith or the hash table queries
we propose as an extension in Section 5.2.

Theorem 3. If the Paillier cryptosystem is semantically secure, then the proposed private searching scheme
is semantically secure according to Definition 1.

Proof. We assume there is an adversary A that can play the game described in Definition 1 with non-
negligible advantage ε in order to show that we then have non-negligible advantage in breaking the security
of the Paillier cryptosystem.

First we initiate a game with the Paillier challenger, receiving public key n. We choose plaintexts
m0, m1 ∈ Zn to be simply m0 = 0 and m1 = 1. We return them to the Paillier challenger who secretly flips
a coin β1 and sends us E (mβ1

).
Now we initiate a game with A and send them the modulus n, challenging them to break the semantic

security of the private searching system. They send us two sets of keywords, K0 and K1. We flip a coin β2

and construct the query Qβ2
by passing Kβ2

to QueryConstruction. Next we replace all the entries in Qβ2

which are encryptions of one with E (mβ1
), re-randomizing each time by multiplying by a new encryption of

zero. Note that with probability one half, β1 = 0 and Qβ2
is a query that searches for nothing. In this case

β2 has no influence on Qβ2
since Qβ2

consists solely of uniformly distributed encryptions of zero. Otherwise,
Qβ2

searches for Kβ2
.

Next we give Qβ2
to A. After investigation, A returns their guess β′

2. If β′
2 = β2, we let the guess for

our challenge be β′
1 = 1 and return it to the Paillier challenger. Otherwise we let β ′

1 = 0 and send it to the
Paillier challenger.

Since A is able to break the semantic security of the private searching system, if β1 = 1 the probability
that β′

2 = β2 is 1
2

+ ε, where ε is a non-negligible function of the security parameter n. If β1 = 0, then
P (β′

2 = β2) = 1
2
, since β2 was chosen uniformly at random and it had no bearing on the choice of β ′

2. Now
we may compute our advantage in our game with the Paillier challenger as follows.

P (β′
1 = β1) = P (β′

1 = 1|β1 = 1)
1

2
+ P (β′

1 = 0|β1 = 0)
1

2

=
(1

2
+ ε
)1

2
+

1

2
·
1

2

=
1

2
+

ε

2

Since ε is non-negligible, so is ε
2
.
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