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ABSTRACT

We present a new technique for exploiting static analysiguide
dynamic automated test generation for binary programeyipz-
ing the paths to be explored. Our technique is a three-stagegs,
which alternates dynamic and static analysis. In the fiegestwe
run dynamic analysis with a small number of seed tests tdweso
indirect jumps in the binary code and build a visibly pushdau-
tomaton (VPA) reflecting the global control-flow of the pragr.
Further, we augment the computed VPA with statically coraplet
jumps not executed by the seed tests. In the second stageplye a
static analysis to the inferred automaton to find potentighera-
bilities, i.e., targets for the dynamic analysis. In thedhstage, we
use the results of the prior phases to assign weights to VBAsed
Our symbolic-execution based automated test generatadritten
uses the weighted shortest-path lengths in the VPA to direek-
ploration to the target potential vulnerabilities. Prehary exper-
iments on a suite of benchmarks extracted from real appitst
show that static analysis allows exploration to reach walbidities

it otherwise would not, and the generated test inputs proatthe
static warnings indicate true positives.

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing and Debugging
General Terms

Algorithms, Reliability, Security

Keywords

automated testing, static analysis, dynamic analysieripzation

1. INTRODUCTION

Many techniques have been proposed for software verifitatio
and test generation: symbolic model checking [12, 5], expli
state model checking [25], static analysis [14], directetbaated
random testing [21], fuzzing [6], and numerous variants amn<¢
binations of those. Each technique offers different tréfdeloe-
tween soundness, completeness, speed, precision, $italalid
the level of automation, but all of them face the same funddate
problem — state-space explosion.
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The first problem we explore is focusing the search during-aut
mated test generation. Search heuristics are either lbe&ebtech-
niques, which use an analysis cheaper than the search torexpl
the yet unvisited parts of the search-space, or look-batintques,
which analyze the already explored search-space. Our agipiis
a look-ahead technique, as we use static analysis to igqasfsi-
ble vulnerabilities and to compute other useful informataoout
identified vulnerabilities, like data-flow slices (e.g.7[45]) with
respect to the statement triggering the vulnerability. Tdenti-
fied vulnerabilities become targets for the dynamic ana)yshile
slices are used to guide the search toward those targets.

The second problem we explore is a combination of static and
dynamic analysis, with the goals of (1) using the static ysial
to guide the dynamic test generation, and (2) using the dimam
analysis to filter out false positives produced by the statiglysis.
We refer to our approach to this combinationstatically-directed
dynamic automated test generation

The idea of guiding dynamic with static analysis can be @gpli
at the source level, but our work focuses on test generation f
stripped binary programs (without symbol tables or debudgrin
mation). Our approach is also applicable when the source obd
the application is available, but the third-party librarese closed-
source. In that case, the system integrators or even emg-gee
to test closed-source components before deploying theracisly
in settings where security and reliability are paramount.

Working at the binary level introduces some unique challsng
pervasive address arithmetic, the absence of type infiwmanis-
aligned memory accesses, and indirect (computed) jumpsdTo
dress these challenges, we devise a three-stage apprdaefirst
stage uses a combined dynamic and static analysis to gersrat
interprocedural control-flow graph, represented as alyigbsh-
down automaton (VPA) [1]. The second stage performs statit-a
ysis on the VPA to identify possible vulnerabilities and torpute
other information used later to guide the search, like flata-de-
pendency slices. The third stage uses symbolic executijrafd
the results of the static analysis from the second stagertergee
tests that trigger the vulnerabilities detected by statalysis.

1.1 Contributions

Our three-stage sandwich approach to binary analysis isva ne
point in the space of tradeoffs (soundness, completenpseds
precision,...) in binary analysis. In addition to propasthe ap-
proach, we make contributions in each stage.

The first stage of our approach, described in Section 2, agrist
an underapproximation of the interprocedural control-fimaphs
of a binary without symbols or debug information. We combine
dynamic and static analysis to resolve indirect jumps amittmde
assembly instructions. Both problems are a challenge,usecia
the absence of type information or labels, every assembtyuio-



tion a potential jump target; with variable-sized CISC instions,
it can be difficult to even distinguish code from data. Ourrapph
computes an underapproximation of the transition relaltipme-
solving some indirect jumps with a set of seed tests, and aogm
ing the computed relation with statically computed direchps.

The VPA computed by the first stage is the input to our static
analysis (Section 3), designed for finding potentially eitpble
vulnerabilities, like buffer overflows. Our static analy inspired
by the Balakrishnan and Reps’s VSA analysis [3]. One diffees
is that our static analysis combines discovery of abstraahary
locations with the data-flow analysis, while VSA alternadezov-
ery and data-flow analysis until a fixed-point. Further, aualgsis
handles overlapping (mis)aligned reads and writes moraigaly,
a feature we found particularly useful in analysis of progsahat
perform a lot of string operations.

The third stage of our approach, presented in Section 4oiesf
single-path symbolic execution to search for concrete itggits
that trigger potential vulnerabilities discovered by thetis analy-
sis in the second stage. Running on its own, the test geoetaibl
can create many program inputs, each exercising a diffeaht,
but often none of them trigger a vulnerability. This motesbur
use of static analysis to guide the path search.

Thus, we propose a new heuristic for guiding dynamic search
towards finding the right path towards a vulnerability idéed by
static analysis in the second stage. Our heuristic worlterdiftly
when the dynamic search is within a strongly connected cowpio

duplicating blocks that are a target of multiple junips. Basic
blocks containing exit statements are accepting states. VRAs
considered in this paper accept only matched returns worean-
ing that every return must have a matching call. If also ewatly
must have a matching return, we say such words are well-match

We use the standard abstract interpretation notation and-te
nology [14]: abstraction (resp. concretization) operat@resp.y),
abstract post state transfornpast’, and join (resp. widening) op-
eratorLl (resp.v).

2. CONTROL-FLOW COMPUTATION

The first stage of our approach resolves indirect jump tariget
binaries by analyzing a set of concrete traces obtained dguting
the analyzed application on a set of seed tests. Our dynamale a
ysis folds multiple traces into a single VPA representinggtobal
flow of control. Additionally, we augment the VPA with misgin
transitions that can be precisely computed through staadyais.
In this section, we describe the computation of the VPA thtoa
combination of dynamic and static analysis.

We adopt a hybrid approach to VPA construction combining dy-
namic and static analysis. The dynamic analysis attempéstive
as many targets of indirect control-flow transitions as jiesThe
static analysis mitigates the incompleteness of the dynamaly-
sis. For the purpose of finding a vulnerability in the progrétns
sufficient that the model of the program we build includeswvhle

(SCC) such as a loop, and when it is not. For outside an SCC, we nerable path, but it is irrelevant whether the edges aloagtth

develop a two-component heuristic that ranks states aicgptd
two statically-computed metrics, one based on the showtBst
path to the vulnerability, and the other using the vulndityts
data-flow slice. For within an SCC, we develop a heuristid tha
picks patterns of paths through the SCC according to a gemmet
distribution and then alternates those paths over mulitiptations.

were discovered through seed tests or static augmentation.

We use the PIN [31] framework to instrument binary applica-
tions with callbacks at jump and library load events. Therins
mented application executes normally, unaware of the acki
Traces from multiple seed tests are merged into a single YARA.
underapproximation of the instrumented application’stiam#flow

The problem of computing the shortest paths on a VPA has not in the form of a VPA can be computed as follows. Each visited
(to our knowledge) been previously posed. We address it by an basic block is represented with a single state in VPA. Eastted

efficient algorithm that treats well-matched paths firsttdra-up

in a call graph, and then extends to all VPA paths by taking an
automaton product with an automaton that prohibits misheatc
calls. These transformations allow us to use the classiritthgn

for shortest paths in a graph. Our algorithm can also be seen a
more efficient case of a weighted pushdown problem [39],gisin
the property that the semiring of path lengths is totallyeoed.

In our experiments, the proposed heuristic sped up the dignam
test generation significantly, in one case letting our sydiad in
11.3 seconds a vulnerability it could otherwise not find eaftar
6 hours. Both parts of the heuristic were valuable: the SOC pa
allowed the tool to achieve good coverage of loops with cempl
internal structure, while the non-SCC part allowed it tooddfintly
focus on those parts of a program relevant to a vulnerability

1.2 Terminology

An interprocedural control-flow graph, as computed by thet fir
stage of our analysis, can be seen as the combination ofgraph
and separate control-flow graphs for each function. But \wiead
formalize it as a single unified object, a visibly-pushdowatoana-
ton [1]. Though ultimately equivalent, this choice allows expo-
sition to be at once simpler and more formal.

States represent basic blocks: a sequence of program stetem
ending with a branch, call, or return. The flow of control esta
basic block only at its beginning and leaves it by executibthe
last statement. For simplicity, we will assume that eacliciialeck
ending with an unconditional jump is merged with the tardetk,

edge is classified in one of the classes (call, internalrmgtand
the VPA is updated so that the source and the target basiksloc
are linked with an edge of the appropriate class. All basicks
ending with theexi t system call are declared to be final states.
After the dynamic VPA construction, we use recursive traaer
disassembly [42] to augment VPA with the conditional dijaotps
not executed by the seed tests. The resulting VPA is, netilgsaa
underapproximation of the complete interprocedural ad+ftow
graph of the analyzed application. The completeness of dhe ¢
structed VPA depends on the capability of the seed test=iwice
indirect branches and the number of branches that can beadeigu
resolved with the recursive traversal disassembly. Binaele use
the Vine library from BitBlaze [44] to decode the instructsinto
a simplified internal representation to facilitate latealgnis.

3. STATIC ANALYSIS OF BINARIES

The static analysis in the second stage of our approachrpesfo
an interprocedural context- and flow-sensitive analysitheriVPA
computed in the first stage. First, static analysis idestifiessible
vulnerabilities, which are used as targets for the dynamidyais
in the third stage of our approach. Second, static analgsipates
approximate size of stack frames and allocated heap regitrese
sizes are used to detect out-of-bounds accesses. Thitid,astal-
ysis maintains a map between written abstract locationsstatd-
ments in the assembly code and this map is then used to compute

IMerging of targets of unconditional jumps is done in the ftsge
of our approach.



the backward data-flow slice with respect to the identifieldera-
bility. The slice is used as a component of the guidance bcsi
in the third stage of our approach. The rest of this sectieoutises
the most important aspects of our static analysis: the adistio-
mains used, the treatment of weak and strong updates, ahdnhe
dling of overlapping and misaligned reads and writes.

3.1 Abstract Domains

The abstract domain we use for static analysis of binaries co
sists of several hierarchically composed domains: stridést-
vals (denotedSinterval) [37, 2], value map ValMap), regions
(Region), and abstract stateState). We introduce these abstract
domains starting at the bottom of the hierarchy.

Strided intervals are defined as a triplid, ub], such that

y(llb,ub]) :={i|Ib<i<ubAs>0ATkeZ.i=s-k}

Binary code often uses indirect addresslmse+ indexx scale
conveniently representable by strided intervals. Arithioend log-
ical operations on strided intervals are very similar torafiens on
simple intervals and can be efficiently computed (e.qg.,)[46]

Memory regions, in our work, abstract disjoint chunks of mem
ory. Each region has a unique identifier. The set of identifier
denotedRegionID, while for the elements of the set we will use
r, with indices. We treat registers as a special form of a fixed-
size region Regld. Global variables also form a fixed-size region
(Glbld). For simplicity, we also place constants and scalar ranges
in a special regionld).

We create a unique region for each allocation site that atiésc
a heap object, while for the other types of regions (regstack,
and globals) we create one unique region per program pesiregi
type. Other abstract domain design decisions are posskbe.
instance, Balakrishnan and Reps [3] allocate one stackhmaqugr
function. Our decision to keep a single stack region per anog
simplifies context-sensitive analysis and allows precaglling of
writes to any frame on the calling stack.

A value can be either an integer or an address within a region.
To represent a pointer that could point to multiple regiamsa
value that could be either a constant or a pointer, we useevalu
mapsValMap := RegionID — Sinterval, where Sinterval rep-
resents the offset within thRegionID region. Integers are rep-
resented as offsets within the distinguished regiid. Further
on, we shall use lettera (resp.v), possibly with indices, to de-
note an address froInterval (resp. an instance &alMap). The
(RegionID, Sinterval) pair is also known as aabstract location
or aloc for short, in the literature. Alocs are used to represent
variable-like entries, either on heap, in stack, or in reys

Regions are defined as a mBpgion := Sinterval — ValMap.
Individual regions are denoteg] possibly with indices. For exam-
ple, the stack region containing constant 7 at stack-sktand a
pointer to a global variable at address 1000 at stack-sl@would
be represented &s:

R= {4[74, 0] — {Cld — 1[7,8]},
4[-12 —8] — {Glbld — 4[1000 1004} }
Regions with different identifiers are considered to be itdin

far apart. The C standard [26, page 83] considers the rekatt-o
dress arithmetic pointing outside a region undefined, sdreat-

@)

2Note that unlike the prior work, we make the upper bound ex-
clusive. We found this definition of strided intervals to lmre-
what more convenient for dealing with misaligned reads aritbg;
which are frequent in binary code.

3Negative addresses are often used to index the stack frathe of
currently executed function.

post (so,if cthen S elseSy) = post’ (s, Sy ) L post (s9, )
post (sg,while ¢ do S) = spvpost (s, )
post (s, write (r,a,v)) = sp[r,a + V|

Figure 1: Definition of the Transition Relation. The pre-stae
is denotedsy, statementsS, the widening operator v, branch
condition ¢, and temporary variable v of the ValMap type. Our
instruction decoder creates temporary variables for inteme-
diate results loaded from memory or created by complex as-
sembly instructions. The control-flow construction (Sectn 2)
identifies branches and loops, which can be classified as eith
if-then-else branches or while-do loops. Thus, the above arll
the state-modifying transitions required.

av={(r,a) | (rna) evrha=@a'}

a=geaif (nag) eviA(na) evy
a=T otherwise

read(r,a) = §fr, @], where s is the current state

VI®Vo = (na)’

|

Figure 2: Operations on Value Sets. Thep symbol stands for a
unary, and ® for a binary operation.

ment of regions is following the C standard (for binaries eom
piled from C programs). For binaries compiled from typeedah-
guages, our assumption is safe.

Finally, we define an abstract state as a map from region iden-
tifiers to regionsState := RegionID — Region. For denoting in-
dividual states, we will use the letterpossibly with indices. The
State map is indexed by a region identifier and address (strided in-
terval), e.g.s[Glbld,4[100Q 1004]. The indexing operatiogr, a]
returns the value map defining the locatiann the region with
identifierr in states, or L if the location is undefined. We de-
fine substitution on stategr,a < v] as an operator that replaces
the value magsr,a) with v, without changing other regions or ad-
dresses, and returns the newly constructed state.

For efficiency, we represent the maps in each level of theatist
state as persistent red-black trees [35] (using Eker'syopaitions
[19]) to allow fast functional updates with sharing. Regiarse
interval trees to efficiently detect overlap, and we use lcasising
to avoid constructing duplicate objects.

Formally, our abstract interpretation is a monotone natridi
butive framework (e.g., [34]) with domai(4” (State),C, LI, 1),
where the transition relationost is defined by the rules in Fig. 1,
while the operations over value maps are defined in Fig. 20M®
pute the fixed-point, we use a simple aggressive wideningatme
for strided intervals, described in [2]. We define the joid ariden
operators on states later (Section 3.4).

3.2 Weak and Strong Updates

In this section, we discuss our treatment of weak and strpag u
dates in more detail. A strong update overwrites the costeithe
written region, and represents a definite change. In cangageak
update computes a join of the old and new contents. In general
if a region represents multiple concrete regions (i.e.,raanzes
them), strong updates are unsound.

Our analysis begins by creating a single strongly updatable
gion per allocation site. If that site is revisited during tbourse
of analysis, a new weakly updatable region is created argeceu
every time the same allocation site is revisited later, gbémallo-
cation site abstraction [11, 30]. Thus, the analysis cseatenost
two regions, one strongly and one weakly updatable, pecatilon
site. The described strategy is exactly the opposite of KBiaka:
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Figure 3: Chunking of Overlapping Addresses. The top rect-
angle in each figure represents the contents (denoteq of a
weakly updatable region at addresses shown above the rectan
gle. The addresses ard[1000 1017 in (a) and 4[100Q 100§ in
(b). The dotted lines represent strides, while full lines rpresent
chunk boundaries. The middle rectangle in each figure repre-
sents the newly written data (denotedy). The bottom rectangle
represents the contents of the region after write. In (a), tle re-
gion is split into three aligned chunks. In (b), the region issplit
into four chunks: chunk 4[100Q 1004 that maintains the old
value x, a smaller chunk 2[1004 100§ that contains the upper
half (uh) of x, another chunk 2[1006 100§ containing a join of
the lower half (Ih) of x and of y, and finally 2[1008 1014 con-
taining the newly written data y. Lower and upper halves can
be computed using shift and mask operations on strided inter
vals. Other cases, like writing a single byte in the middle o&
double word can be handled similarly.

nan and Reps’s recency-abstraction [4], which maintaiedatest
region as strongly updatable while summarizing the oldgiores.

Balakrishnan and Reps motivate their recency-abstraeon ne-
cessity for resolving indirect jumps. In contrast, our tietage
technique exploits dynamic seed traces to resolve indjueaps,

so we opted for what we considered an easier-to-implemeitrgp
albeit possibly less precise in some cases. In the furtheosx
tion, all updates will be weak, as that case exposes monesiiag

details than strong updates.

3.3 Identification of Memory Locations

Unlike prior work [3] that relied on IDAPro [24] to detect @
and then alternated the VSA analysis and aloc detectiomh theti
fixed-point is reached, our analysis discovers alocs anfibipes
abstract interpretation at the same time. We detect alawsgithe
first write that is within the allowed bounds of a region. \@sithat
are outside the allowed bounds produce a warning. The allowe
bounds are computed as a side-result of the analysis.

The most difficult part of the alocs identification is dealimigh
overlapping writes, which tend to be relatively frequenpractice.

A simple solution, to compute the union of overlapping addes
and set their content @, tends to be insufficiently precise. A more
precise alternative, used in our analysis, is to partitr@ndverlap-
ping addresses into non-overlapping chunks along theedtodnd-
aries, and then compute the value stored at each chunk s&para
We found the increase in precision especially importanafalyz-
ing programs that operate on strings, which are often lodaed
memory or created on stack in four-byte chunks and then sedes
byte-by-byte. The algorithm for partitioning sets of addes into
strides is conceptually simple, but tedious to implemerntabse
there are many special cases appearing in practice. Duek®fa
space, we skip the details, but we illustrate the idea inf€igu

3.4 Join and Widening of Regions

We use the same chunking approach to compute a join of regions
For example, given two regiorR; and Ry, their join first parti-
tions addresses into three disjoint seB:= dom(R1) /dom(Ry),

S = dom(Rp) /dom(Ry), and 3 = dom(R;) N dom(R;), where
domis the domain of a map and”is set difference. In exam-
ple (1),dom(R) = {4][—4,0],4]—12,—8]}. Addresses within each
set are then partitioned into disjoint strided intervalsasdo keep
the original strides when possible. Finally, the join operaom-
putes the value stored at each addresS;in S, U S;. The values
stored at addresses fro& are the (possibly truncated) values in
the region before the write. The values store@&asire the newly
written values. The values storedStare the addresses overwrit-
ten with new values. Assuming weak updates, the result imafo
the old and new values. The join over states is defined as:

either(r,Ry) e si A (r,Ry) € s or 5
(LR € (s1USp/s1N52) ARy = Lf @)

Algorithm 1 computefR = R;VR,. Widening terminates when
the contents reach a fixed-point. It might seem that the kast ¢
in Algorithm 1 could introduce substantial imprecision. wver,
since global addresses are most often constants and siites tor
the stack are most often constant offsets fromBBE or EBP reg-
isters, and neither of those registers is commonly modifiginv
loops, the imprecision of widening rarely impacts the mogar-
tant regions, globals and the stack. Widening on statesng do
similarly as in (2), only_! is replaced withv.

s LSy = {(r,RluRz)’

Algorithm 1 Region Widening. Lines 2 and 3 perform chunking,
illustrated in Figure 3. Lines 4 and 5 do point-wise widenory
addresses (and their contents) defined in both regionss lGrzend
7 union the addresses (and their contents) belonging oy wadth
the temporary result. The rest of the algorithm handles &se c
when the region used for wideninBy) defines some addresses not
defined inRy.

1: R0
2: § < dom(Ry) /dom(Rz) ,S < dom(Ry) /dom(Ry)
3: S+ dom(R;) Nndom(Ry)
4: for (a,v) € S3do
5: R+« RU(aRi[aVRy[a))
6
7
8
9

: for (a,v) € § do

. R+ RU(av)

:if 3(a,v) € S then

Issue a warning about a possible write out of bounds

10:  Widen contents of all existing chunksRwith v

4. GUIDED DYNAMIC ANALYSIS

The third stage of our approach applies dynamic analysietba
on symbolic execution) to compute concrete test inputstthuger
vulnerabilities in the program under analysis. To direetdfinamic
analysis, we introduce a two-component heuristic. The diogh-
ponent of the heuristic is the distance in the VPA; below we gin
algorithm to efficiently compute these shortest path lengtfihe
second component of the heuristic is based on the numbeatef st
ments in the data-flow slice, which is a transitive closureeafd-
write dependencies of all variables used by the statemiggening
the vulnerability. We compute this component using stashtizch-
nigues of interprocedural data-flow analysis [38]. We nb# both
components can also be seen as generalized pushdown msatece
problems (GPPP) [29] on a weighted pushdown system (WPDS).
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Figure 4: Computation of Shortest Paths on a VPA. The left figue illustrates the shortest well-matched path fromfg to f3, highlighted
in gray. The right figure shows the combined graphGgrc used for computing shortest distances over the language oéits and returns
(Z|%)*(€|#7)*. Each function is enclosed in a grey rectangle with the namef¢he function at the top. Internal edges (with implicit

weight 1) are denoted—. Call (resp. return) edges are denoted > (resp.- ). The

> edge connects matching call and return nodes,

connectsGg and G call sites, and=>» represents the summary edges whose weight is the shortesttpahrough the callee.

For distances, the semiring (&, min, +,,0), whereminis a bi-
nary operator returning the minimal value. For countingniben-
ber of reachable statements from the slice, we can use thial tri
semiring(S, U, U, 0,0), wheresS is the set of instructions in all ba-
sic blocks of a VPA. The two-component heuristic is a funttio
with anN x N codomain. For a given location of a potential vul-
nerability, we precompute the values of the function forredPA
state; it is convenient and sufficiently fast to compute athese
values at once, before starting the exploration.

cution of one such whole-program execution path aisemation of
the dynamic exploration.

4.2 VPA Shortest Paths

The algorithm we present in this section computes the first-co
ponent of our heuristic. Intuitively, we would like to ditethe
dynamic analysis to follow a (whole-program) path that hesca
target, and among such paths we would like one with a low cost.
More precisely, we would like to compute, for each basic blioc

We also use a second heuristic to attempt to cover a variety of the program, the cost of the least-costly path from thattgoithe

patterns of paths through relevant loops — our system ifiesiti
paths using the VPA, then records which paths have beenrexplo
and then explores various patterns of these paths. For a Igive-
tion of a potential vulnerability and a given SCC, we idgnfiiths
within SCCs before and construct patterns during the search

In the rest of this section, we first describe as backgroued th
baseline approach of symbolic execution, with an undiceséarch
strategy (Section 4.1). Next, we present an efficient aligarifor
computing shortest paths in a weighted VPA (Section 4.2)¢clwvh
we use to propagate cost information as part of the prograda-w
two-component heuristic, and describe how we use this $tauri
at branches (Section 4.3). Finally, we discuss our apprdach
covering loop path patterns (Section 4.4).

4.1 Baseline: Symbolic Execution

We describe our exploration system as dynamic becausaistre
most of the program state as concrete: only values derivad fr
a specified input are treated as symbolic. The system symboli
cally executes one whole-program execution path at a tinmenw
a branch condition is symbolic, the tool checks whetheregithe
condition or its negation is satisfiable using the Z3 [16]isien
procedure. Operationally, the system works similarly tevmus
tools such as Klee [9], EXE [10], and MineSweeper [7].

When both sides of a branch are feasible, our system’s defaul
behavior is to choose a direction randomly. Though fair ierss,
this is clearly a very uninformed search strategy. Thus tloei$
of the rest of this section is on techniques that harness giobal
information, such as from static analysis, to make bettandin
choices. However, the symbolic execution engine only tdkese
suggestions as advice: it will never explore an infeasilaith r
one that it has previously explored. We refer to the symbmtie-

target basic block. Itis a convenient analogy to think ofdbsts as
distances, so that our goal is to find the length of the shiopths
from each basic block to a single target.

If our program representation were a simple graph, Dijkstra
shortest path algorithm [17] would be appropriate, but islaot
follow the restriction that calls and returns must be weditomed.
For example, suppose we want to find the shortest path figoim
f3 in Figure 4.a. The classic shortest path algorithm would tfired
path fokokshs f3, which is incorrect, because the return fr&rto h
is executed with stack configuratidn that doesn’t match the state
k is returning to. Instead, the correct shortest path withcired
returns isfokoks f1 49002 f3 (assuming equal edge weights). Such
a situation occurs in practice, for instance, if a commorcfiom
such agri nt f is called from bothmai n and the function con-
taining a vulnerability. If we ignored call-return matchirour tool
might think that the shortest path to the vulnerability was that
started inmai n, calledpri nt f, and then returned fromr i nt f
to the vulnerable function. But attempting to follow thigdéasible
path would be unproductive. However, while we match calld an
returns within the path, the definition of the path lengthtieeowise
context-insensitive, in the sense that the distance beta@eintA
and a poinB does not depend on the call stackiat

Thus our goal is to build an analogue of Dijkstra’s shorteghp
algorithm that operates on a VPA, and finds the lengths ofttbes
est path among those paths in which there are no mismatches be
tween calls and returns. Itis notimmediately obvious waetuch
an algorithm could be efficient: a given statement might behed
with many different call stacks, and the shortest path betwe/o
points in a VPA can have exponentially many edges.

The key insight in obtaining an efficient algorithm for thiop-
lem is to start with the special case of well-matched pattith(mo



unmatched calls or returns), since it is easier to combitiespan-
der the invariant that they are well-matched. Then we caenekt
well-matched paths to general VPA paths by constructinigat
out of unmatched returns, well-matched segments, and whietit
calls, in which no unmatched call precedes an unmatchednretu
(thus ensuring that they are unmatched).

4.2.1 Well-Matched Paths

For the first step of the algorithm, focusing on well-matched
paths, our specific goal is to compute, for each function|ehgth
of the shortest well-matched path that starts at the ergremthe
function and ends at the return from the function. This peefion
shortest path length is a kind of function summary that caefbe
ficiently computed bottom-up. For leaf functions, we appliy D
jkstra’s algorithm to compute the length of the shorteshgadam
entrance to exit. If for all of the functiong, ..., gk that might be
called by a functionf, we have already computed the summary
lengthl; for g;, we can replace the call g with an edge of cos
and then again compute the summary lengthffevith one intra-
procedural invocation of Dijkstra’s algorithm.

The above described bottom-up computation might not coenput
the shortest entrance-to-exit path for every function it€CS@ the
call graph, so another level of iteration is required. Bdie the
set of functions in an SCC of the call graph. We start by sgttin
the summary length for each function in tBeto «. Then, we
repeatl§ times a process of updating the summary length for each
function in S (|2 updates total). To update the summary length
of a function f, we recompute its entry-to-exit path length based
on the best estimates found so far for the other function$ién t
SCC (and the previously-computed correct values for ankedal
functions outside the SCC), updating the summary lengthéef t
computed value is smaller. This process is shown in Algorigh

Algorithm 2 Per-Function Computation of Shortest Paths. The
function DFN returns the list of functions sorted by depth-first
post-order. The functioBSH f,costy computes the length of the
shortest path from the entry to exit of the functibnusing Dijk-
stra’s shortest path algorithm, under the assumption kieastort-
est paths through called functions are those givenosts The
function SCQG, f) returns all the functions i that are in the
same SCC as the functidn

1: letCG« call-graph of VPA
2: costs«+ 0
3: for f € DEN(CG) do
if f & coststhen
letS«+ SCQCG, f)
for f' € Sdo
costgf’] < o
fori=1...|9 do
for ' € Sdo
costgf’] < min(cost$f’], DSF(f’, costg)

SCom~NoO U

The complexity of the part of the algorithm for a single SCC
is ¢ (M?EIgN), whereM is the number of functions in the SCC,
andN (resp.E) is the number of basic blocks (resp. edges) in the
largest function in the SCC. The factér(EIgN) is the running
time of Dijkstra’s algorithm using a binary heap. The algam is
guaranteed to converge after analyzing each function irSthe

Figure 5: NFA To Constrain a VPA Path.
A general VPA path, with no mis-matched
calls and returns, is a concatenation of un-
matched returns.#, unmatched calls#’, and
well-matched words#/, with the restriction
that the unmatched returns precede the un-

v matched calls.

V2

function has no recursive calls, its maximum depth withm$CC
is M, soM iterations suffice.

To see why this the shortest path cannot contain a recuralije ¢
suppose, to the contrary, that the shortest path were onéichw
a functionf contained a recursive call to the same functfort-or
instance, suppose thaitalls f (the “outer” invocation off), thenf
calls itself (the “inner” invocation of ), and then both invocations
return. Then we can construct a strictly shorter path byaepy
the outer invocation off with the inner invocation off. In the
example, this gives the path in whigitalls f, thenf returns. The
new path will be well-matched, but it is shorter, contraidigtthe
assumption that the first path was the shortest.

4.2.2 General VPA Paths

For the second step of the algorithm, we extend the well-neatc
paths computed in the first step to general VPA paths (without
mismatched calls and returns) by concatenating well-neatceg-
ments, unmatched returns, and unmatched calls. The keghinsi
is that this is possible as long as the unmatched returns teme
fore the unmatched calls in the path, which ensures thatdbewt
mismatch with each other. More formally, let (resp.Z#) be the
set of calls (resp. returns), and the set of well-matched words.
Then any word without mismatched calls and returns can be wri
ten in the form(Z|#)*(¢|# )*, where| and* are the standard
regular expression operators of alternation (union) arebKé star
(repetition zero or more times).

Using the lengths for well-matched entrance-to-exit pathrs-
puted in the first step, thi#” symbols in the regular expression can
be represented by summary edges from a call site to a retunat W
remains is to enforce the constraint that unmatched re{ahgre-
cede unmatched call]. This can be seen as requiring paths in
the VPA that simultaneously match the regular expressios civ
express the regular expression with the NFA shown in Figure 5
and express the intersection @%|#)*(¢|# )" and the VPA by
a product of the two automata. This product is equivalentoto ¢
structing an automaton with two copies of the VPA, and we take
that perspective in describing the construction in moraitiet

To find the lengths of paths that satisfy the no-mismatclaid-c
constraint expressed by the regular express$i@gf? )*(¢'| 7 )*,
we use Dijkstra’s algorithm on a graph consisting of two espf
the VPA. For the first hal{Z|# )* we construct a grapBr with
call edges erased, return edges retained, and a summanpedge
tween each pair of matching calling and return nodes havieg t
weight of the shortest path through the callee. Paths tlrdlig
graph correspond to executions with unmatched returns atid w
matched function invocations in any order. Dually we cainstfor
the second half#’|#")* a graphG¢ with call edges retained, re-
turn edges erased, and summary edges &girPaths througiGc
correspond to executions with unmatched calls and welGheat
function invocations in any order. Finally, we construcbabined

M times, because the shortest path always goes through tee basgraphGgc by linking Gr andG¢ with zero-weight edges from each

case, rather than recursing to a function already on thestadk.
After thei-th iteration through all the functions, the algorithm will
have correctly computed the shortest length for call pathese
depth within the SCC is at most Since the shortest path for each

call node inGr to the corresponding call node @&¢. (It suffices
to link only call nodes because every word(i&|# )* starts with
a call.) Then, we compute the shortest VPA path from one node t
another by running Dijkstra’s algorithm taking a node fr@n as



Algorithm 3 VPA Shortest Path Computation. To compute the
length of the shortest VPA paths to a single target warnirg-o
tion ty, we construct a graplrc, representing the combination
of graphsGgr andGg that allow unmatched returns and unmatched

calls respectively. Thes symbol denotes an edge with weight
Lines 1-4 add two copies of each VPA nodedgc (representing
the nodes irGr and inGc); the two copies are labeled with dif-
ferent labels R andC). Lines 7-9 add call edges+ in Fig. 4)
to G¢, edges between corresponding call site&gfandGe (),
and summary edges between callers and return nodg4d both
Gr andGg. Lines 10-11 add return edges» to Gg. Lines 12-13
add the intraprocedural edges>. Finally, lines 14-16 run Dijk-
stra’s algorithm to compute all-source-single-targetatises to the
R copy ofty, and return the distances using teopies as sources.

1: Ggrc < empty graph

2: for b € nodes oiVPAdo

3:  lett «+ (b,R) andb” +— (b,C)
4:  add noded’ andb” to Gge
5: for e€ edges oVPAdo
6: lets<+ sourcde) andt + target(e)
7. if eis call edgethen
8: letw « the length of the shortest path to return froemd
r < the node wheréreturns
9. addedgeésC) > (t,C), (R > (s,C),
(s,R % (r,R), and(s,C) % (r,C) to Gre
10: elseifeis a return edgéhen
11: add edgés, R) 5 {t,R) to Gre
12: elseifeis an internal edge of weight then
13: add edgess,R) = (t,R) and(s,C) = (t,C) to Grc

14: D + Dijkstra(Ggg, (tw, R))
15: for s nodes ofVPAdo
16: sd+« D[(s,C)]

the source and a node froB@¢ as the target. This construction is
shown in Algorithm 3, and demonstrated graphically in Fegdib.

4.3 The Two-Component Heuristic

Obviously, an execution path can only demonstrate a passibl
vulnerability at an instruction if it executes that instioo, and
often the vulnerable instruction depends on values cordmadier
in a program. We take these two intuitions as the basis for our
guidance approach for path selection.

More formally, given a warning produced by static analysis,
approach computes for each VPA node a pair of non-negatige in
gers(d,s). The first componend represents the cost of the least-
expensive path from the basic block to the warning. The sicon
components counts the number of instructions in the data-flow
slice of the warning that can be reached from the basic block.

For computingd, we use the shortest-path algorithm of Sec-
tion 4.2, assigning a weight % to loop back edges and 1 to all
other edges. Assigning a high cost to loop back edges calses t
search to prefer to reach a target at the first opportunisn évit
would also be reachable on a future loop iteration.

To computes for a given potential vulnerability, our system first
computes the complete backward slice from the vulnerghbilibhen
it makes a single bottom-up pass of standard interproceprop-
agation to compute, for each basic bldgkthe set of instructions
in the slice that are reachable framThe value ok at a location is
the cardinality of that set.

The two componentd ands represent goals that are sometimes
in tension. We would prefer to take paths that reach the poten

char buf[20],
int node = O;
while (p >= buf)

switch (read_char()) {

*p buf ;

case 'a’':
if (nmde == 1) {
*prt =X
mode = 0; // path 1
} else { [+ path 2 %/ }
br eak;
case 'b':
nmode = !node; break; // path 3
defaul t:
p = max(buf, p--); // path 4

}

Figure 6: An example loop for which a repeating pattern of
paths (here, alternating between paths 1 and 3) is requiredat
cause an overflow.

tial vulnerability quickly (smalld), and we would like to cover
many data-flow predecessors of the potential vulnerablasge
s). When these desires conflict, our heuristic attempts tarfzal
them, choosing the one that is more salient in a particutaairce,
while incorporating randomization so that a future path meake
a different choice, especially if it was close.

Specifically, suppose that at a branch, we have a choice batwe
a target with heuristic valuggly,s;) and one with(dz,s;). Since
we prefer a target with large but smalls, we compute the cross
differencex=d - (1+In(1+s2)) —dz- (1+In(1+s1)). Anegative
value ofx corresponds to a preference for the first target, while
a positive value corresponds to a preference for the secdnd.
include randomization, we compute the logistic value L,
and branch according to whether a number selected unifoatnly
random in[0, 1] is less tharr. The parametek controls how large
a difference in costs corresponds to a given probabilitiedéhce;
our system currently hds= In(1.001).

4.4 The Loop Pattern Heuristic

The two-component heuristic described above is effectivelif
recting execution towards a desired point in a program; vehero-
gram has loops, it will usually explore only a few iteratiorut
some program behaviors occur only when loops, and in péaticu
certain paths those loops, execute repeatedly. This isiediparue
for buffer-overflow and integer-overflow vulnerabilities.

A simple example of a loop for which a pattern of loop paths
is needed to cause an overflow is shown in Figure 6 (similar but
more complicated loops appear in several of the benchmarks i
Section 5). There are four paths through the body of the loop,
numbered in comments. Choosing one of the loop body paths ran
domly on each iteration is very unlikely to produce an overf(p
- buf > 20): only path 1 increments the pointer, and path 4
decrements it, so they tend to cancel each other out. On lige ot
hand because of thende flag, it is infeasible to execute path 1 on
every iteration. A pattern that leads to the overflow is orat -
ternates between paths 1 and 3. At a high level, our appreauit i
to statically determine which such pattern of paths leadsitover-
flow (though this could be an interesting direction for figtwrork).
Instead, our approach is to guide the exploration to coveida w
variety of path patterns, so that if a vulnerability can bggered
by a short pattern, the exploration will find it relativelyriya

Thus to improve our coverage of these kinds of behavior, our
system directs execution to sometimes repeatedly exetige0
more specific paths within a loop as many times as possiblea Fo
loop that either contains the vulnerability, or containsrestruction
from the slice of the vulnerability, this heuristic will chse a short



pattern of paths from among those loop paths previouslyrobde
Then on each iteration of the loop it will try to execute thatrgath
from the pattern. In order to construct such patterns, we rebe
able to uniquely identify paths through a loop body (prdgishe
(necessarily acyclic) paths through a control-flow graptCSRat

do not pass through any sub-SCCs).

We begin by identifying all exits from the analyzed SCC. The

exits include entries into a sub-SCC. We assign the weigbhef

to the exit edges and start traversing the acyclic graptp (bmxly)
backwards. For every node, we sum up the weights of all onggoi

of the evaluation are summarized in Table 1 and describedne m
detail in the remainder of the section.

5.1 Static Analysis

Our static analysis finds out-of-bounds memory writes, yanal
ing both the application and the libraries together, rathan de-
pending on hand-written APl summaries. We usedhet | i bc
library as a compatible but simplified replacement for th&tem’s
C library. To improve the quality of the results, we also treame
C library functions whose only side-effect is output, sutiwa t e

edges and assign the sum to the node and all the incoming.edgesandsysl| og, as no-ops, since these functions do not modify their

After the process terminates (it terminates because ttghgrare
finite and acyclic), every node is labeled with the numberistinkct
paths to exits. The header of the loop is labeled with the raurab
paths, call it?, from the header to the SCC exits.

inputs or global variables visible to the program.

All benchmarks have labeled vulnerabilities, which endhis
to accurately count false negatives and positives. As showa-
ble 1, our approach detects all vulnerabilities in the bematks

Each acyclic path through the SCC can be assigned a unigue(j e_, there are no false negatives), but reports 72% faisiipes.

number in the range.0.P — 1. We call a wordv = {0...P—1}*
aloop path pattern As the exploration runs, the system records

The third stage of our approach, the guided dynamic analyais
prioritize warnings according to whether it finds a conciiefaut

the unique path numbers of feasible paths. Once the system ha triggering the vulnerability within a given timeframe, beannot

observed some feasible paths (currently, after the fiftiewien of
the program), it will begin to try to traverse a path pattenrsome
executions. Specifically, the system chooses whether ta yse-
tern, and if so the length of pattern to use, according to agédc
distribution as follows. For 50% of program executions,aésd not
use a pattern (rather, chooses a path number randomly). 58%6r 2
of executions, it picks a pattern of length 1 (a single patminer),
and uses this path number for every loop iteration. For 1205%
executions, it picks a pattern of length 2 (a pair of path nerab
P, andR,), and uses patR, for odd-numbered iterations ari}
for even-numbered iterations. In the same way, longer petigre
chosen less frequently. In each case, the pattern is cotestrby
uniform random selection from the set of feasible pathsadised
so far. The constructed loop path pattern is repeated evaeythe
loop is revisited during the search, until the program exits each
iteration, the heuristic will attempt to follow the path givby the
path number, subject to feasibility.

Observe that, unless one of the paths in a path pattern leads t
loop exit, one effect of a pattern is to attempt to execute asym
loop iterations as possible (in contrast, random choiceldvstop
with probability 50% after each iteration). Finally, whike apply
the path-pattern approach as described above on everytexecu
when the vulnerable instruction is inside a loop (in the séume-
tion), we apply it more selectively for loops which contaimyan
instruction from the vulnerable statement slice. For tHesps,
which are less frequently relevant to a vulnerability, welghe
path-pattern approach for a fraction (one-third) of exierist

5. EXPERIMENTAL RESULTS

We evaluate our tool's detection and test generation fofebuf
overflow vulnerabilities using a suite of examples devetbpy
Zitser et al. [50], extracted from historic vulnerabilgign 3 widely

prove a warning to be false positive. The imprecise widenf,
Section 3.1) in our implementation caused the majority tdefa
positives. Another source of false positives are weak wgzdaf
memory regions. Time and space usage of the static analgsis a
relatively modest. The figures shown in Table 1 are for anatya
VPA read from disk; VPA construction takes an additionaloset

or two per trace.

5.2 Dynamic Analysis

We next applied the dynamic analysis to confirm one of the true
positive static analysis warnings for each of the bencheiafkhen
there are multiple true positives from static analysis, egort the
results for one selected uniformly at random. We obtainedlar
results when repeating the dynamic analysis with other prag-
tives, as expected given that the warnings relate to a simglerly-
ing bug. The symbolic input in each benchmark is a boundeel-si
character buffer. The dynamic tool produced test casesmyakie
existence of bugs in all but one of the programs. The guidémooe
static analysis made the tool more efficient and helped itiings
it otherwise could not.

The dynamic analysis results, shown in the right-hand side-o
ble 1, demonstrate that static-based guidance is a sigmificvan-
tage. The benchmarks vary significantly in difficulty for dywlic
execution. On the easier benchmarks, guidance often iragdrov
both the running time and the number of whole-program paths e
plored (iterations). Guidance sometimes increases thaged¢ime
per iteration. Often, our loop pattern heuristic picks pat¥ith
many loop iterations necessary for triggering vulneréibgi but in
the S2 benchmark such paths are also more expensive. Thus, al
though the total number of iterations is smaller, the oVenale
cost is higher. The unguided search explored many pathsvirat
both unproductive and short. The cost of using heuristiactndu

used network servers. Though the examples have been reduceaxecution is negligible; the reported times include preypotation

to omit most of the irrelevant parts of the programs (theyage
665 lines of C code each), they cover a wide variety of kinds of
overflow, and demonstrate sufficient complexity to make yaisi
challenging. Each benchmark represents a conceptuagjiesing,
which can manifest in out of bounds accesses at multiplgitota
The original versions of the benchmarks were designed ytoel
static analysis; we use versions modified by Saxena et dli¢41
read inputs from files for use with dynamic techniques.

The experiments were performed on a 4-core Xeon E5540 work-

station (our tools are single-threaded) with 12GB of RAMing
Debian GNU/Linux with a 64-bit kernel version 2.6.26. Theuks

of quantities such as distance which required only a fraatiba
second. On the more difficult benchmarks, guidance can ntake t
difference between success and failure, as seen in S1, 856Gn
S6 is a buffer overflow caused by an integer overflow: by direct
ing exploration to consider a long sequence of digits, ouglance
leads in under 12 seconds to an overflow that undirected 8gacu
failed to find even in 6 hours. S1 and S5 contain loops simdar t
the example in Figure 6, in which a particular pattern of Ipaghs,
corresponding to a repeating pattern in the input, is netaleaduse

a pointer to overflow a buffer. (S3 is similar to S1 and S5, het t
heuristic is not effective because the loop spans sevematitins.)



Bmarks. Instrs. Static analysis Undirected dynamic analysis | Directed dynamic analysis
App. libc| Warns. Bugs False pos. Time (s) Mem. ( U)eratlons Time (s)| Iterations Time (S)

B1 | 1705 2120 15 1 14 3.3 4600 2.8 20 3.6

% B2 | 1290 2178 22 1 21 3.2 5041 137 13.3 72 25.1
m B3| 719 3058 14 1 13 14.2 8076 1.6 4 2.6
B4 | 394 3621 40 2 38 29.2 32048 1.9 1 2.0

S1 | 929 2021 33 28 5 249 9547 1 il 3347 2990.6

= S2 | 524 2750 28 2 26 202 7982 16 2.9 8 66.1
c S3 | 318 1653 14 3 11 1.6 3321 1 il 1 1
T s4 | 370 2447 20 7 13  10.6 5780 3 19.0 1 9.1
$ S5 | 392 1282 10 3 7 1.2 1888 1 T 332 202.6
S6 | 595 2247 6 1 5 3.2 40112 1 il 86 11.3

S7 | 957 2595 42 2 40 154 14220 56 6.9 46 8.8
5T F1 | 571 1561 11 4 7 1.1 3044 309 8.1 11 11
;L% F2 | 807 2549 13 1 12 5.8 5363 1455 65.8 11 14
F3 | 684 1639 37 27 10 7.5 7862 143 60.0 18 11.6

Total | 305 83 222 1414

Table 1: Summary of the Experimental Results. The first sectin of the table lists the benchmarks, the second section shewhe size
of the benchmarks in machine instructions, and the third setion shows the results of the static analysis. The fourth anfifth sections
show the results of dynamic test generation, where the diréed analysis used the static analysis results for a randomlgelected
true positive, while the undirected analysis had no such idrmation. The dynamic analysis results are averages over fruns with

different random seeds. “Iterations” counts the number of whole-program executions generated until finding a bug-revaling one,
while the T symbol indicates the analysis could not trigger the bug wit six hours.

The instruction coverage of the dynamic analysis was uguall
very similar between the undirected and directed runseidif§
by just 1-2%. The only large difference was for S7, when the
directed run covered about 40% of the unique instructiomsuge
60% for the undirected run. This confirms, as also visiblehim t
iteration count, that the directed dynamic analysis finésviiner-
ability more quickly because it avoids exploring irrelevparts of
the state space.

6. RELATED WORK

Static Analysis of Binaries.Our static analysis is similar to Bal-
akrishnan and Reps’s work [3], with a few differences disedsin
Section 3. Kinder et al. [27] explain the “chicken-and-eggture
of the problem of inferring the control-flow of binaries statly:
data-flow analysis is required to infer the control-flow imf@tion,
and control-flow analysis is required to infer the data-flofeima-
tion. They combine data- and control-flow analysis and campu
safe approximation of the control-flow. In practice, it isgdo
construct examples that defeat the static approach, becwen
distinguishing CISC assembly instructions from data isfécdit
task [42]. We chose a different tradeoff — to use dynamicysigl
with static augmentation only for branches we are certaircare
resolve precisely. More exploration is needed to reach anitkefi
conclusion on the comparative merits of the two approaches.

Guiding the Search. Improvements in the efficiency of search
over the state space have been an active research areaficaveri
tion and testing of protocols and software. In the contexprof
tocol model checking, Yang and Dill [48] used Hamming dis&n
of states as a greedy best-first-search metric in theirgMuodel
checker. They compute several pre-images of the negateempro
ties — the process they call target enlargement — and thepa@n
every visited state to the enlarged target. We could appiyiai
enlargement to targets identified by static analysis, brdritains
unclear how enlargement would help with alternating pattkia
SCCs. Edelkmap et al. [18] studied several heuristics. Tisey

an approximate distance function to a state where a givenfaiFL
mula holds and found th#t" search worked best on their protocol
benchmarks. We experimented with approaches simila&*tn
our domain, but it appeared difficult to determine an appaber
state-ranking function automatically. Godefroid and kdid [20]
propose using genetic algorithms for finding errors in |astme
spaces, focusing specifically on heuristics for deadlodkdi®n
and property violations related to enabledness of tramstiand
message exchanges. Our heuristics are more tailored tefindd
ing buffer overflows, especially in cases with multiple eesibops
and multiple paths through the loop body.

Lal et al. [29] studied construction of minimal length expda
tions of crashes (produced by concrete traces) having aryap
information about the trace. Their goal is to find a minimaigth
path passing through a maximal number of observed checkspoi
in the code. In our setting, the data-flow slice produced hicst
analysis can be seen as partial information about the treed@n’t
take control-flow dependencies into account), but we useitha
formation only heuristically and do not attempt to maximthe
number of statements from the slice on the path. Their alyori
is exponential in the number of check-points. Since we hag o
one check-point (i.e., the target), the exponent disagpead our
algorithm can be seen as a special case of theirs.

Groce and Visser describe heuristics for finding propertjavi
tions with the Java PathFinder model checker [22], basedamch
coverage and thread inter-dependencies. Burnim and Séoci8j
on achieving high line coverage and present several cefitrol
guided search heuristics, including one that is based on diEG
tances but does not include matching of calls and returnbiefe
ing high line coverage was not sufficient to trigger vulndrtds
in our benchmark suite. Further, without guidance proviolgthe
static analysis and special heuristics for strongly cotetecom-
ponents, we were unable to hit vulnerabilities in a numbenofe
difficult benchmarks. Zamfir and Candea [49] apply symbalkc e
ecution to synthesize an execution that reproduces a butrep



Among several heuristics, they propose a “proximity-gdigath
search” that uses control-flow distance. In comparisoneatgo-
rithm we present in Section 4.2, the give only a simplifiedsprea-
tion without a complexity analysis, and rather than analgziecur-
sive calls they simply give them a weight of 1000. Saxena.st al
loop-extended symbolic execution [41] introduces comstsathat
summarize loops by expressing other variables in termseafitim-
ber of times a loop executes, allowing symbolic reasonirmgssc
paths that execute different numbers of iterations. Byremtithe
loop exploration heuristic in this work applies to a sing&lpat a
time, and focuses on which path through the body of a loopérig
a vulnerability. Rybalchenko and Singh [40] propose a soiest
first heuristic to steer symbolic reachability analysis efithmarks
from the transportation domain. Their heuristic is veryitive: it
prefers larger (according to subsumption ordering) stapesdily
trying to get to a state large enough to contain the erroe stdteir
technique could be classified as a look-back, while oursoitspl
static analysis and is inherently a look-ahead techniqueeXger-
imented with several state orderings, and were unable tthgat
to work. Subsumption ordering would be prohibitively expiea
in our setting, as path conditions, describing states, edarge.
Hybrid Static-Dynamic Analysis. The Synergy algorithm [23]

combines model-checking and DART [21] to try to cover all ab-
stract states of a program. Our work has no ambition to p@duc

proofs, and we expect that our approach could be used to impro
the performance of the DART part of Synergy and other algorit

that use test generation as a component. DSD-Crasher [1f8] mo

closely resembles our work in performing dynamic, statici ey-
namic analysis in sequence, though the stages are quiezetiff
The closest point of comparison is that DSD-Crasher geerat
constraints via static analysis and solves them to creatardic
test cases, whereas our second dynamic analysis incepdrath
constraint generation and solving.

7. LIMITATIONS AND FUTURE WORK

The first, and the most obvious, limitation is that the cortgple

ness of the VPA constructed in the first stage depends on the ca

pability of the seed tests to exercise indirect jumps (distaDne
possible solution would be to use completely static analgscon-
struct the VPA (e.g., [27]). Unfortunately, sometimes iagiice
assembly instructions cannot even be decoded staticallyawy-
ing sizes of CISC assembly instructions make the instrostend
data difficult to distinguish. Further, static analysis aidries is
inherently imprecise. Another possibility is to use DART aur
three-stage approach in a loop for discovering concreteténgpnd
using them instead of the seed tests.

The second limitation of our approach is the precision of our

static analysis. Currently, our implementation contesstively
follows all calls in a brute-force manner and does not usetfan
summaries or k-sensitivity [43]. Such an approach is uhfike
scale to very large applications, and we are planning tooegpéss
precise and more efficient approaches (summaries, k-séysit
context-insensitive analysis). A less precise analysiglavproba-
bly produce more warnings, decreasing the precision oftiding
information provided to the third stage of our approach. mtm-
ber of warnings produced by a context-insensitive anaty@itd be
reduced by extending the analysis with aggregate struadersi-
fication [36], affine-relation analysis [33], and recenbgtmaction
[4], asin[3], butitis obvious that the tradeoff between phecision
of the static analysis and computed guidance informatiquoires
significantly more research.

The third, more subtle, limitation of our approach is a ploi&si
overfitting of the guidance heuristic to our set of benchraakd

the vulnerabilities (buffer overflows) we are looking for.egign

of heuristics is inherently prone to overfitting and degigniobust
heuristics is a tedious time-consuming task. For examplepok
the SAT solving community almost 30 years ([13]-[32]) to @m
up with effective robust decision heuristics, and they ditelse-

ing improved. Our paper is a step forward in developing robus
dynamic test generation guidance heuristics, but obwousluch
more work remains to be done.

8. CONCLUSIONS

We have presented an approach that applies dynamic analysis
static analysis, and dynamic analysis again to exploreatiye [path
space of programs given a binary. The analysis revolvesdrau
visibly pushdown automaton (VPA) which represents the ot
global control flow structure. Starting with dynamic anaylselps
resolving indirect jumps, and the static analysis helpst®yjio exe-
cution direct exploration towards vulnerabilities basadtee short-
est paths and loop pattern heuristics. In preliminary arpamts,
our static analysis finds all of the vulnerabilities in thétesuand
dynamic analysis constructs test inputs for all but one.
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