
Dynamic Taint Analysis for Automatic Detection,

Analysis, and Signature Generation of Exploits

on Commodity Software

James Newsome Dawn Song

May 2004

Last updated July 2005

CMU-CS-04-140

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213



Abstract

Software vulnerabilities have had a devastating effect on the Internet.
Worms such as CodeRed and Slammer can compromise hundreds of thou-
sands of hosts within hours or even minutes, and cause millions of dollars
of damage [32, 51]. To successfully combat these fast automatic Internet
attacks, we need fast automatic attack detection and filtering mechanisms.
In this paper we propose dynamic taint analysis for automatic detection and
analysis of overwrite attacks, which include most types of exploits. This
approach does not need source code or special compilation for the moni-
tored program, and hence works on commodity software. To demonstrate
this idea, we have implemented TaintCheck, a mechanism that can perform
dynamic taint analysis by performing binary rewriting at run time. We
show that TaintCheck reliably detects most types of exploits. We found
that TaintCheck produced no false positives for any of the many different
programs that we tested. Further, we show how we can use a two-tiered
approach to build a hybrid exploit detector that enjoys the same accuracy
as TaintCheck but have extremely low performance overhead.
Finally, we propose a new type of automatic signature generation—semantic-
analysis based signature generation. We show that by backtracing the chain
of tainted data structure rooted at the detection point, TaintCheck can au-
tomatically identify which original flow and which part of the original flow
have caused the attack and identify important invariants of the payload that
can be used as signatures. Semantic-analysis based signature generation can
be more accurate, resilient against polymorphic worms, and robust to at-
tacks exploiting polymorphism than the pattern-extraction based signature
generation methods.

Keywords: Worms, exploits, intrusion detection, taint analysis, auto-
matic signature generation



1 Introduction

Software vulnerabilities such as buffer overruns and format string vulnerabil-
ities have had a devastating effect on the Internet. Worms such as CodeRed
and Slammer exploit software vulnerabilities and can compromise hundreds
of thousands of hosts within hours or even minutes, and cause millions of
dollars of damage [32, 51]. To successfully combat fast Internet worm at-
tacks, we need automatic detection and defense mechanisms. First, we need
automatic detection mechanisms that can detect new attacks for previously
unknown vulnerabilities. A detection mechanism should be easy to deploy,
result in few false positives and few false negatives, and detect attacks early,
before a significant fraction of vulnerable systems are compromised. Second,
once a new exploit attack is detected, we must quickly develop filters (a.k.a.
attack signatures) that can be used to filter out attack packets efficiently,
and hence protect vulnerable hosts from compromise until the vulnerability
can be patched. Because a new worm can spread quickly, signature gen-
eration must be automatic—no manual intervention can respond quickly
enough to prevent a large number of vulnerable hosts from being infected
by a new fast-spreading worm.

We need fine-grained attack detectors for commodity software.
Many approaches have been proposed to detect new attacks. These ap-
proaches roughly fall into two categories: coarse-grained detectors, that de-
tect anomalous behavior, such as scanning or unusual activity at a certain
port; and fine-grained detectors, that detect attacks on a program’s vul-
nerabilities. Coarse-grained detectors may result in frequent false positives,
and do not provide detailed information about the vulnerability and how
it is exploited. Thus, it is desirable to develop fine-grained detectors that
produce fewer false positives, and provide detailed information about the
vulnerability and exploit.

Several approaches for fine-grained detectors have been proposed that
detect when a program is exploited. Most of these previous mechanisms
require source code or special recompilation of the program, such as Stack-
Guard [19], PointGuard [18], full-bounds check [27, 45], LibsafePlus [8], For-
matGuard [17], and CCured [34]. Some of them also require recompiling the
libraries [27, 45], or modifying the original source code, or are not compatible
with some programs [34, 18]. These constraints hinder the deployment and
applicability of these methods, especially for commodity software, because
source code or specially recompiled binaries are often unavailable, and the
additional work required (such as recompiling the libraries and modifying



the original source code) makes it inconvenient to apply these methods to a
broad range of applications. Note that most of the large-scale worm attacks
to date are attacks on commodity software.

Thus, it is important to design fine-grained detectors that work on com-
modity software, i.e., work on arbitrary binaries without requiring source
code or specially recompiled binaries. This goal is difficult to achieve because
important information, such as type information, is not generally available
in binaries. As a result, existing exploit detection mechanisms that do not
use source code or specially compiled binary programs, such as LibSafe [9],
LibFormat [44], Program Shepherding [29], and the Nethercote-Fitzhardinge
bounds check [35], are typically tailored for narrow types of attacks and fail
to detect many important types of common attacks (see Section 7 for de-
tails).

We need automatic tools for exploit analysis and signature gen-
eration. Because fine-grained detectors are expensive and may not be de-
ployed on every vulnerable host, once a new exploit attack is detected, it is
desirable to generate faster filters that can be widely deployed to filter out
exploit requests before they reach vulnerable hosts/programs. One impor-
tant mechanism is content-based filtering, where content-based signatures
are used to pattern-match packet payloads to determine whether they are
a particular attack. Content-based filtering is widely used in intrusion de-
tection systems such as Snort [40], Bro [39], and Cisco’s NBAR system [53],
and has been shown to be more effective than other mechanisms, such as
source-based filtering for worm quarantine [33]. However, these systems all
use manually generated databases of signatures. Manual signature genera-
tion is clearly too slow to react to a worm that infects hundreds of thousands
of machines in a matter of hours or minutes. We need to have automatic
exploit analysis and signature generation to quickly generate signatures for
attack filtering after an exploit attack has been detected.

Our contributions. In this paper, we propose a new approach, dynamic
taint analysis, for the automatic detection, analysis, and signature genera-
tion of exploits on commodity software. In dynamic taint analysis, we label
data originating from or arithmetically derived from untrusted sources such
as the network as tainted. We keep track of the propagation of tainted data
as the program executes (i.e., what data in memory is tainted), and detect
when tainted data is used in dangerous ways that could indicate an attack.
This approach allows us to detect overwrite attacks, attacks that cause a

2



sensitive value (such as return addresses, function pointers, format strings,
etc.) to be overwritten with the attacker’s data. Most commonly occurring
exploits fall into this class of attacks. After an attack has been detected,
our dynamic taint analysis can automatically provide information about the
vulnerability, how the vulnerability was exploited, and which part of the pay-
load led to the exploit of the vulnerability. We show how this information
could be used to automatically generate signatures for attack filtering. We
have developed an automatic tool, TaintCheck, to demonstrate our dynamic
taint analysis approach. TaintCheck offers several unique benefits:

• Does not require source code or specially compiled binaries.
TaintCheck operates on a normally compiled binary program. This
makes TaintCheck simple and practical to use for a wide variety of
programs, including proprietary programs and commodity programs
for which no source code is available.

• Reliably detects most overwrite attacks. TaintCheck’s default
policy detects format string attacks, and overwrite attacks that at-
tempt to modify a pointer used as a return address, function pointer,
or function pointer offset. Its policy can also be extended to detect
other overwrite attacks, such as those that attempt to overwrite data
used in system calls or security-sensitive variables.

• Has no known false positives. In our experiments, TaintCheck
gave no false positives in its default configuration. As we discuss in
Section 3, in many cases when a false positive could occur, it is a
symptom of a potentially exploitable bug in the monitored program.
For programs where the default policy of TaintCheck could generate
a false positive, we show in Section 3 that it is straightforward to
configure TaintCheck to reduce or eliminate those false positives.

• Provides automatic analysis and input-correlation of exploit
attacks. Once TaintCheck detects an overwrite attack, it can auto-
matically provide information about the vulnerability and how the vul-
nerability is exploited. By back-tracing the chain of tainted data struc-
ture rooted at the detection point, TaintCheck automatically identifies
which original flow and which part of the original flow have caused the
attack. TaintCheck also provides detailed information about how the
execution path of the attack including the program counter and call
stack at every point the program operated on the relevant tainted data.

3



• Achieves low performance overhead using a two-tiered hy-
brid detector approach. TaintCheck could incur significant perfor-
mance overhead due to its dynamic analysis nature. To ensure low
performance overhead, we propose a two-tiered approach for building
a hybrid detector which enjoys the accuracy of TaintCheck but at the
same time has extremely low performance overhead. The two-tiered
approach uses anomaly detection and flow sampling techniques to se-
lect flows and only selected flows will be replayed for analysis under
TaintCheck. We show that in a distributed setting, this approach can
detect new worm attacks extremely early on and accurately.

• Enables automatic semantic analysis based signature gener-
ation.

We propose a new approach for automatic signature generation: using
automatic semantic analysis of attack payloads to identify which parts
of the payload could be useful in an attack signature. Previous work
in automatic signature generation uses content pattern extraction to
generate signatures [28, 31, 49]. The information provided by seman-
tic analysis could be used to generate a signature directly, or as hints
to content pattern extraction techniques. Because semantic analysis
provides information about the vulnerability and how it is exploited,
it could potentially allow an accurate signature to be automatically
generated using fewer payloads than would be necessary using content
pattern extraction alone. By requiring fewer attack payloads, seman-
tic analysis could generate a signature at an earlier stage of a worm
epidemic, thus minimizing damage caused by a new worm. By identi-
fying invariants that are necessary in the payload via semantic analysis
of the vulnerability and how the vulnerability is exploited, semantic-
analysis based automatic signature generation is more resilient against
polymorphic and metamorphic worm attacks.

TaintCheck could be used to perform automatic semantic analysis of
attack payloads, because it monitors how each byte of each attack
payload is used by the vulnerable program at the processor-instruction
level. As a first step, we show that TaintCheck can be used to identify
the value used to overwrite a return address or function pointer. The
most significant bytes of this value can be used as part of a signature.
We also show that for text-based protocols such as HTTP, it can be
used as a signature by itself, with only a small false positive rate.

Moreover, we show how TaintCheck can be used as an accurate clas-

4



sifier both in existing automatic signature generation systems, and in
an automatic semantic analysis signature generation system. As an
accurate classifier, TaintCheck can be used to accurately identify new
attacks.

• Enables signature/alert verification. TaintCheck can also be used
to verify an automatically disseminated alert and the quality of gener-
ated signatures. To verify an alert is valid, the recipient can use Taint-
Check to evaluate the program by replaying a network log supplied in
the alert. TaintCheck can be used to evaluate the false positive rate
of generated signatures by determining whether requests that match
a new signature actually contain an attack.

TaintCheck adds a new point in the design space of automatic detection
and defense, and is the first approach that achieves all the above properties.

The rest of the paper is organized as follows. We describe TaintCheck’s
design and implementation, and how it detects various attacks, in Section 2.
We show TaintCheck is able to detect a wide variety of attacks with few
false positives and negatives in Section 3. We evaluate the effectiveness and
performance of TaintCheck in Section 4. We discuss how TaintCheck can be
applied to detection of new attacks in Section 5, and to automatic signature
generation in Section 6. We present related work in Section 7, and our
conclusions in Section 8.

2 TaintCheck design and implementation

TaintCheck is a novel mechanism that uses dynamic taint analysis to detect
when a vulnerability such as a buffer overrun or format string vulnerabil-
ity is exploited. We first give an overview of our dynamic taint analysis
approach, and then describe how we use this approach in the design and
implementation of TaintCheck.

Dynamic taint analysis Our technique is based on the observation that
in order for an attacker to change the execution of a program illegitimately,
he must cause a value that is normally derived from a trusted source to
instead be derived from his own input. For example, values such as jump
addresses and format strings should usually be supplied by the code itself,
not from external untrusted inputs. However, an attacker may attempt to
exploit a program by overwriting these values with his own data.

5



We refer to data that originates or is derived arithmetically from an
untrusted input as being tainted. In our dynamic taint analysis, we first
mark input data from untrusted sources tainted, then monitor program ex-
ecution to track how the tainted attribute propagates (i.e., what other data
becomes tainted) and to check when tainted data is used in dangerous ways.
For example, use of tainted data as jump addresses or format strings often
indicates an exploit of a vulnerability such as a buffer overrun or format
string vulnerability.

Note that our approach detects attacks at the time of use, i.e., when
tainted data is used in dangerous ways. This significantly differs from many
previous approaches which attempt to detect when a certain part of memory
is illegitimately overwritten by an attacker at the time of the write. It is
not always possible at the time of a write to detect that the overwrite is
illegitimate, especially for approaches not using source code or specially
recompiled binaries. In contrast, our approach does not rely on detection
at the time of overwrite and is independent of the overwriting method, and
thus can detect a wide range of attacks.

Design and implementation overview TaintCheck performs dynamic
taint analysis on a program by running the program in its own emulation
environment. This allows TaintCheck to monitor and control the program’s
execution at a fine-grained level. We have two implementations of Taint-
Check: we implemented TaintCheck using Valgrind [36]. Valgrind is an open
source x86 emulator that supports extensions, called skins, which can instru-
ment a program as it is run.1 We also have a Windows implementation of
TaintCheck that uses DynamoRIO [3], another dynamic binary instrumen-
tation tool. For simplicity of explanation, for the remainder of this paper,
we refer to the Valgrind implementation unless otherwise specified.

Whenever program control reaches a new basic block, Valgrind first
translates the block of x86 instructions into its own RISC-like instruction set,
called UCode. It then passes the UCode block to TaintCheck, which instru-
ments the UCode block to incorporate its taint analysis code. TaintCheck
then passes the rewritten UCode block back to Valgrind, which translates

1Note that while Memcheck, a commonly used Valgrind extension, is able to assist
in debugging memory errors, it is not designed to detect attacks. It can detect some
conditions relevant to vulnerabilities and attacks, such as when unallocated memory is
used, when memory is freed twice, and when a memory write passes the boundary of
a malloc-allocated block. However, it does not detect other attacks, such as overflows
within an area allocated by one malloc call (such as a buffer field of a struct), format
string attacks, or stack-allocated buffer overruns.

6



TaintTracker

 

TaintSeed TaintAssert

Data from
Socket

Buffer
Malloc’d

Detected!
Add

Untainted Data

(via double−free)
Copy

Use as
Fn Pointer

Attack

Figure 1: TaintCheck detection of an attack. (Exploit Analyzer not shown).

the block back to x86 code so that it may be executed. Once a block has
been instrumented, it is kept in Valgrind’s cache so that it does not need to
be reinstrumented every time it is executed.

To use dynamic taint analysis for attack detection, we need to answer
three questions: (1) What inputs should be tainted? (2) How should the
taint attribute propagate? (3) What usage of tainted data should raise an
alarm as an attack? To make TaintCheck flexible and extensible, we have
designed three components: TaintSeed, TaintTracker, and TaintAssert to
address each of these three questions in turn. Figure 1 shows how these
three components work together to track the flow of tainted data and detect
an attack. Each component has a default policy and can easily incorporate
user-defined policies as well. In addition, each component can be configured
to log information about taint propagation, which can be used by the fourth
component we have designed, the Exploit Analyzer. When an attack is de-
tected, the Exploit Analyzer performs post-analysis to provide information
about the attack, including identifying the input that led to the attack, and
semantic information about the attack payload. This information can be
used in automatic attack signature generation, as we show in Section 6.

2.1 TaintSeed

TaintSeed marks any data that comes from an untrusted source of input as
tainted. By default, TaintSeed considers input from network sockets to be
untrusted, since for most programs the network is the most likely vector of
attack. TaintSeed can also be configured to taint inputs from other sources
considered untrusted by an extended policy, e.g., input data from certain
files or stdin.

Each byte of memory, including the registers, stack, heap, etc., has a
four-byte shadow memory that stores a pointer to a Taint data structure if
that location is tainted, or a NULL pointer if it is not. We use a page-table-

7



like structure to ensure that the shadow memory uses very little memory in
practice. TaintSeed examines the arguments and results of each system call,
and determines whether any memory written by the system call should be
marked as tainted or untainted according to the TaintSeed policy. When the
memory is tainted, TaintSeed allocates a Taint data structure that records
the system call number, a snapshot of the current stack, and a copy of the
data that was written. The shadow memory location is then set to a pointer
to this structure. This information can later be used by the Exploit Analyzer
when an attack is detected. Optionally, logging can be disabled, and the
shadow memory locations can simply store a single bit indicating whether
the corresponding memory is tainted.

2.2 TaintTracker

TaintTracker tracks each instruction that manipulates data in order to de-
termine whether the result is tainted. UCode Instructions fall into three
categories: data movement instructions that move data (LOAD, STORE,
MOVE, PUSH, POP, etc.), arithmetic instructions that perform arithmetic
operations on data (ADD, SUB, XOR, etc.), and those that do neither
(NOP, JMP, etc.). The default policy of TaintTracker is as follows: for data
movement instructions, the data at the destination will be tainted if and
only if any byte of the data at the source location is tainted; for arithmetic
instructions, the result will be tainted if and only if any byte of the operands
is tainted. While arithmetic instructions also affect the processor’s condition
flags, we do not track whether the flags are tainted, because it is normal for
untrusted data to influence them. Note that for both data movement and
arithmetic instructions, literal values are considered untainted, since they
originate either from the source code of the program or from the compiler.

A special case is for constant functions where the output of the function
does not depend on the inputs. For example, a common IA-32 idiom to zero
out a register, “xor eax, eax”, always sets eax to be zero regardless of
whether the original value in eax is tainted or not. TaintTracker recognizes
these special cases such as xor eax, eax and sub eax, eax, and sets the
result location to be untainted. Note that there can be more general cases
of constant functions where a sequence of instructions computes a constant
function. We do not handle these more general cases. However, such cases
will only make the dynamic taint analysis conservative and it has not been
an issue in practice.

Another special case is when tainted data is used as an index into a ta-
ble. For example, an implementation of toupper, which converts a string to

8



all upper case, is to use each byte as an index into a translation table. For
example, IIS translates ASCII input into Unicode via a table [20]. Taint-
Tracker implements an option which taints data that is loaded via a tainted
pointer, so that a tainted string translated in this manner remains tainted.

In order to track the propagation of tainted data, TaintTracker adds in-
strumentation before each data movement or arithmetic instruction. When
the result of an instruction is tainted by one of the operands, TaintTracker
sets the shadow memory of the result to point to the same Taint struc-
ture as the tainted operand. Optionally, TaintTracker can instead allocate
a new Taint structure with information about the relevant instruction (in-
cluding the operand locations and values, and a snapshot of the stack) that
points back to the previous Taint structure. When an attack is detected,
the Exploit Analyzer can follow this chain of Taint structures backwards to
determine how the tainted data propagated through memory.

2.3 TaintAssert

TaintAssert checks whether tainted data is used in ways that its policy
defines as illegitimate. TaintAssert’s default policy is designed to detect
format string attacks, and attacks that alter jump targets including return
addresses, function pointers, or function pointer offsets. When TaintCheck
detects that tainted data has been used in an illegitimate way, signaling a
likely attack, it invokes the Exploit Analyzer to further analyze the attack.

The following are potentially illegitimate ways in which tainted data
might be used. TaintAssert’s policy can be specified to check for any of
these independently.

• Jump addresses By default, TaintAssert checks whether tainted data
is used as a jump target, such as a return address, function pointer,
or function pointer offset. Many attacks attempt to overwrite one of
these in order to redirect control flow either to the attacker’s code, to
a standard library function such as exec, or to another point in the
program (possibly circumventing security checks). In contrast, there
are very few scenarios in which tainted data would be used as a jump
target during normal usage of a program, and we have not found any
such examples in our testing. Hence, these checks detect a wide variety
of attacks while generating very few false positives.

Note that jump tables are a possible exception to this rule. A jump
table could use user input as an offset to a jump address. This is an
acceptable programming practice if there are checks in place to sanitize

9



the tainted data. gcc does not appear to construct jump tables in this
way in practice, but other compilers or hand-coded assembly might.
See Section 3 for further discussion of this scenario.

We implemented these checks by having TaintCheck place instrumen-
tation before each UCode jump instruction to ensure that the data
specifying the jump target is not tainted. Note that IA-32 instructions
that have jump-like behavior (including call and ret) are translated
into UCode jump instructions by Valgrind.

• Format strings By default, TaintAssert also checks whether tainted
data is used as a format string argument to the printf family of
standard library functions. These checks detect format string attacks,
in which an attacker provides a malicious format string to trick the
program into leaking data or into writing an attacker-chosen value to
an attacker-chosen memory address. These checks currently detect
whenever tainted data is used as a format string, even if it does not
contain malicious format specifiers for attacks. This could be used to
discover previously unknown format string vulnerabilities. Optionally,
TaintAssert can instead only signal when the format string both is
tainted and contains dangerous format specifiers such as %n. This
option is useful when a vulnerability is already known, and the user
only wants to detect actual attacks.

To implement these checks, we intercept calls to the printf family of
functions (including syslog) with wrappers that request TaintCheck
to ensure that the format string is not tainted, and then call the orig-
inal function. For most programs, this will catch any format string
attack and not interfere with normal functionality. However, if an ap-
plication uses its own implementation of these functions, our wrappers
may not be called.

• System call arguments TaintAssert can check whether particular
arguments to particular system calls are tainted, though this is not
enabled in TaintCheck’s default policy. This could be used to detect
attacks that overwrite data that is later used as an argument to a
system call. These checks are implemented using Valgrind’s callback
mechanism to examine the arguments to each system call before it is
made.

As an example, we implemented an optional policy to check whether
the argument specified in any execve system call is tainted. This
could be used to detect if an attacker attempts to overwrite data that

10



is later used to specify the program to be loaded via an execve system
call. We disabled this check by default, because some programs use
tainted data in this way during normal usage. A notable example is
that Apache uses part of a URL string as the argument to execve

when a CGI is requested.

• Application or library-specific checks TaintAssert can also be
configured to detect attacks that are specific to an application or li-
brary. It can do this by checking specified memory ranges at specified
points of the program. In particular, it can be configured to check
whether a particular argument to a particular function is tainted when-
ever that function is called. An example of this is checking the format
strings supplied to printf-style functions, as described above.

To implement this, TaintCheck could be told to check whether a partic-
ular address range or register is tainted whenever the program counter
reaches a particular value, or whenever it is used in a certain way. The
address range specified could be absolute, or could be relative to the
current stack frame. This policy is application dependent and is dis-
abled by default.

These checks are sufficient to catch a wide range of attacks. There are
two other types of checks we also considered, but decided not to use. The
first is tracking which flags are tainted, and checking when a tainted flag is
used to alter control flow. This could detect when the attacker overwrites a
variable that affects the behavior of the program. However, tainted data is
used to alter control flow on a regular basis, and it is unclear whether there
is a reliable way to differentiate the normal case from an attack.

The second type is checking whether addresses used in data movement
instructions are tainted. This could detect when an attacker overwrites a
data pointer in order to control where data is moved to or loaded from.
However, it is common to use tainted data as an offset to data movement
instructions, particularly in the case of arrays.

2.4 Exploit Analyzer

When TaintAssert detects that tainted data has been used in a way violating
its security policy, thus signaling a likely exploit, the Exploit Analyzer can
provide useful information about how the exploit happened, and what the
exploit attempts to do. These functions are useful for identifying vulnera-
bilities and for generating exploit signatures.

11



Backtracing. Information logged by TaintSeed and TaintTracker shows
the relevant part of the execution path in between tainted data’s entry into
the system, and its use in an exploit. By backtracing the chain of Taint
structures rooted at the detection point, the Exploit Analyzer automatically
identifies which original input and which part of the original input have
caused the attack and provides information about the execution path of
the attack including the program counter and call stack at every point the
program operated on the relevant tainted data, and at what point the exploit
actually occurred. The Exploit analyzer can use this information to help
determine the nature and location of a vulnerability quickly, and to identify
the exploit being used.

The Exploit Analyzer can optionally allow an attack to continue in a
constrained environment after it is detected. We currently implement an
option to redirect all outgoing connections to a logging process. This could
be used to study the attack mission and collect additional samples of a worm,
which can be used to help generate a signature for that worm.

The Exploit Analyzer could also be used to provide semantic information
about the attack payload. This information can be used to automatically
generate attack signatures more accurately and with fewer samples than
is possible with purely content-based analysis of the attack payload. To
demonstrate this idea, the Exploit Analyzer currently identifies the value
used to overwrite the return address. We show in Section 6 that the most
significant bytes of this value can be used in a signature of the attack. Note
that our techniques are related to dynamic program slicing [7, 30], although
dynamic program slicing considers control-flow dependencies and is often
based on source code analysis.

3 Security analysis of TaintCheck

In this section, we analyze the attacks that can be detected by TaintCheck
and the false positives and false negatives incurred by TaintCheck.

Attacks detected by TaintCheck Figure 2 classifies overwrite attacks
by the type of value that is overwritten, and by the method used to perform
the overwrite. In general, TaintCheck is capable of detecting any overwrite
attack that overwrites a value that would not normally be tainted. Taint-
Check’s default policy is that jump targets and format strings should not be
tainted, allowing it to detect attacks that overwrite jump targets (such as
return addresses, function pointers, and function pointer offsets), whether

12



Return Address
Jump Address

Function Pointer
Fn Ptr Offset

System Call Args
Function Call Args

Buf
fe

r O
ve

rfl
ow

For
m

at
 S

tri
ng

Dou
ble

 F
re

e

Hea
p 

Sm
as

hDefault Policy

Optional Policy

Figure 2: Attack detection coverage.

altered to point to existing code (existing code attack) or injected code (code
injection attack), and all format string attacks. It’s important to note that
most of the worm attacks we have seen to date fall into these categories,
including all the major worms such as the Slammer Worm and the CodeRed
Worm. TaintCheck’s policy can also be customized in order to detect an
even wider range of attacks, as described in Section 2.3

False negative analysis A false negative occurs if an attacker can cause
sensitive data to take on a value of his choosing without that data becoming
tainted. This can be achieved if the altered data does not originate and
is not arithmetically derived from untrusted inputs, but is still influenced
by untrusted inputs. In particular, because we do not consider the tainted
attribute of flags, the attacker can alter data by influencing the control flow
of conditional branches to evade tainting. For example, suppose the variable
x is tainted. A structure of the form if (x == 0) y = 0; else if (x ==

1) y = 1; ... is semantically the same as y = x but would not cause y

to become tainted, since the value for y is only influenced indirectly by x,
via the condition flags. If the attacker could later cause y to overwrite a
sensitive value, the attack would be undetected.

Other false negatives can occur if TaintCheck is configured to trust inputs
that should not be trusted. The current default configuration of not trusting
data read from network sockets is sufficient to detect most remote attacks.
However, an attacker may be able to control data from other input sources,
depending on the application. An example of this is a vulnerability in the
innd news server, in which data from the network is first written to a file on
disk, and then read back into memory [4, 20]. These types of false negatives

13



can be minimized by using a more restrictive policy of what inputs should be
tainted. Another possibility is to keep track the tainted attribute even when
data is written to disk. In our experiments, marking data read from files
other than dynamically loaded libraries did not cause false positives, except
in the case of some configuration files. In those cases, it is straightforward
to configure TaintCheck not to taint data read from those files.

Analysis and handling of false positives In cases where TaintCheck
detects that tainted data is being used in an illegitimate way even when there
is no attack taking place, it can mean one of two things. First, it could mean
that the program contains a vulnerability that should be fixed. For example,
the program may be using an unchecked input as a format string. In this
case, the best solution is to fix the vulnerability, possibly using TaintCheck’s
Exploit Analyzer to help understand it. Another possibility is to configure
TaintCheck to only signal an attack if some other condition is also true- for
example, if a tainted format string actually does contain dangerous format
specifiers (such as %n).

The other possibility is that the program performs sanity checks on the
tainted data before it is used, ensuring that the operation is actually safe.
For example, the program might use tainted data as a format string, but only
after it has ensured that it does not contain any malicious format specifiers
such as %n (which would signify a possible format string attack). Another
example is that a program could use tainted data as a jump target in a jump
table, after checking that it is within expected bounds. Fortunately, these
cases occur relatively rarely and usually at fixed places (program counters) in
programs. Most of these false positives can be detected by running programs
on legitimate inputs through a training phase. In these cases, TaintCheck
can either be configured to ignore the particular failed taint assertion, or, if
additional information is available, to untaint the data immediately after it
has been sanity checked. The latter option is safer, since an attacker may
attempt to overwrite the data again after it has been sanity checked.

4 Evaluation

We evaluate TaintCheck’s compatibility and incidence of false positives in
Section 4.1, its effectiveness against various attacks in Section 4.2, and its
performance in Section 4.3.

14



Program Overwrite Method Overwrite Target Detected

ATPhttpd buffer overflow return address ✔

synthetic buffer overflow function pointer ✔

synthetic buffer overflow format string ✔

synthetic format string none (info leak) ✔

cfingerd syslog format string GOT entry ✔

wu-ftpd vsnprintf format string return address ✔

Apache (Slapper) buffer overflow GOT entry ✔

SQL Server (Slammer) buffer overflow return address ✔

Table 1: Evaluation of TaintCheck’s ability to detect exploits

4.1 Compatibility and false positives

We used TaintCheck to monitor a number of programs in order to check for
false positives, and to verify that the programs were able to run normally.
We tested several server programs: apache, ATPhttpd, bftpd, cfingerd, and
named; client programs: ssh and firebird; and non-network programs: gcc,
ls, bzip2, make, latex, vim, emacs, and bash.

All of these programs functioned normally when run under TaintCheck,
and no false positives occurred using TaintCheck’s default policy of taint-
ing data from network sockets and asserting that jump targets and format
strings are untainted. In our evaluation using named, we replayed a trace
containing 158,855 DNS queries to the primary nameserver at a major uni-
versity that serves several country-code top level domains. Hence, this trace
contains a diverse set of requests from a diverse set of clients. Our named
server was configured to resolve each request by performing a recursive query.
The TaintCheck-monitored named server behaved correctly and did not gen-
erate any false positives.

To further test for false positives, we tried running all of the client pro-
grams and non-network programs with a policy to taint data read from
standard input, and data read from files (except for files owned by root,
notably including dynamically loaded libraries). The only additional false
positives that resulted were in vim and firebird. In both cases, the program
appears to be using data read from one of its respective configuration files
as an offset to a jump address. This could easily be fixed by configuring
TaintCheck to trust the corresponding configuration files.

15



4.2 Evaluation of attack detection

We tested TaintCheck’s ability to detect several types of attacks, including
several synthetic and actual exploits. Most of these attacks attempted to
use a vulnerability to overwrite a sensitive value. The one exception is an
information leak attack in which a user-supplied format string contained
format specifiers, causing the program to output data from the stack. As
Table 1 shows, TaintCheck successfully detected each attack. For the for-
mat string attacks that attempted to overwrite another value, TaintCheck
detected both that a tainted format string was being used, and that the
other value had been overwritten. Additionally, TaintCheck successfully
identified the value used to overwrite the return address in the ATPhttpd
exploit. We show in Section 6 how this can be useful when generating a
signature for buffer overflow attacks.

4.2.1 Synthetic exploits

In this section, we evaluate TaintCheck using synthetic exploits on buffer
overruns that overwrite return addresses, function pointers, and format
string vulnerabilities. In all these evaluations, TaintCheck successfully de-
tected all attacks and resulted in no false positives.

Detecting overwritten return address In order to test TaintCheck’s
ability to detect an overwritten return address, we wrote a small program
with a buffer overflow vulnerability. The program uses the dangerous “gets”
function in order to get user input. An input that is too long will overflow
the buffer and begin overwriting the stack. We performed a test in which
the return address is overwritten with the address of an existing function
in the code. TaintCheck was able to detect the attack because the return
address was tainted from user input.

Detecting overwritten function pointer In a similar test, we verified
TaintCheck’s ability to detect an overwritten function pointer. We wrote a
program with a stack buffer overflow vulnerability where the overrun buffer
could overwrite a function pointer on the stack. Again, TaintCheck correctly
detected the attack because the function pointer was tainted by user input
during the buffer overrun.

Detecting format string vulnerability Finally, we wrote another pro-
gram to verify TaintCheck’s ability to detect a tainted format string, which

16



can lead to a format string attack. This program took a line of input from
the user, and printed it back by using it as the format string in a call to
printf. When we ran this program under TaintCheck, TaintCheck correctly
detected that a tainted format string was being used in printf. As a further
test, we wrote a program with a buffer overrun vulnerability that allowed
the attacker to overwrite a format string. An attacker might choose to over-
write the format string to perform a format string attack instead of directly
overwriting the return address in order to evade some buffer-overflow protec-
tion mechanisms. Again, we found that TaintCheck was able to determine
correctly when the format string was tainted.

4.2.2 Actual exploits

In this section, we evaluate TaintCheck on exploits to three vulnerable
servers: a web server, a finger daemon, and an FTP server. In all these
evaluations, TaintCheck successfully detected all the attacks and incurred
no false positives during normal program execution.

ATPhttpd exploit ATPhttpd [43] is a web server program. Versions
0.4b and lower are vulnerable to several buffer overflow vulnerabilities. We
obtained an exploit that sends the server a malicious GET request [42]. The
request asks for a very long filename, which is actually shellcode and a return
address. The filename overruns a buffer, causing the return address to be
overwritten. When the function attempts to return, it jumps instead to the
shellcode inside the file name. The attacker is then given a remote shell.

TaintCheck correctly detected that the return address was tainted when
the server was attacked, and did not generate any false positives when serv-
ing normal GET requests. TaintCheck also correctly identifies the return
address value that overwrites the previous value. As we show in Section 6,
this can sometimes be used as a signature for an attack.

cfingerd exploit cfingerd is a finger daemon that contains a format string
vulnerability in versions 1.4.2 and lower. We obtained an exploit for this
vulnerability that works as follows. When cfingerd prompts for a user name,
the exploit responds with a string beginning with “version”, and also con-
taining malicious code. Due to another bug, cfingerd copies the whole string
into memory, but only reads to the end of the string “version”. Thus, the
malicious code is allowed to reside in memory, and the string appears to be
a legitimate query.

17



cfingerd later contacts the identd daemon running on the querier’s ma-
chine. The exploit runs its own identd, responding with a string that will
be later used as a format string to the syslog function. When cfingerd uses
this format string, the entry for the exit function in the global offset table
is overwritten to point to the malicious code that was inserted in the first
step. When cfingerd finishes processing the query, it attempts to exit, but
is caused to execute the attacker’s code instead.

During normal usage, TaintCheck correctly detects that tainted data
is being used as a format string. When we used the exploit, TaintCheck
detected the tainted format string, and later detected when the program
attempted to use the tainted pointer in the global offset table.

wu-ftpd exploit Version 2.6.0 of wu-ftpd has a format string vulnerability
in a call to vsnprintf. We obtained an exploit for this vulnerability that
uses the format string to overwrite a return address. TaintCheck successfully
detects both that the format string supplied to vsnprintf is tainted, and
that the overwritten return address is tainted.

Slapper The Slapper worm [1] exploits a heap buffer overrun vulnerability
in Apache’s mod ssh module. This is used to corrupt the heap metadata,
which later causes the GOT entry of free to be overwritten with a pointer
to the worm’s code. TaintCheck successfully detects that the GOT entry is
tainted when it is used.

Slammer The Slammer worm [2] exploits a stack buffer overrun vulner-
ability in MS-SQL Server to overwrite a return address. The Windows
implementation of TaintCheck successfully detects this attack.

4.3 Performance evaluation

We measured TaintCheck’s performance using two “worst-case” workloads
(a CPU-bound workload and a short-lived process workload), and what we
consider to be a more common workload (a long-lived I/O-bound workload).
For each workload, we measured the performance when the program was run
natively, when it ran under Nullgrind (a Valgrind skin that does nothing),
when it ran under Memcheck (a commonly used Valgrind skin that checks
for run-time memory errors, such as use of uninitialized values), and when
it ran under TaintCheck. Our evaluation was performed on a system with
a 2.00 GHz Pentium 4, and 512 MB of RAM, running RedHat 8.0.

18



CPU-bound: bzip2 In order to evaluate the penalty from the addi-
tional instrumentation that TaintCheck writes into the monitored binary at
run-time, we evaluated the performance of bzip2, a CPU-bound program.
Specifically, we measured how long bzip2 took to compress a 15 MB pack-
age of source code (Vim 6.2). When run normally, the compression took 8.2
seconds to complete. When run under Valgrind’s Nullgrind skin, the task
took 25.6 seconds (3.1 times longer). When using Memcheck, it took 109
seconds (13.3 times longer). When using TaintCheck, it took 305 seconds
(37.2 times longer). Note that this is a worst-case evaluation as the appli-
cation is completely CPU-bound. (Also note that we discuss optimization
techniques at the end of this section, one of which in early implementation
improves performance overhead to 24 times slowdown.)

Short-lived: cfingerd When a program starts, each basic block is rewrit-
ten on demand to include TaintCheck’s instrumentation. While basic block
caching amortizes this penalty over a long execution time, it can be more
significant for very short-lived processes. In order to evaluate this case,
we timed how long cfingerd 1.4.2 takes to start and serve a finger request.
cfingerd runs under inetd, which means it restarts for each request.

Without Valgrind, the request took an average of .0222 seconds. Using
the Nullgrind skin, the request took 13 times as long. The Memcheck skin
took 32 times as long, and TaintCheck took 36 times as long.

Common case: Apache For many network services, the latency that a
user experiences is due mostly to network and/or disk I/O. For these types
of services, we expect that the TaintCheck’s performance penalty should not
be as noticeable to the user. To evaluate this type of workload, we used the
Apache 2.0.49 web server.

In these tests we requested different web pages from the server, and timed
how long it took to connect, send the request, and receive the response. In
order to prevent resource contention between the client process and the
server process, the client was run from another machine connected to the
server by a 100 Mbps switch. We requested a dynamically generated CGI
shell script and static pages of sizes 1 KB to 10 MB. For each test, we
requested the same page one hundred times, (thus allowing the document
to stay in the server’s cache) and used the median response time. Figure 3
shows the performance overhead for each type of request.

We expected the overhead for the shell script to be relatively large, since
the web server must spawn a shell and execute the script each time it is re-

19



CGI
6.63 ms

1 KB
.987 ms

10 KB
2.05 ms

100 KB
9.79 ms

1 MB
86.4 ms

10 MB
851 ms

0

5

10

15

20

25

30

P
er

fo
rm

an
ce

 O
ve

rh
ea

d 
F

ac
to

r No Valgrind
Nullgrind
Memcheck
TaintCheck

Figure 3: Performance overhead for Apache. Y-axis is the performance
overhead factor: execution time divided by native execution time. Native
execution times are listed below each experiment.

quested. Thus, Valgrind must retranslate and reinstrument the code for the
shell on each request. Despite this, the performance overhead was roughly
on par with the results for static page requests. For static page requests we
found that the performance overhead was relatively small. As we expected,
the penalty for running under Valgrind grows less apparent as the size of
the request grows. This is because the server becomes less processor-bound,
and more I/O bound. Note that even in the worst case of a small, 1 KB
page, TaintCheck only causes the response time to be approximately 25 ms
instead of 1 ms on a local, high-speed network. This delay is unlikely to
be very noticeable to a user, especially if the page were being loaded over a
wide area network.

Improving performance Note that the current implementation is a re-
search prototype and is not yet optimized for performance. There are sev-
eral ways that we can improve the performance of TaintCheck. First, some
performance overhead is due to the implementation of Valgrind. We used
Valgrind because it is open source and relatively easy to use. However, as we
showed in our evaluation, programs run several times slower under Valgrind
even when no additional instrumentation is performed. DynamoRIO [3],

20



1KB 10KB 100KB 1MB 10MB

Native Taint Native Taint Native Taint Native Taint Native Taint
time Check time Check time Check time Check time Check
(ms) slowdown (ms) slowdown (ms) slowdown (ms) slowdown (ms) slowdown

1.23 18.965 2.18 11.889 10.398 3.362 94.221 1.341 941.920 1.104

Table 2: DynamoRIO-based TaintCheck Performance Analysis

offers much better performance than Valgrind, due to better caching and
other optimization mechanisms. According to Kiriansky et. al. [29], Dy-
namoRIO causes a bzip2 benchmark to run approximately 1.05 times slower
than when run natively. Our tests show that bzip2 runs 3.1 times slower
under Valgrind then when run natively. As we show next, TaintCheck runs
significantly faster when implemented on DynamoRIO.

Second, when performing instrumentation, we could statically analyze
each basic block to eliminate redundant tracking code. This optimization
would significantly reduce the amount of instrumentation added, causing
the instrumented program to run significantly faster. A preliminary imple-
mentation of this optimization allowed our bzip2 benchmark to run only 24
times slower than native speed, instead of 37 times slower as in our non-
optimized implementation. We expect that further optimization could yield
an even larger performance improvement.

Windows/DynamoRIO implementation Performance Analysis The
Webstone 2.5 benchmark suite was used to benchmark the performance
overhead of the Windows/DynamoRIO implementation of TaintCheck on
Apache 1.3.23. The results are given in Table 2. The benchmark tests were
run several times with increasing numbers of simultaneous clients. The
benchmark results show that the performance of DynamoRIO-based Taint-
Check is much more efficient than the Valgrind-based TaintCheck.

5 Efficient Hybrid Exploit Detector Using Taint-

Check

TaintCheck’s properties make it a valuable tool for detecting new attacks.
An early warning of a new worm or exploit can buy time to enable other
countermeasures, such as generating and disseminating an attack signature
to filter traffic, and eventually, patching vulnerable systems. In Section
6, we show how TaintCheck can also assist in creating a signature for a

21



Logger

Incoming
Traffic

Flow

Selector

Cause−Based
Detector

(TaintCheck)Suspicious
Flows

Randomly
Selected Flows

Trace

Figure 4: The Two-Tiered Hybrid Exploit Detector

new attack so that it can be filtered out at network perimeters. In this
section, we propose a two-tiered approach for building an efficient hybrid
exploit detector using TaintCheck. Our hybrid exploit detector enjoys the
same accuracy as TaintCheck and yet has very low performance overhead.
We show that our hybrid exploit detector can detect new worm attacks
extremely early on and accurately in a distributed setting.

5.1 The Hybrid Exploit Detector

Individual sites can use TaintCheck to detect or prevent attacks on them-
selves.2 Ideally, a site could use TaintCheck to protect its services all of the
time. However, this is impractical in many cases because of TaintCheck’s
performance overhead. While a more optimized implementation of Taint-
Check could run much faster than the current implementation, there will
always be some performance penalty for dynamic taint analysis. Thus, we
propose a two-tiered approach for building a hybrid exploit detector which
has very low performance overhead.

5.1.1 Architecture of hybrid exploit detector.

We depict the architecture of the two-tiered hybrid exploit detector as in
Figure 4. A trace logger logs the recent traffic (for the most recent certain
period of time depending on the storage capacity). A flow selector then

2Note that if TaintCheck does not detect an exploit, it could be because the particular
version of the server being used is not vulnerable. In order to be certain that a request
does not contain an exploit, the system needs to check against every version of the server
that it is interested in protecting. An individual site can protect itself by checking only
the versions of the server that it actually uses.

22



selects flows based on different criteria and only selected flows will be eval-
uated using TaintCheck. The flow selector uses a set of rules to select the
flows to be examined by TaintCheck:

• First, to ensure the worst-case attack detection probability, the flow
selector selects flows uniformly at random with a certain probability
p. Thus, any attack flow will always be examined by TaintCheck with
at least probability p.

• Second, the flow selector select flows which are identified as suspi-
cious flows by various host-based and network-based intrusion detec-
tion heuristics. In this way, when the intrusion detection heuristics is
effective, the hybrid exploit detector can detect the attack flow with
higher probability. This approach significantly reduces the false pos-
itive rate of the anomaly/intrusion detection heuristics (which is one
of the main shortcomings of anomaly detection techniques). More-
over, this approach provides drastically more analytical power than the
traditional anomaly/intrusion detection mechanisms, because Taint-
Check provides detailed information about the vulnerability and how
it is exploited and automatically identifies the original flow and which
part of the original flow that have caused the attack.

In order to prevent attacks, selected requests can be redirected to a server
that is protected by TaintCheck (possibly on the same machine as the normal
server). This approach has two drawbacks. First, legitimate requests that
are sent to the protected server are served somewhat more slowly (however,
for I/O-bound services, this difference may not be noticeable as shown in
Section 4). Second, an attacker may be able to detect that he is using the
protected server by measuring the response time. In that case, he may be
able to abort his request before the exploit takes place, later resending it
in hope that it would go to the unprotected server (i.e., not monitored by
TaintCheck).

In our hybrid exploit detector, we propose another approach to address
the above problems—we allow all the requests to use the normal server, and
replay only the selected flows (using the trace logger) to the TaintCheck-
protected server. In this case, when an attack is detected the unprotected
server may have already been compromised. However, the system could im-
mediately quarantine the potentially compromised server, thus minimizing
any damage. Note that replaying traces can sometimes be a challenging
task. We have implemented replay capabilities for simple protocols such as

23



HTTP. We leave the implementation of other more complex stateful proto-
cols for future work.

In addition, once a new attack has been detected by TaintCheck, we can
prevent further attacks by using TaintCheck to protect the normal server
(with a 100% sampling rate) until the vulnerability can be fixed or an attack
signature can be used to filter traffic. We discuss using TaintCheck to help
generate a signature in Section 6.

Performance overhead and accuracy analysis. Note that our hybrid
exploit detector is much more efficient than using TaintCheck to examine all
the flows. With a selection probability p, the performance overhead of our
hybrid detector will be p times the performance overhead of TaintCheck’s
performance overhead. With the intrusion detection techniques, the ad-
ditional performance overhead depends on the number of suspicious flows
identified using the intrusion detection heuristics. As a tradeoff for higher
efficiency, the hybrid exploit detector may not detect the attack as quickly
as when we use TaintCheck to examine every flow. However, as we show
in section 5.2, we can use the hybrid exploit detector in a distributed fash-
ion which collectively detects attacks extremely early on and can effectively
detect hitlist worms which previous techniques fail to detect.

Below we give more details and some specific examples of the host-based
and network-based intrusion detection heuristics used in our two-tiered hy-
brid exploit detector.

5.1.2 TaintCheck with network-based intrusion detection

Our hybrid exploit detector uses a number of network-based intrusion detec-
tion heuristics to select suspicious flows for examination by TaintCheck. We
give a list of examples of the network-based intrusion detection heuristics
below (some of which have been proposed in previous work). Note that our
hybrid exploit detector can take advantage of any new progress and devel-
opment of network-based intrusion detection heuristics. Our hybrid exploit
detector selects the following flows using network-based intrusion detection
heuristics:

• Flows that are sent from sources that have been observed performing
port scans [28].

• Flows that are sent to honeypots [31].

24



• Flows that contain byte patterns that are suddenly very common, and
are seen going between many source/destination pairs [50], or contain
unusual byte patterns that match both incoming and outgoing traffic.

• Flows that are part of an anomalous communication pattern (e.g., a
server suddenly becomes a client, such as an outbound port 80 (HTTP)
connection from your web server, or a machine suddenly has high fan-
outs or becomes a superspreader [56], or network behavior that does
not fit in the normal profile).

• Flows that have an unusual distribution of byte values (e.g., many
non-ASCII bytes in a text-based protocol) [58].

• Flows that contain executable code [55].

Below we give a specific example, TaintCheck with honeypots.

TaintCheck with honeypots A honeypot is a network resource with no
legitimate use. Any activity on a honeypot is likely to be malicious, making
them useful for detecting new attacks [31]. However, not everything sent to
a honeypot is necessarily an exploit. Requests could be relatively innocuous
probes or sent by mistake by legitimate users. An attacker who discovers a
honeypot could also raise false alarms by sending innocuous requests to the
honeypot. This is particularly a problem if requests sent to the honeypot
are used to automatically generate attack signatures. A honeypot could use
TaintCheck to monitor all of its network services. This would allow it to
verify whether requests that it receives are exploits before deciding what
action to take, and provide additional information about detected attacks
including identifying the original flow and which part of the original flow
that has caused the attack and the vulnerability information.

We have deployed our TaintCheck-enabled honeypots on CMU network.
We have detected real attacks such as SQL Slammer using our TaintCheck-
enabled honeypots.

5.1.3 TaintCheck with host-based intrusion detection

TaintCheck can also be used with host-based intrusion detection techniques.
These host-based intrusion detection techniques could detect when certain
attacks or anomalies happen with lower performance overhead. Once an
attack or an anomaly has been detected, we can then replay the log of
th recent flows under the monitoring of TaintCheck, which can then check

25



whether there is a real attack and identify the original flow that has caused
the attack and provide information about the vulnerability and how it is
exploited. Examples of host-based intrusion detection techniques in our
hybrid exploit detector include:

• System-call based anomaly detection (such as [21, 25, 24]).

• Randomization and diversity based approach (such as [14, 11]).

• Techniques such as StackGuard [19].

Below we give a specific example, TaintCheck with randomization.

TaintCheck with randomization Several techniques have been pro-
posed to randomize parts of the computer system, such as the location of the
stack [14], the location of the heap [14, 11], the system call number mapping
and global library entry points [14]. These techniques make it difficult for
an attacker’s code to run correctly on an exploited system, typically causing
a program to crash once it has been exploited, thus minimizing the damage
caused. However, these techniques alone cannot prevent future attacks. The
attacker is free to attack the vulnerable program again and again, usually
causing the program to crash, and possibly even exploiting the program if
he is lucky enough to guess the randomized values [46]. Further, it is not
possible to identify which request caused the program to crash, or whether
that request was actually an attack.

We can deploy randomization techniques on vulnerable hosts. Once a
program crashes, we then replay the recent flows using the trace logger to be
examined by TaintCheck. This way, TaintCheck can detect whether there is
a real attack and can identify which original flow contained an attack. Once
an exploit request has been identified, we can immediately block future
requests from the sender, and generate a signature for the attack using the
automatic signature generator (Section 6).

5.2 Distributed detection

Sites using TaintCheck could also cooperate for faster attack detection. Once
one site has detected a new attack, the information about the attack can
be used by anyone to defend against the attack. Ideally, a signature for an
attack could be generated as soon as one site running TaintCheck detects
the attack. This signature could then be used by everyone to efficiently filter
out attack requests, thus preventing further exploits.

26



As a concrete example, suppose that a worm author develops a hit list
of vulnerable servers and hard codes it into a worm [51]. Such a worm
could spread even more quickly than fast scanning worms such as Blaster.
The worm author could also throttle the spread of the worm, which may
allow it to infect more machines before the worm was detected than if it
spread as quickly as possible. Whether by brute force or by stealth, such a
worm could infect a very large number of machines before it was noticed.
However, if TaintCheck is deployed on d fraction of the vulnerable servers,
each of which selects flows with probability s, we would expect to detect the
worm by the time that 1

ds
vulnerable servers are compromised (note that

if the intrusion detection techniques used in our hybrid exploit detector is
effective, then we can detect the attack even faster). For example, if 10%
of the vulnerable servers sample 10% of their incoming traffic with Taint-
Check, the worm should be detected around the time that 100 servers have
been compromised. If there are 1 million vulnerable hosts, this means the
new attack can be detected after only 0.01% vulnerable servers are com-
promised. By automatically generating and distributing a signature for the
worm, further compromises of other vulnerable hosts would be significantly
reduced.

6 Automatic signature generation

Once a new exploit or worm is detected, it is desirable to generate a sig-
nature for it quickly, so that exploit requests may be filtered out, until the
vulnerability can be patched. Figure 5 illustrates our automatic worm de-
fense system, Sting. Sting uses the hybrid exploit detector to detect new
exploit attacks, and then an automatic anti-body generator to generate effec-
tive anti-bodies that can be distributed and installed to protect vulnerable
hosts. We show in this section how we use the information and analysis pro-
vided in TaintCheck to perform semantic analysis of attack payloads and
helps generating attack signatures, one form of the anti-bodies produced in
the Sting system.

We first propose a new approach for automatic signature generation:
using automatic semantic analysis of attack payloads. We describe the ad-
vantages of this approach, and describe how it could be implemented using
TaintCheck. We then show several ways that TaintCheck can be used as a
classifier in order to enhance automatic signature generation systems (both
existing ones using content pattern extraction, and future ones using auto-
matic semantic analysis).

27



FlowsExploit
Detector

Incoming
Traffic

Innocuous
Flows

Disseminating
Antibodies

Alert/Antibody
Dissemination

System

Generated
AntibodiesAntibody

Generator

Malicious

Figure 5: Sting Architecture

6.1 Automatic semantic analysis based signature generation

Previous automatic signature generation techniques use content pattern ex-
traction to generate signatures [28, 31, 49]. That is, they consider attack
payloads as opaque byte sequences, and attempt to find patterns that are
constant across attack payloads to use as signatures.

We propose a new approach for automatic signature generation: using
automatic semantic analysis of attack payloads to identify which parts of
the payloads are likely to be constant (i.e., useful in a signature). Seman-
tic analysis could potentially allow an accurate signature to be generated
given fewer attack payloads than are necessary in systems that use only
content pattern extraction. By requiring fewer attack payloads, semantic
analysis could generate a signature at an earlier stage of a worm epidemic,
thus minimizing damage caused by a new worm. Semantic-analysis based
signature generation can also identify parts of the payloads that should not
be included in a signature (e.g., parts that can easily be changed by the at-
tacker without affecting the exploit) and parts of the payloads that should
be included in a signature (e.g., parts that cannot be easily changed by the
attacker while keeping the exploit successful); such information is crucial in
developing signatures that are effective against polymorphic worms.

TaintCheck could be used to perform automatic semantic analysis of at-
tack payloads, because it monitors how each byte of each attack payload
is used by the vulnerable program at the processor-instruction level. As a
first step, we have implemented a feature that allows TaintCheck to iden-
tify the value in the original payload which are then used to overwrite a
function pointer or return address. We also describe several other promis-
ing directions for using TaintCheck to perform automatic semantic analysis.
In addition, TaintCheck can be used to give hints to a content pattern ex-
tractor, possibly allowing it to generate an accurate signature with fewer
payloads than it would require otherwise.

28



Obtaining overwrite values In Section 4 we show that TaintCheck can
identify which original flow caused the attack and the value in the original
flow used to overwrite a return address or a function pointer by using the
backtracing analysis. For most code-injection exploits, this value needs to
point to a fixed area for the exploit to work correctly; i.e., usually at least the
three most significant bytes of this value must remain constant. Similarly, for
existing-code attacks, there are typically only a few places that are useful for
the attack to jump to (e.g., a few global library entry points). Thus, similar
techniques will work for identifying signatures for existing-code attacks as
well. For many exploits, this value must occur literally in the attack payload.
In other exploits, the server may perform a decoding step (such as URL
decoding) in order to obtain the actual overwrite value. Because of this
second case, it is insufficient to simply identify the value that overwrote the
return address or function pointer. Instead, TaintCheck follows the chain
of taint structures (described in Section 2.2) backwards from the overwrite
value, to identify which part of which the original request the overwrite value
was derived from. The bytes used to derive the overwrite value can then
be used in a signature. When a protocol parsing engine is available, the
signature can also be made more specific by specifying what protocol field
the overwrite value occurs in.

While a three-byte signature may seem short, it could be specific enough
for protocols with an uneven distribution of byte sequences (e.g., text-based
protocols such as HTTP). In our analysis of a week-long trace of incoming
and outgoing HTTP requests containing 59250 connections from the Intel
Research Pittsburgh Lab, 99.97% of all three-byte sequences occurred in less
than .01% of all connections, and 91.8% of all three-byte sequences never
occurred at all. To further test this idea, we used TaintCheck to identify
the return address used in the ATPhttpd exploit discussed in Section 4.2.2.
We found that the three most significant bytes of this value occurred in
only one request in the week-long trace. The request was a POST request
that was used to upload a binary file. This corresponds to a false positive
rate of .0017%. Hence, the three most significant bytes of the value used
to overwrite a return address or function pointer, which can be identified
by TaintCheck, are often distinctive enough to be used as a reasonably
accurate signature by themselves, at least until a more descriptive signature
can be found or the vulnerability can be repaired. When it is not specific
enough to be used by itself, it can still be used as part of a more specific
signature. Note that our analysis is also consistent with the findings in
[38], which offers a more extensive analysis of the usage of return addresses
as signatures. In experiments using 19 different real exploits and traces,

29



[38] demonstrates that using a range of return addresses (approximately the
three most significant bytes) as a signature can filter out nearly 100% worm
attack packets while only dropping 0.01% of legitimate packets.

Note that attacks exploiting a format string vulnerability may not have
a constant return address that we can leverage for a signature, because a for-
mat string vulnerability often enables the attacker to overwrite any location
in memory with any value. However, in order to perform the overwrite, the
format string supplied by the attacker often needs to contain certain format
modifiers such as %n. When TaintCheck detects a format string attack, it
can determine whether the format string is directly copied from the attack
packet; if so, then we could use such format modifiers and use this as part
of the attack signature.

Potential techniques for further semantic analysis In future work,
we plan to investigate more advanced techniques of semantic analysis to
assist automatic signature generation.

One possibility is for TaintCheck to keep track of whether each byte of
the request is used in any significant way, and how it is used. This could
be helpful for identifying filler bytes, which could be (but don’t have to
be) completely different in each instance. These bytes could be completely
random, or the attacker could use these bytes to form red herring patterns,
fooling the system into generating useless or harmful signatures. If any
byte is not used to affect a branch, used to perform a calculation, used in
a system call, or executed by the worm, it is likely a filler byte. While an
attacker may attempt to perform meaningless operations on the filler bytes
in order to fool such a technique, it may be possible to extend the Exploit
Analyzer with dynamic slicing techniques [7, 30] to identify which operations
are “meaningful” and which are not. Additionally, any bytes used only after
the exploit has taken place may not be essential to exploit the vulnerability.
Hence, they could be different in other instances of a polymorphic worm
(one that uses encryption and code obfuscation so that no two instances are
identical [54]), or in different exploits for the same vulnerability. Using such
bytes in a signature may make the signature more specific than it needs to
be, leading to future false negatives. Conversely, bytes that are used by the
program before it is exploited may be necessary to make the program follow
the control path leading to the exploit.

Another technique that could be used to determine which parts of the
request are irrelevant to the exploit is to flip bits in the attack packet and
see whether the exploit still succeeds. If the attack can still succeed after a

30



certain bit is flipped, then we will know that that the value of that bit will
not affect the success of the exploit and hence may not be invariant for new
attacks on the same vulnerability.

6.2 Classifier and signature verifier

In addition to automatic semantic analysis based signature generation, Taint-
Check has direct applications to other aspects of automatic signature gener-
ation. TaintCheck can be used as a classifier in order to enhance automatic
signature generation systems (both existing ones using content pattern ex-
traction, and future ones using automatic semantic analysis). As we have
shown in Section 5, TaintCheck can be used to detect new attacks so that
signatures can be generated for them. TaintCheck could also be used to
verify the quality of newly generated signatures, by determining whether
requests matching a newly generated signature actually contain an attack.

Classifying attack payloads Previous automatic signature generation
systems such as EarlyBird [49], Honeycomb [31], and Autograph [28] use
coarse grained attack detectors to find samples of new attacks. Each of
these techniques can potentially identify innocuous requests as malicious
requests, either by accident, or as the result of an attacker “feeding” the
system innocuous requests (e.g., by sending them to a known honeypot).
When this happens, a signature could be generated that matches legitimate
requests, causing a denial of service attack if that signature is used to fil-
ter traffic. Moreover, these systems need to wait until multiple (potentially
many) payloads are captured before generating a signature, in order to de-
crease the probability of a signature being generated for legitimate requests
that were incorrectly identified as worms. Thus, they suffer from a tradeoff
between false positive rate and speed of signature generation.

As we have shown in Section 5, TaintCheck can be used either by itself or
in conjunction with other intrusion detection techniques to help accurately
detect new attacks. The system can be nearly certain that a request is ma-
licious if TaintCheck determines that an exploit occurred, since TaintCheck
offers a very low incidence of false positives. Hence, there is no need to wait
for other similar requests to be classified as malicious to be confident that
the request is actually malicious, as done in previous signature-generation
systems.

Another technique that we have implemented in TaintCheck is an option
to allow a worm to attempt to spread in a confined environment after it has
exploited the protected server, while redirecting all outgoing connections to

31



a logging process. In this way, any number of samples can be generated from
just one worm sample. These additional samples can be used to help identify
which parts of the worm are invariant across different instances of the worm.
These invariant portions can then be used to generate a signature.

In future work, we plan to investigate more advanced techniques for
TaintCheck to further assist in automatic signature generation as a classi-
fier. For example, TaintCheck can not only detect exploit attacks, but also
distinguish between different vulnerabilities and different exploits. Thus,
TaintCheck can not only be a one-bit classifier, i.e., whether a payload con-
tains an exploit attack or not, but also be a more sophisticated classifier,
i.e., classify different payloads into different groups according to the vul-
nerability and the exploit. Pattern extraction methods can then be used in
each group, and thus, generate more accurate signatures.

Signature and alarm verification TaintCheck can also be used to ver-
ify signatures and alarms. In a single-user setting, this can be used to verify
the quality of a newly generated signature. This can be done by sending
incoming requests that match the signature to a TaintCheck monitored ver-
sion of the server, instead of just dropping them. False positives can then be
measured as the fraction of incoming requests that match the signature that
actually turn out to be attacks. In a distributed system where attack signa-
tures and alarms to new attacks are disseminated, attackers or incompetent
participants may inject bogus or low quality signatures and alarms that will
cause denial-of-service attacks on legitimate traffic. Thus, the receiver needs
to validate the signatures and the alarms received to ensure that they are
valid and will not cause denial-of-service attacks. TaintCheck can be used
as the verifier to check that the remotely generated signatures and alarms
are valid. We can distribute the network log of the attack along with the
alert and signature. The receiver can then use TaintCheck to verify that
the network log actually contain attacks by replaying the network log to a
TaintCheck-protected server in a confined environment. It can also be used
to measure the false positive rate of the signature, in the same way as in the
single-user case.

7 Related work

The original work in this paper first appeared in NDSS Feb, 2005 [37].

32



Program Shepherding. Program Shepherding [29] is a runtime moni-
toring system that keeps track of whether code has been modified since it
was loaded from disk, and checks each control transfer to ensure that the
destination is to a basic block that has not been modified. Thus, Program
Shepherding can prevent code injection attacks. It also prevents some ex-
isting code attacks by ensuring that control transfers to a library can only
go to exported entry points, and that return addresses point to just after a
call instruction. However, these techniques do not prevent many existing-
code attacks (e.g., overwrite a function pointer to the exec library call).
In contrast, TaintCheck can prevent these existing-code attacks. Moreover,
TaintCheck, via dynamic taint analysis, provides detailed information how
the vulnerability is exploited. Program Shepherding does not.

Other runtime detection mechanisms Many approaches have been
proposed to detect when certain vulnerabilities are exploited by attacks.
Most of these previous mechanisms require source code or special recompi-
lation of the program, such as StackGuard [19], PointGuard [18], full-bounds
check [27, 45], LibsafePlus [8], FormatGuard [17], and CCured [34]. Many of
them require recompiling the libraries [27, 45], modifying the original source
code, or are not compatible with some programs [34, 18]. These issues hin-
der the deployment and the applicability of these methods in attack defense
for commodity software, since source code is often unavailable.

Several other approaches for runtime attack detection have been pro-
posed that do not require source code or specially compiled binary pro-
grams, such as LibSafe [9], LibFormat [44], Program Shepherding [29], and
the Nethercote-Fitzhardinge bounds check [35]. However, they fail to detect
many types of attacks. For example, LibSafe only catches buffer overflows
related to certain string-handling functions, LibFormat only detects certain
format modifiers in format strings and thus can have high false positives
and false negatives, and the Nethercote-Fitzhardinge bounds check has sig-
nificant false positives and false negatives. In contrast, TaintCheck detects
a wider range of attacks and incurs fewer false positives.

Other approaches have been proposed for more coarse-grained attack de-
tection, including system call interposition (e.g. Systrace [41], GSWTK [23],
Tron [10], Janus [26], and MAPbox [6]). These approaches detect attacks
by detecting anomalous system call sequences in a program. They do not
give detailed information about the vulnerability and how it is exploited,
and require building models for each protected program.

33



Other taint-based approaches Static taint analysis has been used to
find bugs in C programs [22, 47, 59] or to identify potentially sensitive data
in Scrash [12]. Perl [5] does runtime taint checking to see whether data from
untrusted sources are used in security-sensitive ways such as as an argument
to a system call.

Chow et. al. independently and concurrently proposed to use whole-
system simulation with tainting analysis to analyze how sensitive data are
handled in large programs such as Apache and Emacs [15]. The tainting
propagation in TaintCheck is similar to the one in [15]. However, their
work focuses on analyzing the lifetime of sensitive data such as passwords,
where our work concerns attack detection and defense.

Minos independently and concurrently proposed hardware extension to
perform Biba-like data integrity check of control flow to detect attacks at
runtime [20]. Their work uses hardware and OS modifications to perform
Biba integrity checks at the whole-system level. In contrast, TaintCheck
requires no hardware or OS modifications, and can be very flexible and
fine-grained to detect attacks that were not addressed in Minos such as
format string vulnerabilities3 and attacks that overwrite security-sensitive
variables such as system call arguments. TaintCheck is also able to perform
more detailed analysis of detected attacks, which can be used for automatic
signature generation.

Suh et. al. independently and concurrently proposed a hardware exten-
sion to detect attacks by detecting when data from untrusted inputs is used
as instructions or jump target addresses [52].

Vigilante [16] independently and concurrently proposed similar tech-
niques as our dynamic taint analysis in an automated host-based worm
containment system.

Other signature generation approaches and defense systems Sev-
eral automatic signature generation methods have recently been proposed,
including EarlyBird [49], Honeycomb [31], and Autograph [28]. Early-
Bird [49] monitors traffic and generates signatures which consist of the Rabin
fingerprints of the most commonly occurring 39 byte substrings in the mon-
itored traffic. Honeycomb [31] classifies traffic that is sent to a honeypot
as malicious, and generates signatures based on the longest common sub-
strings found in traffic sent to the honeypot. Autograph [28] uses distributed

3Minos can detect some forms of format string vulnerabilities if they alter the control
flow, however, our work can detect format string vulnerabilities even when they do not
alter control flow.

34



monitoring points to determine what hosts are performing port scans. All
traffic from hosts that have been seen performing port scans is classified as
malicious. Autograph then uses a file chunking technique to split requests
into blocks, and generates a signature consisting of the most common blocks
seen in malicious traffic.

As we showed in Section 6, TaintCheck can be used as a classifier to
reduce the false positive and/or false negative rates of the classifiers used
in these systems. TaintCheck can also provide semantic analysis of attack
payloads, which can be used to generate signatures with fewer samples than
by using content-analysis alone. Finally, TaintCheck can also be used to
verify the signatures and alarms produced by such systems.

Shield [57] presents an alternative approach to content-based filtering.
Shield uses the characteristics of a vulnerability to manually generate a
signature for any exploit of that vulnerability before an exploit is seen in the
wild. This is a promising approach, but it does not help in the case that the
worm utilizes a vulnerability that was previously unknown, or only recently
became known.

Sidiroglou and Keromytis propose a worm vaccine architecture to auto-
matically generate patches for vulnerabilities [48].

8 Conclusion

In order to combat the rapid spread of a new worm before it can compromise
a large number of machines, it is necessary to have automatic attack detec-
tion and defense mechanisms. In this paper we have proposed dynamic taint
analysis and shown how it can be used to detect and analyze most types of
software exploits, without requiring source code or special compilation of a
program, thus allowing it to easily be used on commodity software. It reli-
ably detects many attacks, and we have found no false positives in our tests.
In addition, because it monitors the execution of a program at a fine-grained
level, TaintCheck can be used to provide additional information about the
attack. It is currently able to identify the input that caused the exploit,
show how the malicious input led to the exploit at a processor-instruction
level, and identify the value used to overwrite the protected data (e.g. the
return address).

Furthermore, we have shown that TaintCheck is particularly useful in
an automatic signature generation system—it can be used to enable seman-
tic analysis based signature generation, enhance content pattern extraction
based signature generation, and verify the alerts and quality of generated

35



signatures.

9 Acknowledgments

The DynamoRIO-based TaintCheck was mainly implemented by Jad Cham-
cham while doing his master thesis with one of the co-authors of this pa-
per. The TaintCheck-enabled honeypot and the flow selector was mainly
implemented by Dan Ferullo while doing is master thesis with one of the
co-authors of this paper. We would like to thank David Brumley, Mike
Burrows, Jedediah Crandall, Debin Gao, Brad Karp, Angelos Keromytis,
Nicholas Nethercote, Jonathon Shapiro, Peter Szor, Helen Wang, Felix Wu,
Avi Yaar, and Lidong Zhou for providing feedback and assistance on this
project.

References

[1] Cert advisory ca-2002-27 apache/mod ssl worm. http://www.cert.

org/advisories/CA-2002-27.html.

[2] Cert advisory ca-2003-04 ms-sql server worm. http://www.cert.org/
advisories/CA-2003-04.html.

[3] Dynamorio. http://www.cag.lcs.mit.edu/dynamorio/.

[4] ISC innd 2.x remote buffer overflow vulnerability. http://

securityfocus.com/bid/1316.

[5] Perl security manual page. http://www.perldoc.com.

[6] A. Acharya and M. Raje. MAPbox: Using parameterized behavior
classes to confine applications. In the Proceedings 9th USENIX Security
Symposium, 2000.

[7] Hiralal Agrawal and Joseph Horgan. Dynamic program slicing. In Proc.
SIGPLAN, 1990.

[8] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus:
Tools for runtime buffer overflow protection. In USENIX Security Sym-
posium, August 2004.

[9] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-
time defense against stack smashing attacks. In USENIX Annual Tech-
nical Conference 2000, 2000.

36



[10] Andrew Berman, Virgil Bourassa, and Erik Selberg. Tron: Process-
specific file protection for the unix operating system. In the Proceedings
of the USENIX Technical Conference on UNIX and Advanced Comput-
ing Systems, 1995.

[11] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfus-
cation: An efficient approach to combat a broad range of memory error
exploits. In USENIX Security Symposium, 2003.

[12] Pete Broadwell, Matt Harren, and Naveen Sastry. Scrash: A system for
generating security crash information. In the Proceedings of the 12th
USENIX Security Symposium, 2003.

[13] Michael Burrows, Stephen N. Freund, and Janet L. Wiener. Run-time
type checking for binary programs. In International Conference on
Compiler Construction, April 2003.

[14] Monica Chew and Dawn Song. Mitigating buffer overflows by operating
system randomization. Technical Report CMU-CS-02-197, Carnegie
Mellon University, December 2002.

[15] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
In USENIX Security Symposium, August 2004.

[16] Manuel Costa, Jon Crowcroft, Miguel Castro, and Antony Rowstron.
Can we contain internet worms? In HotNets 2004, 2004.

[17] Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah-
Hartman. FormatGuard: automatic protection from printf format
string vulnerabilities. In Proceedings of the 10th USENIX Security Sym-
posium, August 2001.

[18] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-
Guard: Protecting pointers from buffer overflow vulnerabilities. In 12th
USENIX Security Symposium, 2003.

[19] Crispin Cowan, Calton Pu, Dave Maier, Jonathon Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX Security
Symposium, January 1998.

37



[20] Jedidiah R. Crandall and Frederic T. Chong. Minos: Architectural sup-
port for software security through control data integrity. In To appear
in International Symposium on Microarchitecture, December 2004.

[21] S. Forrest and T. A. Langstaff. A sense of self for unix processes.
In Proceedings of the 1996 IEEE Symposium on Security and Privacy,
1996.

[22] Jeffrey Foster, Manuel Fahndrich, and Alexander Aiken. A theory of
type qualifiers. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 1999.

[23] Timothy Fraser, Lee Badger, and Mark Feldman. Hardening COTS
software with generic software wrappers. In the Proceedings of the IEEE
Symposium on Security and Privacy, pages 2–16, 1999.

[24] D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution
graph for anomaly detection. In Proceedings of the 11th ACM Confer-
ence on Computer & Communication Security, 2004.

[25] D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking
for anomaly detection. In Proceedings of the 13th USENIX Security
Symposium, 2004.

[26] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. A
secure environment for untrusted helper applications. In the Proceedings
of the 6th USENIX Security Symposium, San Jose, CA, USA, 1996.

[27] Richard Jones and Paul Kelly. Backwards-compatible bounds checking
for arrays and pointers in C programs. In Proceedings of the Third
International Workshop on Automated Debugging, 1995.

[28] Hyang-Ah Kim and Brad Karp. Autograph: toward automated, dis-
tributed worm signature detection. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

[29] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure
execution via program shepherding. In Proceedings of the 11th USENIX
Security Symposium, August 2002.

[30] Bogdan Korel and Janusz Laski. Dynamic slicing of computer programs.
In J. Systems and Software, volume 13, 1990.

38



[31] Christian Kreibich and Jon Crowcroft. Honeycomb - creating intrusion
detection signatures using honeypots. In Proceedings of the Second
Workshop on Hot Topics in Networks (HotNets-II), November 2003.

[32] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart
Staniford, and Nicholas Weaver. Inside the slammer worm. In IEEE
Security and Privacy, volume 1, 2003.

[33] David Moore, Colleen Shannon, Geoffrey Voelker, and Stefan Sav-
age. Internet quarantine: Requirements for containing self-propagating
code. In 2003 IEEE Infocom Conference, 2003.

[34] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-
safe retrofitting of legacy code. In Proceedings of the Symposium on
Principles of Programming Languages, 2002.

[35] Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking entire
programs without recompiling. In Proceedings of the Second Work-
shop on Semantics, Program Analysis, and Computing Environments
for Memory Management (SPACE 2004), Venice, Italy, January 2004.
(Proceedings not formally published.).

[36] Nicholas Nethercote and Julian Seward. Valgrind: A program super-
vision framework. In Proceedings of the Third Workshop on Runtime
Verification (RV’03), Boulder, Colorado, USA, July 2003.

[37] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In Network and Distributed Systems Security Symposium, Feb
2005.

[38] Archana Pasupulati, Jason Coit, Karl Levitt, and Felix Wu. Buttercup:
On network-based detection of polymorphic buffer overflow vulnerabil-
ities. In IEEE/IFIP Network Operation and Management Symposium,
May 2004.

[39] Vern Paxson. Bro: a system for detecting network intruders in real-
time. Computer Networks, 31(23-24), December 1999.

[40] The Snort Project. Snort, the open-source network intrusion detection
system. http://www.snort.org/.

[41] Niels Provos. Improving host security with system call policies. In the
Proceedings of the 12th USENIX Security Symposium, 2003.

39



[42] r code. ATPhttpd exploit. http://www.cotse.com/mailing-lists/

todays/att-0003/01-atphttp0x06.c.

[43] Yann Ramin. ATPhttpd. http://www.redshift.com/∼yramin/atp/

atphttpd/.

[44] Tim J Robbins. libformat. http://www.securityfocus.com/tools/

1818, 2001.

[45] Olatunji Ruwase and Monica Lam. A practical dynamic buffer overflow
detector. In Proceedings of the 11th Annual Network and Distributed
System Security Symposium, February 2004.

[46] Hovav Shacham, Mattew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address space
randomization. In ACM Computer and Communication Security Sym-
posium, 2004.

[47] Umesh Shankar, Kunal Talwar, Jeffrey Foster, and David Wagner. De-
tecting format-string vulnerabilities with type qualifiers. In Proceedings
of the 10th USENIX Security Symposium, 2001.

[48] Stelios Sidiroglou and Angelos D. Keromytis. A network worm vac-
cine architecture. In Proceedings of the IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), Workshop on Enterprise Security, pages 220–225, June
2003.

[49] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage.
The EarlyBird system for real-time detection of unknown worms. Tech-
nical Report CS2003-0761, University of California, San Diego, August
2003.

[50] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Au-
tomated worm fingerprinting. In Proceedings of the 6th ACM/USENIX
Symposium on Operating System Design and Implementation (OSDI),
December 2004.

[51] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the
Internet in your spare time. In 11th USENIX Security Symposium,
2002.

40



[52] G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Secure program
execution via dynamic information flow tracking. In ASPLOS XI, Oc-
tober 2004.

[53] Cisco Systems. Network-based application recognition.
http://www.cisco.com/univercd/cc/td/doc/product/software/

ios122/122newft/122t/122t8/dtnbarad.htm.

[54] Peter Szor. Hunting for metamorphic. In Virus Bulletin Conference,
2001.

[55] Thomas Toth and Christopher Kruegel. Accurate buffer overflow de-
tection via abstract payload execution. In Recent Advance in Intrusion
Detection (RAID), October 2002.

[56] Shobha Venkataraman, Dawn Song, Phil Gibbons, and Avrim Blum.
New streaming algorithms for superspreader detection. In Network and
Distributed Systems Security Symposium, Feb 2005.

[57] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugen-
maier. Shield: Vulnerability-driven network filters for preventing known
vulnerability exploits. In ACM SIGCOMM, August 2004.

[58] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network
intrusion detection. In Recent Advance in Intrusion Detection (RAID),
Sep 2004.

[59] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. Using CQual for
static analysis of authorization hook placement. In the Proceedings of
the 11th USENIX Security Symposium, 2002.

41


