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ABSTRACT
We present a new technique for exploiting static analysis toguide
dynamic automated test generation for binary programs, prioritiz-
ing the paths to be explored. Our technique is a three-stage process,
which alternates dynamic and static analysis. In the first stage, we
run dynamic analysis with a small number of seed tests to resolve
indirect jumps in the binary code and build a visibly pushdown au-
tomaton (VPA) reflecting the global control-flow of the program.
Further, we augment the computed VPA with statically computable
jumps not executed by the seed tests. In the second stage, we apply
static analysis to the inferred automaton to find potential vulnera-
bilities, i.e., targets for the dynamic analysis. In the third stage, we
use the results of the prior phases to assign weights to VPA edges.
Our symbolic-execution based automated test generation tool then
uses the weighted shortest-path lengths in the VPA to directits ex-
ploration to the target potential vulnerabilities. Preliminary exper-
iments on a suite of benchmarks extracted from real applications
show that static analysis allows exploration to reach vulnerabilities
it otherwise would not, and the generated test inputs prove that the
static warnings indicate true positives.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Reliability, Security

Keywords
automated testing, static analysis, dynamic analysis, prioritization

1. INTRODUCTION
Many techniques have been proposed for software verification

and test generation: symbolic model checking [12, 5], explicit-
state model checking [25], static analysis [14], directed automated
random testing [21], fuzzing [6], and numerous variants or com-
binations of those. Each technique offers different tradeoffs be-
tween soundness, completeness, speed, precision, scalability, and
the level of automation, but all of them face the same fundamental
problem — state-space explosion.
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The first problem we explore is focusing the search during auto-
mated test generation. Search heuristics are either look-ahead tech-
niques, which use an analysis cheaper than the search to explore
the yet unvisited parts of the search-space, or look-back techniques,
which analyze the already explored search-space. Our approach is
a look-ahead technique, as we use static analysis to identify possi-
ble vulnerabilities and to compute other useful information about
identified vulnerabilities, like data-flow slices (e.g., [47, 45]) with
respect to the statement triggering the vulnerability. Theidenti-
fied vulnerabilities become targets for the dynamic analysis, while
slices are used to guide the search toward those targets.

The second problem we explore is a combination of static and
dynamic analysis, with the goals of (1) using the static analysis
to guide the dynamic test generation, and (2) using the dynamic
analysis to filter out false positives produced by the staticanalysis.
We refer to our approach to this combination asstatically-directed
dynamic automated test generation.

The idea of guiding dynamic with static analysis can be applied
at the source level, but our work focuses on test generation for
stripped binary programs (without symbol tables or debug infor-
mation). Our approach is also applicable when the source code of
the application is available, but the third-party libraries are closed-
source. In that case, the system integrators or even end-users have
to test closed-source components before deploying them, especially
in settings where security and reliability are paramount.

Working at the binary level introduces some unique challenges:
pervasive address arithmetic, the absence of type information, mis-
aligned memory accesses, and indirect (computed) jumps. Toad-
dress these challenges, we devise a three-stage approach: The first
stage uses a combined dynamic and static analysis to generate an
interprocedural control-flow graph, represented as a visibly push-
down automaton (VPA) [1]. The second stage performs static anal-
ysis on the VPA to identify possible vulnerabilities and to compute
other information used later to guide the search, like data-flow de-
pendency slices. The third stage uses symbolic execution [28] and
the results of the static analysis from the second stage to generate
tests that trigger the vulnerabilities detected by static analysis.

1.1 Contributions
Our three-stage sandwich approach to binary analysis is a new

point in the space of tradeoffs (soundness, completeness, speed,
precision,. . . ) in binary analysis. In addition to proposing the ap-
proach, we make contributions in each stage.

The first stage of our approach, described in Section 2, constructs
an underapproximation of the interprocedural control-flowgraphs
of a binary without symbols or debug information. We combine
dynamic and static analysis to resolve indirect jumps and todecode
assembly instructions. Both problems are a challenge, because in
the absence of type information or labels, every assembly instruc-



tion a potential jump target; with variable-sized CISC instructions,
it can be difficult to even distinguish code from data. Our approach
computes an underapproximation of the transition relationby re-
solving some indirect jumps with a set of seed tests, and augment-
ing the computed relation with statically computed direct jumps.

The VPA computed by the first stage is the input to our static
analysis (Section 3), designed for finding potentially exploitable
vulnerabilities, like buffer overflows. Our static analysis is inspired
by the Balakrishnan and Reps’s VSA analysis [3]. One difference
is that our static analysis combines discovery of abstract memory
locations with the data-flow analysis, while VSA alternatesdiscov-
ery and data-flow analysis until a fixed-point. Further, our analysis
handles overlapping (mis)aligned reads and writes more precisely,
a feature we found particularly useful in analysis of programs that
perform a lot of string operations.

The third stage of our approach, presented in Section 4, performs
single-path symbolic execution to search for concrete testinputs
that trigger potential vulnerabilities discovered by the static analy-
sis in the second stage. Running on its own, the test generation tool
can create many program inputs, each exercising a differentpath,
but often none of them trigger a vulnerability. This motivates our
use of static analysis to guide the path search.

Thus, we propose a new heuristic for guiding dynamic search
towards finding the right path towards a vulnerability identified by
static analysis in the second stage. Our heuristic works differently
when the dynamic search is within a strongly connected component
(SCC) such as a loop, and when it is not. For outside an SCC, we
develop a two-component heuristic that ranks states according to
two statically-computed metrics, one based on the shortestVPA
path to the vulnerability, and the other using the vulnerability’s
data-flow slice. For within an SCC, we develop a heuristic that
picks patterns of paths through the SCC according to a geometric
distribution and then alternates those paths over multipleiterations.

The problem of computing the shortest paths on a VPA has not
(to our knowledge) been previously posed. We address it by an
efficient algorithm that treats well-matched paths first, bottom-up
in a call graph, and then extends to all VPA paths by taking an
automaton product with an automaton that prohibits mismatched
calls. These transformations allow us to use the classic algorithm
for shortest paths in a graph. Our algorithm can also be seen as a
more efficient case of a weighted pushdown problem [39], using
the property that the semiring of path lengths is totally ordered.

In our experiments, the proposed heuristic sped up the dynamic
test generation significantly, in one case letting our system find in
11.3 seconds a vulnerability it could otherwise not find evenafter
6 hours. Both parts of the heuristic were valuable: the SCC part
allowed the tool to achieve good coverage of loops with complex
internal structure, while the non-SCC part allowed it to efficiently
focus on those parts of a program relevant to a vulnerability.

1.2 Terminology
An interprocedural control-flow graph, as computed by the first

stage of our analysis, can be seen as the combination of a callgraph
and separate control-flow graphs for each function. But we instead
formalize it as a single unified object, a visibly-pushdown automa-
ton [1]. Though ultimately equivalent, this choice allows our expo-
sition to be at once simpler and more formal.

States represent basic blocks: a sequence of program statements
ending with a branch, call, or return. The flow of control enters a
basic block only at its beginning and leaves it by execution of the
last statement. For simplicity, we will assume that each basic block
ending with an unconditional jump is merged with the target block,

duplicating blocks that are a target of multiple jumps.1 Basic
blocks containing exit statements are accepting states. The VPAs
considered in this paper accept only matched returns words,mean-
ing that every return must have a matching call. If also everycall
must have a matching return, we say such words are well-matched.

We use the standard abstract interpretation notation and termi-
nology [14]: abstraction (resp. concretization) operatorα (resp.γ),
abstract post state transformerpost#, and join (resp. widening) op-
erator⊔ (resp.▽).

2. CONTROL-FLOW COMPUTATION
The first stage of our approach resolves indirect jump targets in

binaries by analyzing a set of concrete traces obtained by executing
the analyzed application on a set of seed tests. Our dynamic anal-
ysis folds multiple traces into a single VPA representing the global
flow of control. Additionally, we augment the VPA with missing
transitions that can be precisely computed through static analysis.
In this section, we describe the computation of the VPA through a
combination of dynamic and static analysis.

We adopt a hybrid approach to VPA construction combining dy-
namic and static analysis. The dynamic analysis attempts toresolve
as many targets of indirect control-flow transitions as possible. The
static analysis mitigates the incompleteness of the dynamic analy-
sis. For the purpose of finding a vulnerability in the program, it is
sufficient that the model of the program we build includes thevul-
nerable path, but it is irrelevant whether the edges along the path
were discovered through seed tests or static augmentation.

We use the PIN [31] framework to instrument binary applica-
tions with callbacks at jump and library load events. The instru-
mented application executes normally, unaware of the callbacks.
Traces from multiple seed tests are merged into a single VPA.An
underapproximation of the instrumented application’s control-flow
in the form of a VPA can be computed as follows. Each visited
basic block is represented with a single state in VPA. Each visited
edge is classified in one of the classes (call, internal, return) and
the VPA is updated so that the source and the target basic blocks
are linked with an edge of the appropriate class. All basic blocks
ending with theexit system call are declared to be final states.

After the dynamic VPA construction, we use recursive traversal
disassembly [42] to augment VPA with the conditional directjumps
not executed by the seed tests. The resulting VPA is, necessarily, an
underapproximation of the complete interprocedural control-flow
graph of the analyzed application. The completeness of the con-
structed VPA depends on the capability of the seed tests to exercise
indirect branches and the number of branches that can be accurately
resolved with the recursive traversal disassembly. Finally, we use
the Vine library from BitBlaze [44] to decode the instructions into
a simplified internal representation to facilitate later analysis.

3. STATIC ANALYSIS OF BINARIES
The static analysis in the second stage of our approach performs

an interprocedural context- and flow-sensitive analysis onthe VPA
computed in the first stage. First, static analysis identifies possible
vulnerabilities, which are used as targets for the dynamic analysis
in the third stage of our approach. Second, static analysis computes
approximate size of stack frames and allocated heap regions. These
sizes are used to detect out-of-bounds accesses. Third, static anal-
ysis maintains a map between written abstract locations andstate-
ments in the assembly code and this map is then used to compute

1Merging of targets of unconditional jumps is done in the firststage
of our approach.



the backward data-flow slice with respect to the identified vulnera-
bility. The slice is used as a component of the guidance heuristics
in the third stage of our approach. The rest of this section discusses
the most important aspects of our static analysis: the abstract do-
mains used, the treatment of weak and strong updates, and thehan-
dling of overlapping and misaligned reads and writes.

3.1 Abstract Domains
The abstract domain we use for static analysis of binaries con-

sists of several hierarchically composed domains: stridedinter-
vals (denotedSInterval) [37, 2], value map (ValMap), regions
(Region), and abstract states (State). We introduce these abstract
domains starting at the bottom of the hierarchy.

Strided intervals are defined as a triples[lb,ub], such that2

γ (s[lb,ub]) := {i | lb≤ i < ub∧s> 0∧∃k∈ Z . i = s·k}

Binary code often uses indirect addressingbase+ index× scale,
conveniently representable by strided intervals. Arithmetic and log-
ical operations on strided intervals are very similar to operations on
simple intervals and can be efficiently computed (e.g., [46]).

Memory regions, in our work, abstract disjoint chunks of mem-
ory. Each region has a unique identifier. The set of identifiers is
denotedRegionID, while for the elements of the set we will use
r, with indices. We treat registers as a special form of a fixed-
size region (RegId). Global variables also form a fixed-size region
(GlbId). For simplicity, we also place constants and scalar ranges
in a special region (CId).

We create a unique region for each allocation site that allocates
a heap object, while for the other types of regions (registers, stack,
and globals) we create one unique region per program per region
type. Other abstract domain design decisions are possible.For
instance, Balakrishnan and Reps [3] allocate one stack region per
function. Our decision to keep a single stack region per program
simplifies context-sensitive analysis and allows precise handling of
writes to any frame on the calling stack.

A value can be either an integer or an address within a region.
To represent a pointer that could point to multiple regions,or a
value that could be either a constant or a pointer, we use value
mapsValMap := RegionID→ SInterval, whereSInterval rep-
resents the offset within theRegionID region. Integers are rep-
resented as offsets within the distinguished regionCId. Further
on, we shall use lettersa (resp.v), possibly with indices, to de-
note an address fromSInterval (resp. an instance ofValMap). The
(RegionID,SInterval) pair is also known as anabstract location,
or aloc for short, in the literature. Alocs are used to represent
variable-like entries, either on heap, in stack, or in registers.

Regions are defined as a mapRegion := SInterval→ ValMap.
Individual regions are denotedR, possibly with indices. For exam-
ple, the stack region containing constant 7 at stack slot−4 and a
pointer to a global variable at address 1000 at stack slot−12 would
be represented as:3

R=
{

4[−4,0]→{CId→ 1[7,8]} ,
4[−12,−8]→ {GlbId→ 4[1000,1004]}

} (1)

Regions with different identifiers are considered to be infinitely
far apart. The C standard [26, page 83] considers the result of ad-
dress arithmetic pointing outside a region undefined, so ourtreat-

2Note that unlike the prior work, we make the upper bound ex-
clusive. We found this definition of strided intervals to be some-
what more convenient for dealing with misaligned reads and writes,
which are frequent in binary code.
3Negative addresses are often used to index the stack frame ofthe
currently executed function.

post# (s0, if c then S1 elseS2) = post# (s0,S1)⊔post#(s0,S2)
post# (s0,while c do S) = s0▽post#(s0,S)
post# (s0,write(r,a,v)) = s0 [r,a← v]

Figure 1: Definition of the Transition Relation. The pre-state
is denoteds0, statementsSi , the widening operator▽, branch
condition c, and temporary variable v of theValMap type. Our
instruction decoder creates temporary variables for interme-
diate results loaded from memory or created by complex as-
sembly instructions. The control-flow construction (Section 2)
identifies branches and loops, which can be classified as either
if-then-else branches or while-do loops. Thus, the above are all
the state-modifying transitions required.

⊕v= {(r,a) | (r,a′) ∈ v∧a=⊕a′}

v1⊗v2 =

{

(r,a)
∣

∣

∣

a= a1⊗a2 if (r,a1) ∈ v1∧ (r,a2) ∈ v2
a=⊤ otherwise

}

read(r,a) = s[r,a], where s is the current state

Figure 2: Operations on Value Sets. The⊕ symbol stands for a
unary, and⊗ for a binary operation.

ment of regions is following the C standard (for binaries com-
piled from C programs). For binaries compiled from type-safe lan-
guages, our assumption is safe.

Finally, we define an abstract state as a map from region iden-
tifiers to regions:State := RegionID→ Region. For denoting in-
dividual states, we will use the letters, possibly with indices. The
State map is indexed by a region identifier and address (strided in-
terval), e.g.,s[GlbId,4[1000,1004]]. The indexing operations[r,a]
returns the value map defining the locationa in the region with
identifier r in states, or ⊥ if the location is undefined. We de-
fine substitution on statess[r,a← v] as an operator that replaces
the value maps[r,a] with v, without changing other regions or ad-
dresses, and returns the newly constructed state.

For efficiency, we represent the maps in each level of the abstract
state as persistent red-black trees [35] (using Eker’s optimizations
[19]) to allow fast functional updates with sharing. Regions use
interval trees to efficiently detect overlap, and we use hashconsing
to avoid constructing duplicate objects.

Formally, our abstract interpretation is a monotone non-distri-
butive framework (e.g., [34]) with domain(P (State) ,⊑,⊔,⊥),
where the transition relationpost# is defined by the rules in Fig. 1,
while the operations over value maps are defined in Fig. 2. To com-
pute the fixed-point, we use a simple aggressive widening operator
for strided intervals, described in [2]. We define the join and widen
operators on states later (Section 3.4).

3.2 Weak and Strong Updates
In this section, we discuss our treatment of weak and strong up-

dates in more detail. A strong update overwrites the contents of the
written region, and represents a definite change. In contrast, a weak
update computes a join of the old and new contents. In general,
if a region represents multiple concrete regions (i.e., summarizes
them), strong updates are unsound.

Our analysis begins by creating a single strongly updatablere-
gion per allocation site. If that site is revisited during the course
of analysis, a new weakly updatable region is created and reused
every time the same allocation site is revisited later, as inthe allo-
cation site abstraction [11, 30]. Thus, the analysis creates at most
two regions, one strongly and one weakly updatable, per allocation
site. The described strategy is exactly the opposite of Balakrish-
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Figure 3: Chunking of Overlapping Addresses. The top rect-
angle in each figure represents the contents (denotedx) of a
weakly updatable region at addresses shown above the rectan-
gle. The addresses are4[1000,1012] in (a) and 4[1000,1008] in
(b). The dotted lines represent strides, while full lines represent
chunk boundaries. The middle rectangle in each figure repre-
sents the newly written data (denotedy). The bottom rectangle
represents the contents of the region after write. In (a), the re-
gion is split into three aligned chunks. In (b), the region issplit
into four chunks: chunk 4[1000,1004] that maintains the old
value x, a smaller chunk 2[1004,1006] that contains the upper
half (uh) of x, another chunk 2[1006,1008] containing a join of
the lower half (lh) of x and of y, and finally 2[1008,1014] con-
taining the newly written data y. Lower and upper halves can
be computed using shift and mask operations on strided inter-
vals. Other cases, like writing a single byte in the middle ofa
double word can be handled similarly.

nan and Reps’s recency-abstraction [4], which maintains the latest
region as strongly updatable while summarizing the older regions.
Balakrishnan and Reps motivate their recency-abstractionas a ne-
cessity for resolving indirect jumps. In contrast, our three-stage
technique exploits dynamic seed traces to resolve indirectjumps,
so we opted for what we considered an easier-to-implement option,
albeit possibly less precise in some cases. In the further exposi-
tion, all updates will be weak, as that case exposes more interesting
details than strong updates.

3.3 Identification of Memory Locations
Unlike prior work [3] that relied on IDAPro [24] to detect alocs

and then alternated the VSA analysis and aloc detection until the
fixed-point is reached, our analysis discovers alocs and performs
abstract interpretation at the same time. We detect alocs during the
first write that is within the allowed bounds of a region. Writes that
are outside the allowed bounds produce a warning. The allowed
bounds are computed as a side-result of the analysis.

The most difficult part of the alocs identification is dealingwith
overlapping writes, which tend to be relatively frequent inpractice.
A simple solution, to compute the union of overlapping addresses
and set their content to⊤, tends to be insufficiently precise. A more
precise alternative, used in our analysis, is to partition the overlap-
ping addresses into non-overlapping chunks along the stride bound-
aries, and then compute the value stored at each chunk separately.
We found the increase in precision especially important foranalyz-
ing programs that operate on strings, which are often loadedfrom
memory or created on stack in four-byte chunks and then accessed
byte-by-byte. The algorithm for partitioning sets of addresses into
strides is conceptually simple, but tedious to implement because
there are many special cases appearing in practice. Due to lack of
space, we skip the details, but we illustrate the idea in Figure 3.

3.4 Join and Widening of Regions
We use the same chunking approach to compute a join of regions.

For example, given two regionsR1 and R2, their join first parti-
tions addresses into three disjoint sets:S1 = dom(R1)/dom(R2),
S2 = dom(R2)/dom(R1), and S3 = dom(R1)∩ dom(R2), where
dom is the domain of a map and ‘/’ is set difference. In exam-
ple (1),dom(R) = {4[−4,0],4[−12,−8]}. Addresses within each
set are then partitioned into disjoint strided intervals soas to keep
the original strides when possible. Finally, the join operator com-
putes the value stored at each address inS1∪S2∪S3. The values
stored at addresses fromS1 are the (possibly truncated) values in
the region before the write. The values stored atS2 are the newly
written values. The values stored atS3 are the addresses overwrit-
ten with new values. Assuming weak updates, the result is a join of
the old and new values. The join over states is defined as:

s1⊔s2 :=

{

(r,R1⊔R2)
∣

∣

∣

either(r,R1) ∈ s1∧ (r,R2) ∈ s2 or
(r,R1) ∈ (s1∪s2/s1∩s2)∧R2 =⊥

}

(2)

Algorithm 1 computesR= R1▽R2. Widening terminates when
the contents reach a fixed-point. It might seem that the last case
in Algorithm 1 could introduce substantial imprecision. However,
since global addresses are most often constants and since writes to
the stack are most often constant offsets from theESP or EBP reg-
isters, and neither of those registers is commonly modified within
loops, the imprecision of widening rarely impacts the most impor-
tant regions, globals and the stack. Widening on states is done
similarly as in (2), only⊔ is replaced with▽.

Algorithm 1 Region Widening. Lines 2 and 3 perform chunking,
illustrated in Figure 3. Lines 4 and 5 do point-wise wideningon
addresses (and their contents) defined in both regions. Lines 6 and
7 union the addresses (and their contents) belonging only toR1 with
the temporary result. The rest of the algorithm handles the case
when the region used for widening (R2) defines some addresses not
defined inR1.
1: R← /0
2: S1← dom(R1)/dom(R2) ,S2← dom(R2)/dom(R1)
3: S3← dom(R1)∩dom(R2)
4: for (a,v) ∈ S3 do
5: R← R∪ (a,R1[a]▽R2[a])
6: for (a,v) ∈ S1 do
7: R← R∪ (a,v)
8: if ∃(a,v) ∈ S2 then
9: Issue a warning about a possible write out of bounds

10: Widen contents of all existing chunks inRwith v

4. GUIDED DYNAMIC ANALYSIS
The third stage of our approach applies dynamic analysis (based

on symbolic execution) to compute concrete test inputs thattrigger
vulnerabilities in the program under analysis. To direct the dynamic
analysis, we introduce a two-component heuristic. The firstcom-
ponent of the heuristic is the distance in the VPA; below we give an
algorithm to efficiently compute these shortest path lengths. The
second component of the heuristic is based on the number of state-
ments in the data-flow slice, which is a transitive closure ofread-
write dependencies of all variables used by the statement triggering
the vulnerability. We compute this component using standard tech-
niques of interprocedural data-flow analysis [38]. We note that both
components can also be seen as generalized pushdown predecessor
problems (GPPP) [29] on a weighted pushdown system (WPDS).
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Figure 4: Computation of Shortest Paths on a VPA. The left figure illustrates the shortest well-matched path fromf0 to f3, highlighted
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connectsGR and GC call sites, and represents the summary edges whose weight is the shortest path through the callee.

For distances, the semiring is(N,min,+,∞,0), wheremin is a bi-
nary operator returning the minimal value. For counting thenum-
ber of reachable statements from the slice, we can use the trivial
semiring(S,∪,∪, /0, /0), whereS is the set of instructions in all ba-
sic blocks of a VPA. The two-component heuristic is a function
with anN×N codomain. For a given location of a potential vul-
nerability, we precompute the values of the function for each VPA
state; it is convenient and sufficiently fast to compute all of these
values at once, before starting the exploration.

We also use a second heuristic to attempt to cover a variety of
patterns of paths through relevant loops — our system identifies
paths using the VPA, then records which paths have been explored
and then explores various patterns of these paths. For a given loca-
tion of a potential vulnerability and a given SCC, we identify paths
within SCCs before and construct patterns during the search.

In the rest of this section, we first describe as background the
baseline approach of symbolic execution, with an undirected search
strategy (Section 4.1). Next, we present an efficient algorithm for
computing shortest paths in a weighted VPA (Section 4.2), which
we use to propagate cost information as part of the program-wide
two-component heuristic, and describe how we use this heuristic
at branches (Section 4.3). Finally, we discuss our approachfor
covering loop path patterns (Section 4.4).

4.1 Baseline: Symbolic Execution
We describe our exploration system as dynamic because it treats

most of the program state as concrete: only values derived from
a specified input are treated as symbolic. The system symboli-
cally executes one whole-program execution path at a time; when
a branch condition is symbolic, the tool checks whether either the
condition or its negation is satisfiable using the Z3 [16] decision
procedure. Operationally, the system works similarly to previous
tools such as Klee [9], EXE [10], and MineSweeper [7].

When both sides of a branch are feasible, our system’s default
behavior is to choose a direction randomly. Though fair in a sense,
this is clearly a very uninformed search strategy. Thus the focus
of the rest of this section is on techniques that harness moreglobal
information, such as from static analysis, to make better branch
choices. However, the symbolic execution engine only takesthese
suggestions as advice: it will never explore an infeasible path or
one that it has previously explored. We refer to the symbolicexe-

cution of one such whole-program execution path as aniterationof
the dynamic exploration.

4.2 VPA Shortest Paths
The algorithm we present in this section computes the first com-

ponent of our heuristic. Intuitively, we would like to direct the
dynamic analysis to follow a (whole-program) path that reaches a
target, and among such paths we would like one with a low cost.
More precisely, we would like to compute, for each basic block in
the program, the cost of the least-costly path from that point to the
target basic block. It is a convenient analogy to think of thecosts as
distances, so that our goal is to find the length of the shortest paths
from each basic block to a single target.

If our program representation were a simple graph, Dijkstra’s
shortest path algorithm [17] would be appropriate, but it does not
follow the restriction that calls and returns must be well-matched.
For example, suppose we want to find the shortest path fromf0 to
f3 in Figure 4.a. The classic shortest path algorithm would findthe
path f0k0k1h3 f3, which is incorrect, because the return fromk to h
is executed with stack configurationf1 that doesn’t match the state
k is returning to. Instead, the correct shortest path with matched
returns isf0k0k1 f1 f4g0g2 f3 (assuming equal edge weights). Such
a situation occurs in practice, for instance, if a common function
such asprintf is called from bothmain and the function con-
taining a vulnerability. If we ignored call-return matching, our tool
might think that the shortest path to the vulnerability was one that
started inmain, calledprintf, and then returned fromprintf
to the vulnerable function. But attempting to follow this infeasible
path would be unproductive. However, while we match calls and
returns within the path, the definition of the path length is otherwise
context-insensitive, in the sense that the distance between a pointA
and a pointB does not depend on the call stack atA.

Thus our goal is to build an analogue of Dijkstra’s shortest path
algorithm that operates on a VPA, and finds the lengths of the short-
est path among those paths in which there are no mismatches be-
tween calls and returns. It is not immediately obvious whether such
an algorithm could be efficient: a given statement might be reached
with many different call stacks, and the shortest path between two
points in a VPA can have exponentially many edges.

The key insight in obtaining an efficient algorithm for this prob-
lem is to start with the special case of well-matched paths (with no



unmatched calls or returns), since it is easier to combine paths un-
der the invariant that they are well-matched. Then we can extend
well-matched paths to general VPA paths by constructing paths
out of unmatched returns, well-matched segments, and unmatched
calls, in which no unmatched call precedes an unmatched return
(thus ensuring that they are unmatched).

4.2.1 Well-Matched Paths
For the first step of the algorithm, focusing on well-matched

paths, our specific goal is to compute, for each function, thelength
of the shortest well-matched path that starts at the entrance to the
function and ends at the return from the function. This per-function
shortest path length is a kind of function summary that can beef-
ficiently computed bottom-up. For leaf functions, we apply Di-
jkstra’s algorithm to compute the length of the shortest path from
entrance to exit. If for all of the functionsg1, . . . ,gk that might be
called by a functionf , we have already computed the summary
lengthl i for gi , we can replace the call togi with an edge of costl i
and then again compute the summary length forf with one intra-
procedural invocation of Dijkstra’s algorithm.

The above described bottom-up computation might not compute
the shortest entrance-to-exit path for every function in SCCs in the
call graph, so another level of iteration is required. LetS be the
set of functions in an SCC of the call graph. We start by setting
the summary length for each function in theS to ∞. Then, we
repeat|S| times a process of updating the summary length for each
function in S (|S|2 updates total). To update the summary length
of a function f , we recompute its entry-to-exit path length based
on the best estimates found so far for the other functions in the
SCC (and the previously-computed correct values for any called
functions outside the SCC), updating the summary length if the
computed value is smaller. This process is shown in Algorithm 2.

Algorithm 2 Per-Function Computation of Shortest Paths. The
function DFN returns the list of functions sorted by depth-first
post-order. The functionDSP( f ,costs) computes the length of the
shortest path from the entry to exit of the functionf , using Dijk-
stra’s shortest path algorithm, under the assumption that the short-
est paths through called functions are those given incosts. The
function SCC(G, f ) returns all the functions inG that are in the
same SCC as the functionf .
1: let CG← call-graph of VPA
2: costs← /0
3: for f ∈ DFN(CG) do
4: if f 6∈ coststhen
5: letS← SCC(CG, f )
6: for f ′ ∈ Sdo
7: costs[ f ′]← ∞
8: for i = 1. . . |S| do
9: for f ′ ∈ Sdo

10: costs[ f ′]←min(costs[ f ′],DSP( f ′,costs))

The complexity of the part of the algorithm for a single SCC
is O

(

M2E lgN
)

, whereM is the number of functions in the SCC,
andN (resp.E) is the number of basic blocks (resp. edges) in the
largest function in the SCC. The factorO (E lgN) is the running
time of Dijkstra’s algorithm using a binary heap. The algorithm is
guaranteed to converge after analyzing each function in theSCC
M times, because the shortest path always goes through the base
case, rather than recursing to a function already on the callstack.
After the i-th iteration through all the functions, the algorithm will
have correctly computed the shortest length for call paths whose
depth within the SCC is at mosti. Since the shortest path for each

ε
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Figure 5: NFA To Constrain a VPA Path.
A general VPA path, with no mis-matched
calls and returns, is a concatenation of un-
matched returnsR, unmatched callsC , and
well-matched wordsW , with the restriction
that the unmatched returns precede the un-
matched calls.

function has no recursive calls, its maximum depth within the SCC
is M, soM iterations suffice.

To see why this the shortest path cannot contain a recursive call,
suppose, to the contrary, that the shortest path were one in which
a function f contained a recursive call to the same functionf . For
instance, suppose thatg calls f (the “outer” invocation off ), then f
calls itself (the “inner” invocation off ), and then both invocations
return. Then we can construct a strictly shorter path by replacing
the outer invocation off with the inner invocation off . In the
example, this gives the path in whichg calls f , then f returns. The
new path will be well-matched, but it is shorter, contradicting the
assumption that the first path was the shortest.

4.2.2 General VPA Paths
For the second step of the algorithm, we extend the well-matched

paths computed in the first step to general VPA paths (without
mismatched calls and returns) by concatenating well-matched seg-
ments, unmatched returns, and unmatched calls. The key insight
is that this is possible as long as the unmatched returns comebe-
fore the unmatched calls in the path, which ensures that theydo not
mismatch with each other. More formally, letC (resp.R) be the
set of calls (resp. returns), andW the set of well-matched words.
Then any word without mismatched calls and returns can be writ-
ten in the form(R|W )∗(C |W )∗, where| and ∗ are the standard
regular expression operators of alternation (union) and Kleene star
(repetition zero or more times).

Using the lengths for well-matched entrance-to-exit pathscom-
puted in the first step, theW symbols in the regular expression can
be represented by summary edges from a call site to a return. What
remains is to enforce the constraint that unmatched returns(R) pre-
cede unmatched calls (C ). This can be seen as requiring paths in
the VPA that simultaneously match the regular expression. We can
express the regular expression with the NFA shown in Figure 5,
and express the intersection of(R|W )∗(C |W )∗ and the VPA by
a product of the two automata. This product is equivalent to con-
structing an automaton with two copies of the VPA, and we take
that perspective in describing the construction in more detail.

To find the lengths of paths that satisfy the no-mismatched-calls
constraint expressed by the regular expression(R|W )∗(C |W )∗,
we use Dijkstra’s algorithm on a graph consisting of two copies of
the VPA. For the first half(R|W )∗ we construct a graphGR with
call edges erased, return edges retained, and a summary edgebe-
tween each pair of matching calling and return nodes having the
weight of the shortest path through the callee. Paths through this
graph correspond to executions with unmatched returns and well-
matched function invocations in any order. Dually we construct for
the second half(C |W )∗ a graphGC with call edges retained, re-
turn edges erased, and summary edges as inGR. Paths throughGC
correspond to executions with unmatched calls and well-matched
function invocations in any order. Finally, we construct a combined
graphGRC by linking GR andGC with zero-weight edges from each
call node inGR to the corresponding call node inGC. (It suffices
to link only call nodes because every word in(C |W )∗ starts with
a call.) Then, we compute the shortest VPA path from one node to
another by running Dijkstra’s algorithm taking a node fromGR as



Algorithm 3 VPA Shortest Path Computation. To compute the
length of the shortest VPA paths to a single target warning loca-
tion tw, we construct a graphGRC, representing the combination
of graphsGR andGC that allow unmatched returns and unmatched

calls respectively. The
i
−→ symbol denotes an edge with weighti.

Lines 1–4 add two copies of each VPA node toGRC (representing
the nodes inGR and inGC); the two copies are labeled with dif-
ferent labels (R andC). Lines 7–9 add call edges ( in Fig. 4)
to GC, edges between corresponding call sites ofGR andGC ( ),
and summary edges between callers and return nodes () to both
GR andGC. Lines 10–11 add return edges () to GR. Lines 12–13
add the intraprocedural edges (). Finally, lines 14–16 run Dijk-
stra’s algorithm to compute all-source-single-target distances to the
Rcopy oftw, and return the distances using theC copies as sources.
1: GRC← empty graph
2: for b∈ nodes ofVPAdo
3: letb′← 〈b,R〉 andb′′← 〈b,C〉
4: add nodesb′ andb′′ to GRC
5: for e∈ edges ofVPAdo
6: lets← source(e) andt← target(e)
7: if e is call edgethen
8: letw← the length of the shortest path to return fromt and

r← the node wheret returns
9: add edges〈s,C〉

0
−→ 〈t,C〉, 〈s,R〉

0
−→ 〈s,C〉,

〈s,R〉
w
−→ 〈r,R〉, and〈s,C〉

w
−→ 〈r,C〉 to GRC

10: else ife is a return edgethen

11: add edge〈s,R〉
0
−→ 〈t,R〉 to GRC

12: else ife is an internal edge of weightw then
13: add edges〈s,R〉

w
−→ 〈t,R〉 and〈s,C〉

w
−→ 〈t,C〉 to GRC

14: D← Dijkstra(GRC,〈tw,R〉)
15: for s∈ nodes ofVPAdo
16: s.d← D[〈s,C〉]

the source and a node fromGC as the target. This construction is
shown in Algorithm 3, and demonstrated graphically in Figure 4.b.

4.3 The Two-Component Heuristic
Obviously, an execution path can only demonstrate a possible

vulnerability at an instruction if it executes that instruction, and
often the vulnerable instruction depends on values computed earlier
in a program. We take these two intuitions as the basis for our
guidance approach for path selection.

More formally, given a warning produced by static analysis,our
approach computes for each VPA node a pair of non-negative inte-
gers(d,s). The first componentd represents the cost of the least-
expensive path from the basic block to the warning. The second
components counts the number of instructions in the data-flow
slice of the warning that can be reached from the basic block.

For computingd, we use the shortest-path algorithm of Sec-
tion 4.2, assigning a weight of∞ to loop back edges and 1 to all
other edges. Assigning a high cost to loop back edges causes the
search to prefer to reach a target at the first opportunity, even if it
would also be reachable on a future loop iteration.

To computes for a given potential vulnerability, our system first
computes the complete backward slice from the vulnerability. Then
it makes a single bottom-up pass of standard interprocedural prop-
agation to compute, for each basic blockb, the set of instructions
in the slice that are reachable fromb. The value ofsat a location is
the cardinality of that set.

The two componentsd ands represent goals that are sometimes
in tension. We would prefer to take paths that reach the poten-

char buf[20], *p = buf;
int mode = 0;
while (p >= buf)

switch (read_char()) {
case ’a’:

if (mode == 1) {
*p++ = ’x’;
mode = 0; // path 1

} else { /* path 2 */ }
break;

case ’b’:
mode = !mode; break; // path 3

default:
p = max(buf, p--); // path 4

}

Figure 6: An example loop for which a repeating pattern of
paths (here, alternating between paths 1 and 3) is required to
cause an overflow.

tial vulnerability quickly (smalld), and we would like to cover
many data-flow predecessors of the potential vulnerability(large
s). When these desires conflict, our heuristic attempts to balance
them, choosing the one that is more salient in a particular instance,
while incorporating randomization so that a future path maymake
a different choice, especially if it was close.

Specifically, suppose that at a branch, we have a choice between
a target with heuristic values(d1,s1) and one with(d2,s2). Since
we prefer a target with larged but smalls, we compute the cross
differencex= d1 ·(1+ ln(1+s2))−d2 ·(1+ ln(1+s1)). A negative
value of x corresponds to a preference for the first target, while
a positive value corresponds to a preference for the second.To
include randomization, we compute the logistic valuer = 1

1+e−kx ,
and branch according to whether a number selected uniformlyat
random in[0,1] is less thanr. The parameterk controls how large
a difference in costs corresponds to a given probability difference;
our system currently hask= ln(1.001).

4.4 The Loop Pattern Heuristic
The two-component heuristic described above is effective for di-

recting execution towards a desired point in a program; whena pro-
gram has loops, it will usually explore only a few iterations. But
some program behaviors occur only when loops, and in particular
certain paths those loops, execute repeatedly. This is especially true
for buffer-overflow and integer-overflow vulnerabilities.

A simple example of a loop for which a pattern of loop paths
is needed to cause an overflow is shown in Figure 6 (similar but
more complicated loops appear in several of the benchmarks in
Section 5). There are four paths through the body of the loop,
numbered in comments. Choosing one of the loop body paths ran-
domly on each iteration is very unlikely to produce an overflow (p
- buf ≥ 20): only path 1 increments the pointer, and path 4
decrements it, so they tend to cancel each other out. On the other
hand because of themode flag, it is infeasible to execute path 1 on
every iteration. A pattern that leads to the overflow is one that al-
ternates between paths 1 and 3. At a high level, our approach is not
to statically determine which such pattern of paths leads toan over-
flow (though this could be an interesting direction for future work).
Instead, our approach is to guide the exploration to cover a wide
variety of path patterns, so that if a vulnerability can be triggered
by a short pattern, the exploration will find it relatively early.

Thus to improve our coverage of these kinds of behavior, our
system directs execution to sometimes repeatedly execute one or
more specific paths within a loop as many times as possible. For a
loop that either contains the vulnerability, or contains aninstruction
from the slice of the vulnerability, this heuristic will choose a short



pattern of paths from among those loop paths previously observed.
Then on each iteration of the loop it will try to execute the next path
from the pattern. In order to construct such patterns, we need to be
able to uniquely identify paths through a loop body (precisely, the
(necessarily acyclic) paths through a control-flow graph SCC that
do not pass through any sub-SCCs).

We begin by identifying all exits from the analyzed SCC. The
exits include entries into a sub-SCC. We assign the weight ofone
to the exit edges and start traversing the acyclic graph (loop body)
backwards. For every node, we sum up the weights of all outgoing
edges and assign the sum to the node and all the incoming edges.
After the process terminates (it terminates because the graphs are
finite and acyclic), every node is labeled with the number of distinct
paths to exits. The header of the loop is labeled with the number of
paths, call itP, from the header to the SCC exits.

Each acyclic path through the SCC can be assigned a unique
number in the range 0. . .P−1. We call a wordw= {0. . .P−1}∗

a loop path pattern. As the exploration runs, the system records
the unique path numbers of feasible paths. Once the system has
observed some feasible paths (currently, after the fifth execution of
the program), it will begin to try to traverse a path pattern on some
executions. Specifically, the system chooses whether to usea pat-
tern, and if so the length of pattern to use, according to a geometric
distribution as follows. For 50% of program executions, it does not
use a pattern (rather, chooses a path number randomly). For 25%
of executions, it picks a pattern of length 1 (a single path number),
and uses this path number for every loop iteration. For 12.5%of
executions, it picks a pattern of length 2 (a pair of path numbers
Pa andPb), and uses pathPa for odd-numbered iterations andPb
for even-numbered iterations. In the same way, longer patterns are
chosen less frequently. In each case, the pattern is constructed by
uniform random selection from the set of feasible paths discovered
so far. The constructed loop path pattern is repeated every time the
loop is revisited during the search, until the program exits. On each
iteration, the heuristic will attempt to follow the path given by the
path number, subject to feasibility.

Observe that, unless one of the paths in a path pattern leads to a
loop exit, one effect of a pattern is to attempt to execute as many
loop iterations as possible (in contrast, random choice would stop
with probability 50% after each iteration). Finally, whilewe apply
the path-pattern approach as described above on every execution
when the vulnerable instruction is inside a loop (in the samefunc-
tion), we apply it more selectively for loops which contain only an
instruction from the vulnerable statement slice. For theseloops,
which are less frequently relevant to a vulnerability, we apply the
path-pattern approach for a fraction (one-third) of executions.

5. EXPERIMENTAL RESULTS
We evaluate our tool’s detection and test generation for buffer

overflow vulnerabilities using a suite of examples developed by
Zitser et al. [50], extracted from historic vulnerabilities in 3 widely
used network servers. Though the examples have been reduced
to omit most of the irrelevant parts of the programs (they average
665 lines of C code each), they cover a wide variety of kinds of
overflow, and demonstrate sufficient complexity to make analysis
challenging. Each benchmark represents a conceptually single bug,
which can manifest in out of bounds accesses at multiple locations.
The original versions of the benchmarks were designed purely for
static analysis; we use versions modified by Saxena et al. [41] to
read inputs from files for use with dynamic techniques.

The experiments were performed on a 4-core Xeon E5540 work-
station (our tools are single-threaded) with 12GB of RAM, running
Debian GNU/Linux with a 64-bit kernel version 2.6.26. The results

of the evaluation are summarized in Table 1 and described in more
detail in the remainder of the section.

5.1 Static Analysis
Our static analysis finds out-of-bounds memory writes, analyz-

ing both the application and the libraries together, ratherthan de-
pending on hand-written API summaries. We use thedietlibc
library as a compatible but simplified replacement for the system’s
C library. To improve the quality of the results, we also treat some
C library functions whose only side-effect is output, such at write
andsyslog, as no-ops, since these functions do not modify their
inputs or global variables visible to the program.

All benchmarks have labeled vulnerabilities, which enabled us
to accurately count false negatives and positives. As shownin Ta-
ble 1, our approach detects all vulnerabilities in the benchmarks
(i.e., there are no false negatives), but reports 72% false positives.
The third stage of our approach, the guided dynamic analysis, can
prioritize warnings according to whether it finds a concreteinput
triggering the vulnerability within a given timeframe, butcannot
prove a warning to be false positive. The imprecise widening(c.f.,
Section 3.1) in our implementation caused the majority of false
positives. Another source of false positives are weak updates of
memory regions. Time and space usage of the static analysis are
relatively modest. The figures shown in Table 1 are for analyzing a
VPA read from disk; VPA construction takes an additional second
or two per trace.

5.2 Dynamic Analysis
We next applied the dynamic analysis to confirm one of the true

positive static analysis warnings for each of the benchmarks. When
there are multiple true positives from static analysis, we report the
results for one selected uniformly at random. We obtained similar
results when repeating the dynamic analysis with other trueposi-
tives, as expected given that the warnings relate to a singleunderly-
ing bug. The symbolic input in each benchmark is a bounded-size
character buffer. The dynamic tool produced test cases proving the
existence of bugs in all but one of the programs. The guidancefrom
static analysis made the tool more efficient and helped it findbugs
it otherwise could not.

The dynamic analysis results, shown in the right-hand side of Ta-
ble 1, demonstrate that static-based guidance is a significant advan-
tage. The benchmarks vary significantly in difficulty for symbolic
execution. On the easier benchmarks, guidance often improved
both the running time and the number of whole-program paths ex-
plored (iterations). Guidance sometimes increases the average time
per iteration. Often, our loop pattern heuristic picks paths with
many loop iterations necessary for triggering vulnerabilities, but in
the S2 benchmark such paths are also more expensive. Thus, al-
though the total number of iterations is smaller, the overall time
cost is higher. The unguided search explored many paths thatwere
both unproductive and short. The cost of using heuristics during
execution is negligible; the reported times include pre-computation
of quantities such as distance which required only a fraction of a
second. On the more difficult benchmarks, guidance can make the
difference between success and failure, as seen in S1, S5, and S6.
S6 is a buffer overflow caused by an integer overflow: by direct-
ing exploration to consider a long sequence of digits, our guidance
leads in under 12 seconds to an overflow that undirected execution
failed to find even in 6 hours. S1 and S5 contain loops similar to
the example in Figure 6, in which a particular pattern of looppaths,
corresponding to a repeating pattern in the input, is neededto cause
a pointer to overflow a buffer. (S3 is similar to S1 and S5, but the
heuristic is not effective because the loop spans several functions.)



Bmarks. Instrs. Static analysis Undirected dynamic analysis Directed dynamic analysis
App. libc Warns. Bugs False pos. Time (s) Mem. (Kb)Iterations Time (s) Iterations Time (s)

B
IN

D

B1 1705 2120 15 1 14 3.3 46000 54 2.8 20 3.6
B2 1290 2178 22 1 21 3.2 50416 137 13.3 72 25.1
B3 719 3058 14 1 13 14.2 80768 9 1.6 4 2.6
B4 394 3621 40 2 38 29.2 320480 1 1.9 1 2.0

S
en

dm
ai

l

S1 929 2021 33 28 5 24.9 95472 † † 3347 2990.6
S2 524 2750 28 2 26 20.2 79824 16 2.9 8 66.1
S3 318 1653 14 3 11 1.6 33216 † † † †

S4 370 2447 20 7 13 10.6 57808 3 19.0 1 9.1
S5 392 1282 10 3 7 1.2 18880 † † 332 202.6
S6 595 2247 6 1 5 3.2 40112 † † 86 11.3
S7 957 2595 42 2 40 15.4 142208 56 6.9 46 8.8

W
U

F
tp

d F1 571 1561 11 4 7 1.1 30448 309 8.1 11 1.1
F2 807 2549 13 1 12 5.8 53632 1455 65.8 11 1.4
F3 684 1639 37 27 10 7.5 78624 143 60.0 18 11.6

Total 305 83 222 141.4

Table 1: Summary of the Experimental Results. The first section of the table lists the benchmarks, the second section shows the size
of the benchmarks in machine instructions, and the third section shows the results of the static analysis. The fourth andfifth sections
show the results of dynamic test generation, where the directed analysis used the static analysis results for a randomlyselected
true positive, while the undirected analysis had no such information. The dynamic analysis results are averages over five runs with
different random seeds. “Iterations” counts the number of whole-program executions generated until finding a bug-revealing one,
while the † symbol indicates the analysis could not trigger the bug within six hours.

The instruction coverage of the dynamic analysis was usually
very similar between the undirected and directed runs, differing
by just 1-2%. The only large difference was for S7, when the
directed run covered about 40% of the unique instructions versus
60% for the undirected run. This confirms, as also visible in the
iteration count, that the directed dynamic analysis finds the vulner-
ability more quickly because it avoids exploring irrelevant parts of
the state space.

6. RELATED WORK
Static Analysis of Binaries.Our static analysis is similar to Bal-

akrishnan and Reps’s work [3], with a few differences discussed in
Section 3. Kinder et al. [27] explain the “chicken-and-egg”nature
of the problem of inferring the control-flow of binaries statically:
data-flow analysis is required to infer the control-flow information,
and control-flow analysis is required to infer the data-flow informa-
tion. They combine data- and control-flow analysis and compute a
safe approximation of the control-flow. In practice, it is easy to
construct examples that defeat the static approach, because even
distinguishing CISC assembly instructions from data is a difficult
task [42]. We chose a different tradeoff — to use dynamic analysis
with static augmentation only for branches we are certain wecan
resolve precisely. More exploration is needed to reach a definite
conclusion on the comparative merits of the two approaches.

Guiding the Search. Improvements in the efficiency of search
over the state space have been an active research area in verifica-
tion and testing of protocols and software. In the context ofpro-
tocol model checking, Yang and Dill [48] used Hamming distance
of states as a greedy best-first-search metric in their Murφ model
checker. They compute several pre-images of the negated proper-
ties — the process they call target enlargement — and then compare
every visited state to the enlarged target. We could apply similar
enlargement to targets identified by static analysis, but itremains
unclear how enlargement would help with alternating paths within
SCCs. Edelkmap et al. [18] studied several heuristics. Theyused

an approximate distance function to a state where a given LTLfor-
mula holds and found thatA∗ search worked best on their protocol
benchmarks. We experimented with approaches similar toA∗ in
our domain, but it appeared difficult to determine an appropriate
state-ranking function automatically. Godefroid and Khurshid [20]
propose using genetic algorithms for finding errors in largestate
spaces, focusing specifically on heuristics for deadlock detection
and property violations related to enabledness of transitions and
message exchanges. Our heuristics are more tailored towards find-
ing buffer overflows, especially in cases with multiple nested loops
and multiple paths through the loop body.

Lal et al. [29] studied construction of minimal length explana-
tions of crashes (produced by concrete traces) having only partial
information about the trace. Their goal is to find a minimal length
path passing through a maximal number of observed check-points
in the code. In our setting, the data-flow slice produced by static
analysis can be seen as partial information about the trace (we don’t
take control-flow dependencies into account), but we use that in-
formation only heuristically and do not attempt to maximizethe
number of statements from the slice on the path. Their algorithm
is exponential in the number of check-points. Since we have only
one check-point (i.e., the target), the exponent disappears and our
algorithm can be seen as a special case of theirs.

Groce and Visser describe heuristics for finding property viola-
tions with the Java PathFinder model checker [22], based on branch
coverage and thread inter-dependencies. Burnim and Sen [8]focus
on achieving high line coverage and present several control-flow
guided search heuristics, including one that is based on CFGdis-
tances but does not include matching of calls and returns. Achiev-
ing high line coverage was not sufficient to trigger vulnerabilities
in our benchmark suite. Further, without guidance providedby the
static analysis and special heuristics for strongly connected com-
ponents, we were unable to hit vulnerabilities in a number ofmore
difficult benchmarks. Zamfir and Candea [49] apply symbolic ex-
ecution to synthesize an execution that reproduces a bug report.



Among several heuristics, they propose a “proximity-guided path
search” that uses control-flow distance. In comparison to the algo-
rithm we present in Section 4.2, the give only a simplified presenta-
tion without a complexity analysis, and rather than analyzing recur-
sive calls they simply give them a weight of 1000. Saxena et al.’s
loop-extended symbolic execution [41] introduces constraints that
summarize loops by expressing other variables in terms of the num-
ber of times a loop executes, allowing symbolic reasoning across
paths that execute different numbers of iterations. By contrast the
loop exploration heuristic in this work applies to a single path at a
time, and focuses on which path through the body of a loop triggers
a vulnerability. Rybalchenko and Singh [40] propose a subsumer-
first heuristic to steer symbolic reachability analysis of benchmarks
from the transportation domain. Their heuristic is very intuitive: it
prefers larger (according to subsumption ordering) states, greedily
trying to get to a state large enough to contain the error state. Their
technique could be classified as a look-back, while ours exploits
static analysis and is inherently a look-ahead technique. We exper-
imented with several state orderings, and were unable to getthem
to work. Subsumption ordering would be prohibitively expensive
in our setting, as path conditions, describing states, can be large.

Hybrid Static-Dynamic Analysis. The Synergy algorithm [23]
combines model-checking and DART [21] to try to cover all ab-
stract states of a program. Our work has no ambition to produce
proofs, and we expect that our approach could be used to improve
the performance of the DART part of Synergy and other algorithms
that use test generation as a component. DSD-Crasher [15] more
closely resembles our work in performing dynamic, static, and dy-
namic analysis in sequence, though the stages are quite different.
The closest point of comparison is that DSD-Crasher generates
constraints via static analysis and solves them to create dynamic
test cases, whereas our second dynamic analysis incorporates both
constraint generation and solving.

7. LIMITATIONS AND FUTURE WORK
The first, and the most obvious, limitation is that the complete-

ness of the VPA constructed in the first stage depends on the ca-
pability of the seed tests to exercise indirect jumps (or calls). One
possible solution would be to use completely static analysis to con-
struct the VPA (e.g., [27]). Unfortunately, sometimes in practice
assembly instructions cannot even be decoded statically, as vary-
ing sizes of CISC assembly instructions make the instructions and
data difficult to distinguish. Further, static analysis of binaries is
inherently imprecise. Another possibility is to use DART orour
three-stage approach in a loop for discovering concrete inputs and
using them instead of the seed tests.

The second limitation of our approach is the precision of our
static analysis. Currently, our implementation context-sensitively
follows all calls in a brute-force manner and does not use function
summaries or k-sensitivity [43]. Such an approach is unlikely to
scale to very large applications, and we are planning to explore less
precise and more efficient approaches (summaries, k-sensitivity,
context-insensitive analysis). A less precise analysis would proba-
bly produce more warnings, decreasing the precision of the guiding
information provided to the third stage of our approach. Thenum-
ber of warnings produced by a context-insensitive analysiscould be
reduced by extending the analysis with aggregate structureidenti-
fication [36], affine-relation analysis [33], and recency-abstraction
[4], as in [3], but it is obvious that the tradeoff between theprecision
of the static analysis and computed guidance information requires
significantly more research.

The third, more subtle, limitation of our approach is a possible
overfitting of the guidance heuristic to our set of benchmarks and

the vulnerabilities (buffer overflows) we are looking for. Design
of heuristics is inherently prone to overfitting and designing robust
heuristics is a tedious time-consuming task. For example, it took
the SAT solving community almost 30 years ([13]–[32]) to come
up with effective robust decision heuristics, and they are still be-
ing improved. Our paper is a step forward in developing robust
dynamic test generation guidance heuristics, but obviously, much
more work remains to be done.

8. CONCLUSIONS
We have presented an approach that applies dynamic analysis,

static analysis, and dynamic analysis again to explore the large path
space of programs given a binary. The analysis revolves around a
visibly pushdown automaton (VPA) which represents the programs
global control flow structure. Starting with dynamic analysis helps
resolving indirect jumps, and the static analysis helps symbolic exe-
cution direct exploration towards vulnerabilities based on the short-
est paths and loop pattern heuristics. In preliminary experiments,
our static analysis finds all of the vulnerabilities in the suite, and
dynamic analysis constructs test inputs for all but one.
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