VInE Project Documentation

David Brumley

Warning: This document is intended to give an overview oflamguage. The exact semantics are
subject to change.

1 Overview

The VInE project is geared towards analyzing security priige of executables. Traditional software se-
curity research has been predicated on the availabilityoofce code. Previous approach has focused on
ensuring software security via the software developer,tbair choice of safe/unsafe language, implemen-
tation methodology, compile-time checks, source-codéysisa etc.

Previous techniques implied that security is completeBdprated on choices made by the developer.
This is insufficient for many reasons, including:

e Most users of software do not have source code. Howeveerdiff users may have different security
needs. It is difficult for a developer to come up with a balaotsecurity vs. other factors that is
acceptable to all users.

e When time is of the essence, it may not be possible to invotievaloper to address security measures.
If a zero-day exploit is released, it may be impractical teolne the developer in security-critical
revisions to the source code, compiler, etc.

Architecture Overview At a high level, the VIinE architecture consists of:

e A front-end disassembler. The disassembler is responBblganslating a binary into assembly
instructions.

e Intermediate Representation(s) (IR). An IR is an absivaagieared at providing a unambiguous rep-
resentation of the binary. The IR is semantically equivitathe program, meaning executing the IR
on a properly defined machine should result in the same bahasiexecuting the binary on a real
machine.

e Back-end analysis routines. Analysis is performed on theBRample analysis include dead-code
elimination, weakest pre-condition computation, etc.

e Applications. Applications use the above components tioparspecific (research-oriented) tasks.

Last update Fri Apr 27 11:52:19 2007 David Brumley

2 ADMINISTRATIVE DETAILS

2 Administrative Detalls

There are many different projects using the VIinE source cdties section describes how we organize our
code, how we write code, and how we create projects aroundaitie. There are a fefundamentatules
we all follow:

Fundamental Rules:

e Make API's and do not break others API’s.

e Document your source code using ocamldoc-style commentsctoml, or doxygen style-comments
for C/C++.

e Do not check into trunk unless make succeeds.
e Only check source code into trunk.
e Do not check into trunk unless the regression tests pass.

e Make a regression test for any API you care about not breakkfngu don't write a regression test,
others may inadvertently break your code without knowing.

If you follow these basic rules, everyone should be happy.

2.1 Subversion

We use subversion to manage our code. Everyone should bkafawith the basics of subversion. A good
introductory (and free) book is availablef#tt p: / / svnbook. r ed- bean. coni .

The main subversion repository for VIinE isfatt ps: / / hayao. ece. cnu. edu/ svn/ vi ne. The
repository is currently organized as follows:

e trunk - the activate development source code branch. Wherclyeck into trunk, it is expected that
the top-level make succeeds.

— ocaml - the vine library. applications should not go in thigdtory.
— libasmir - the asmir library, used for translating from ambéy to our IR.
— <project> - a project directory, e.g., an application.

branches - source code branches. More on branches below.

tags - tagged versions of the code. Tags correspond to esleaso major checkpoints. We generally
create a new tag version after every paper.

results - this is where you put results for your project, uidahg test cases, source code, or whatever
you think is relevant to your research project.

regression - regression tests for vine.

http://svnbook.red-bean.com/
https://hayao.ece.cmu.edu/svn/vine

2 ADMINISTRATIVE DETAILS 2.2 Regression Tests
2.1.1 Code Branches

Everyone should keep their active code development in ssiove This is for your own protection: our
subversion machine is backed up regularly, while your lotathine may not be.

When you are working on changing code in a way that is incoilblgabr requires major changes over
multiple days to the main trunk, you should create a cbdnch. A branch is an independent line of
development. Branches allow you to use subversion (thukasgting all your work on your local machine),
while still not breaking the fundamental rules.

The subversion book [3] has good documentation on how to raallenerge branches appropriately.

2.2 Regression Tests

For each project, there should be a set of regression tesgenkeral, we have two types of regression types:
micro-tests and macro-tests.

Micro-tests are tests in which you can specify the “right$waer. Micro-tests are typically written by
hand in the VInE IR. Micro-tests are intended to exercisggeaific component in as many ways as you think
are appropriate. Micro-tests, since they are small, gpeso allow us to more easily debug problems.

Macro-tests are generally real-life tests, e.g., test¢htability of your code. You should again generally
know the “right” answer, but it maybe harder to debug.

Each test should have a “test.sh” script which when exeaetiedns O (zero) for success and something
else for failure. We have a top-level test.sh, which is etegtover all regression tests.

2.3 Writing Code

When you write code, please try and design a proper API andthses API’s. If code doesn’'t do what you
want it to do, ask the author, or design an API yourself. ABlisuld be specified in “.mli” files for ocaml,
and in “.h” files for C/C++. Code should be documented. For's\Biou should include documentation for
all parameters, and what the API returns.

More particularly:

e When writing C code, use GNU 'indent’ to indent your cotiétps://hayao.ece.cmu.edu/vine/wiki/wiki/indent
has one recommended indent package.

When writing C/C++ code, use doxygen-style comments.

When writing ocaml code, using ocamldoc-style comments.

When writing ocaml code, | recommend using emacs in tuaredemin ubuntu, this can be installed
as 'tuareg-mode’.

Keep lines under 80 characters long.

2.4 The Wiki and Bugs

We use a wiki to keep track of projects and bugs. The wiki hadae relevant information. We primarily
use the wiki to keep track of information everyone shouldvkmatout, and for its bug-tracking system.

You should create a bug report when something is broken amndgo't fix it yourself. When you create
a bug report, please be as specific as you can. A good bug eporincludes a specific example, what is
broken about the example, and what the correct output shuzuld

3

h

2.5 Creating a New Project 4 DISASSEMBLY
We also use the bug-reporting system to keep track of newrfesmatve want. For example, if during
your research project you find that some additional funetityn would be great, but don't have time to
implement it yourself, add a ticket as a “feature request”.
As a general rule, bugs should be actionable items — somdmngdsend up fixing it. Feature requests
need not be actionable; they are there as a reminder.

2.5 Creating a New Project

When you want to create a new project, you should:
e Create a directory in the trunk directory to hold your sowocde.
e Create a directory in the results directory to hold your eplas
e Create a set of regression tests, if appropriate.

e Create a sub-page off the wiki describing your project.

3 x86 Overview

3.1 Calling Conventions

e Chapter 6 of Volume 1 of the IA-32 Architecture Software Deper's manual is devoted to calling
and returing [1].

4 Disassembly

Disassembly consists of two steps:
1. Parsing the file format and locating code segments.
2. Disassembling each code segment into a sequence of xB&ctiens.

The relevant files for this step are containetlirbasmi r/ sr ¢/ di sasm In particularasmpr ogr am cpp
contains most of the high-level interfaces we use, whileofites contain lower-level interfaces. Also, note
some of the code is taken froabj dunp. ¢ in binutils, which is a good starting point for those intdegk
at more depth.

4.1 Locating Code Segments

We use the GNU BFD library [5] for reading in an executable.DBSupports object files, though our code
currently does not. 1 first give a high level description of Elthen describe BFD sections. Although
Windows uses a different file format (PE — Portable Execefalat a high level the same discussion is
relevant.

4 DISASSEMBLY 4.1 Locating Code Segments
ELF Every ELF begins with an ELF header. The header containsnrgtion such as the architecture,
whether it is an executable or object file, the programs stéress, grogram header structurand a
section header tabjestc. In addition, it contains the sections that make up tbgnam. Almost everything
interesting is within the sections.

The section header table focuses on identifying the vagpaus of the program are within the ELF file.
The program header describes where and how these partadesllmto memory. The section header table
is for use by the compiler and linker, while the program heaalele is for use by the program loader. The
program header is optional for object files. The section aetable is optional for an executable [7].

Each section is an EIf33hdr structure. Important sections include:

e . bss Holds uninitialized data of the program. Initialized to zdiro’s when the process starts up.
e .data & . dat al Hold initialized data.

e . dynani c Holds dynamic linking information.

e . hash Holds the symbol hash table.

.rodata & .rodat a2 Contain read-only data. GCC puts strings constants andardrffoating
points here.

. symt ab Holds the symbol table, if present.

. t ext The executable instructions of the program.

. i nit Initialization functions. executed upon load.

. fini Like .init.

BFD BFD provides an abstract interface to executables. BFBwded by the linux programgadel f
andobj dunp. These programs are very useful when trying to untangle aoutable, though often assume
an executable was produced by a compiler. An executablasters header data, optional symbol table,
and zero or more sections.

Each section is marked with a type, and an optional name. Ve hay be used by the OS when
loading the file, e.g., 8EC_DATA (data segment) may be marked read-only. Example secti@s ipplude:

e SEC_CCDE The code segment, i.e., a segment marked as containingtelkkrgode. Thet ext
section is an example of $EC_CCDE.

e SEC_RELOCRelocable code. We do not process relocable code.
e SEC_DATA A section containing read-only data.
e SEC NOFLAGS No information is available.

4.2 Disassembling Each Code Segment 4 DISASSEMBLY
4.2 Disassembling Each Code Segment

Our disassembler is based upon Kruegkl als disassembler [6] operating in linear sweep mode. The
linear sweep algorithm is given in the following psuedo-eod

of fset = 0;

whi |l e(of fset < section_| ength)
inst = blob + offset;
of fset = inst->length;

This loop is intended to simulate the instruction decodecaie loop that the processor uses when executing
the program (see wikipedia’s entry on “Von Neumann Architeg” for more information on this sort of
loop). However, we are performing this statically, while gorocessor does it dynamically and thus has
more information. For most executables, this loop works, fitheugh it is worth noting other algorithms
such as the recursive traversal algorithm can produce nooreae results [6].

Ata high level, the input to disassembly is a section with sghtable, and the output isss mpr ogr amt ,
which consists of aasmf unct i on_t for each function disassembled. The instruction, alon #stdis-
assembly, can be found asmf uncti ont.

Symbol Tables Although you could disassemble arbitrary byte sequencexpect to only be disassem-
bling functions. We currently identify functions via therslpol table. The symbol table, as produced by a
compiler, contains information about the executable. kangle, the start address of functions (though not
the end address) is given in the symbol table.

Each symbol is marked with a type by BFD, hinting at what thalsgl is used for, such as:

e BSF_FUNCTI ONindicates a function entry poinBSF_FUNCTI ONis used by ELF, and maybe oth-
ers.

e BSF_GLOBAL a global symbol.
e BSF_LOCAL a local symbol such as static in C.

We only disassembIBSF_FUNCTI ON's. Sometimes functions are not marked wWB8F_FUNCTI ON,
e.g., hand-generated assembly often omits this informatfoyou wish to create hand-generated assembly,
you must mark each function with a “.type” declaration. Foaraple:

> cat hello.c
int main()
{
return 42;
}
> gcc -S hello.c /= The -S flag generates assenbly and stop =/
> cat hello.s

.globl main
.type mai n, @unction
mai n:

4 DISASSEMBLY 4.3 Disassembly to IR
4.3 Disassembly to IR

The output of the disassembly phase isampr ogr amt , which consists primarily of a list @ismf uncti on_t’s
for each function in the executablasmf unct i on_t’s are sequentially processed and converted into the
IR, as discussed in the next section.

4.4 Future Directions

Our current disassembler has been well-tested for codaaedeby gcc. Our future direction is to allow
the user to plug in other disassemblers. The idea is:

e A disassembler disassembles the file and produces a settafctisn addresses and function en-
try/exit points.

e Optionally, self-decrypting binaries would require pagsin the actual byte array to our infrastructure.
Seelibasmr/ir/ir_program cpp:asminsnto.r() foranexample.

e The instruction addresses and entry/exit points are givdibasmir, along with the executable. The
output is agairasmf uncti on_t’s.

The outputasmf unct i on_t’s are then used by the rest of the infrastructure, exactlyittsour current
infrastructure.
Note: There is currently (10/13/2006) a master’s studenking on this interface with IDA pro.

4.5 Notes

e We currently have a hack to disassemble executables withgytnbol table by doing a linear dis-
assembly of the entire section and returning a sirglenf uncti ont for all instructions in the
section.

e Separating code from data has been shown to be reducible tatting problem. Thus, disassembly
itself is reducible to the halting problem. Therefore, thetill always be limitations to any disassem-
bler.

e Itis quite common for a 1 line C program to be disassembly ttehe of thousands of lines long. The
central reason is standard libraries for loading, dealiity possible errors, and dealing with global
definitions are quite large, and included in every execetabbr example:

void main() return 42;

results in an executable about 4000 bytes long. A®¢hirlwind Tutorial on CreatingReally Teensy
ELF Executabledor Linux [7] for more information on how to make such a programcimgmaller.

e We provide some interfaces for disassembling and congettirthe IR instruction(s) named by an
instruction address (or address list)iin_pr ogr am h. However, we do not provide an interface
for just disassembling instructions as named by an addistssAl starting point would be to look at
i r_programcpp:asminsnto.r().

5 VINE FORMALISM

5 VInE Formalism

5.1 VinE Abstract Syntax

The VinE abstract syntax is shown in Taldle Items in bold are keywords in the VinE grammar. This
grammar is designed to make translation from assembly §sasgzossible.
There are a couple of other things noteworthy about this gram

e The declaratiorvar x:t1[t 2] declares a map which takes irt & and returns @ 1. Maps are
used to model memory.

e We allow casting when the translatigsistrict variable is false. In this case, maps can be “cast” as
a different type by annotating it with the desired type. Tikisised to allow otherwise broken code,
such as:

var nemreg8 t[reg32_ t];
var x:reg32_t;
menf 2: reg8_t] = x;

This code will not typecheck by default. However, wherstrict is false, we will translate code based
upon a user annotation such as:

menf 2:reg8 t]:reg32_t[reg32_t] = x;

to
menf 2: reg8_t] = byteO(x);
meni 3:reg8_t] = bytel(x);
menf 4: reg8_t] = byte2(x);
men] 5:reg8 t] = byte3(x);

The annotation is only valid if it specifies a smaller valugetye.g., index types cannot be cast) of the
array.

e Theaddr _t type denotes the memory address type on the host machinebsrof typeaddr _t
are used to implement calls to external functions.

e We have a couple of derived forms, i.e., they are syntati@istay more complicated expressions.

€1 €2

true Llireglt
false O:regilt

NULL O:addrt
e We currently only support basic integer operations. Inipaldr, we do not support floating point.
e All functions, even those “built-in”, must be explicitly dared. An example built-in function is
addr t alloc(reg32t x),whichallocates: contiguous bytes of memory on the host machine.

As normal, some statements accepted by the abstract syetaptavell-formed. The job of typecheck-
ing in our context is to check, as much as possible, thatretits are well formed, i.e., the types make
sense and that execution will not obviously “get stuck”.

5 VINE FORMALISM

program
stmt

simplestmt
fundefn
fundecl
formals
vardecl
block

Ival

exp

args
typ
basetyp
casttyp
attrs
binop
arith_bops

rel_bops
unop
const
string

[stmt]*

jmp(exp);
| simplestmt, | fundecl;

labelid :

cjmp(exp exp, exp); | special(string) ;

vardecl; | fundefn| block | ;
Ivak exp| exp| return exp| return | Ival =id (args)

typ id(formals) block

xtern]? typ id (formals);

e | id:typ [, id:typ]*

var id [, id]* : typ

{ [stmt]* }

exp[exp] | (Ival) |id | Ival : typ

(exp) | exp binop exp unop exp| const| unknown string | name(d)
| Ival | let Ival = expin exp| cast (exp) casttyp : typ

e | exp [, exp]*

basetyp attrstyp attrs[typ attrs] | typ attrs*

reglt | reg8.t | regl6t | reg32t | reg64.t | void | string_t | addr_t
U | Unsigned| S| Signed| H | High | L | Low

e | _attr _(id[,id]*)

arithbops| rel_ bops

PLUS{) | MINUS (—) | TIMES (x) | DIVIDE (/) | SDIVIDE (/$) | MOD (%)
| LSHIFT (<) | RSHIFT () | ARSHIFT (@) | AND (&) | OR () | XOR ()

EQ==) |NEQ(<>) || LT (<) | SLE (<= $) | SLT (< 9)
NEG ¢) | NOT (1)

[0-9][0-9]* typ | string| true | false| NULL

“ [any char except quote and newliné]*

Table 1: VinE abstract syntax.

5.1 VinE Abstract Syntax

5.2 VInE Internal Representation (IR) 5 VINE FORMALISM
GCC Pre-processing We use gcc to pre-process VinE input programs written in bstract syntax. This
allows users to uséi ncl ude and#def i ne.

5.2 VinE Internal Representation (IR)

Our IR is shown in Tabl€. Our IR consists of statements (stmt) and expressions.(&xpressions are
pure, i.e., side-effect free. One thing to note is that bothgs 0np) and conditional jumps@J np) have
targets that are expressions, not necessarily labels. i h&cause the jump target may be indirect, i.e.,
calculated via an expressioh.

Statements in our language are:

e Jnp(exp - Jnp is an unconditional jumpexpis the jump target. lexpis of typeNane, then the
jump is to a known location, i.e., a direct jump.eifpis not of typeNamne, then the jump is indirect.

e CInmp(exp true_exptarget falseexptarged - CInp is a conditional jump.expis evaluated, and if
true, control is transfered toue exptarget else control is tranfered talse exptarget When con-
structing aCJ np, expshould evaluate to type bool, though we do not explicitlyashérue_exptarget
andfalse exptargetare similar to the expression dmp: if they are of typeName then the jump tar-
get is known, else the jump target is indirect. Note that imabes, usuallyalse exptargetwill be a
fall-through address, thus a known location, thidaae.

e Move(lhs exp rhs.exp - Move is our assignment statemdhs exp:=rhs_exp Move is used for both
load and store, i.e, ihs_expis aMem then thelbve is a store to memory, andlifis.expis aTenp,
then this is a load.

e Cal | (Ivalue option var, exp lis) - calls the function named kg with argumentsexp list The call
can optionally return a value. Functions with no return hiswae as thdvalue option otherwise will
haveSone(x) where the statement can be reackas i d(argl, arg2, ... ,argn).

e Funct i on(var, typ, decl list bool, stmt option - if boolis false, this is an external function. dfmt
option= None, then this is a declaration. #tmt option= Sone, then this is a function definition.
The function name isar, with return typetyp, and formal arguments named 8gcl list We require
formals to have names and types, unlike C (which just reguire types).

e Speci al (string) - Speci al are for instructions that change the processor state, sulchlg inter-
rupts, etc. Thestringis the x86 instruction name.

e Label (exp - A label is an abstract location in the program, e.g., thgirbeng of a basic block.
Labels serve as targets for jumps (bdtimp and CInp). Direct jumps will haveexpbe a NaME,
while indirect jumps will have some arithmetic expressibabels have no effect on execution.

e ExpSt nt (exp - An ExpSt nt is a statement which executes an expression, then throws taea
result. ExpSt nt is useful for anaysis: you will not see a direct translatiémm x86 instruction to
ExpStnt .

e Comment (string) - A Comrment is a user-written comment in the code. Comments may be etsert
by analysis, during translation, etc, and are used to makedtle more readable. Comments have no
effect on execution.

10One may wonder why we haveabel andNane. Both name a location in the program. The reason we iNeetk as an
expression is because jump targets should be expressienshey may be calculated, or they may be a known locatieengby
Nare. However, we want program locations to be “higher level'tlexpressions, so we also hdvabel . Thus, we havéane
of Label , i.e., an expression containing a statement. This may sesrd vibut sincdLabel has no side effects, it still is at least
consistent in some respect.

10

5 VINE FORMALISM

5.2 VInE Internal Representation (IR)

stmt

exp

Ivalue
binop.type
arith.bops

rel_bops
unoptype
typ

regt
casttype

decl
var
label

Jp of exp| CInp of exp * exp * exp

| Move of Ivalue * exp| Speci al of string

| Label of label| Bl ock of decl list * stmt list

| ExpSt nt of exp| Comment of string

| Funct i on of var * typ * decl list * bool * stmt option

| Cal | of Ivalue option * var * exp list

| Att r of stmt * attribute

Bi nOp of binop.type * exp * exp| UnOp of unoptype * exp

|Const ant of typ * value | Name of label

| Cast of casttype * regtype * exp

| Unknown of string| Lval of lvalue

| Let of Ivalue * exp * exp

Tenp of var * typ | Memof var * typ * exp

arithbops| rel_bops

PLUS{) | MINUS (-) | TIMES (x) | DIVIDE (/) | SDIVIDE (/$) | MOD (%)
| LSHIFT (<) | RSHIFT () | ARSHIFT (@ >>) | AND (&) | OR () | XOR (")
EQ==) INEQ(<>)||LT (<) | SLE (<= 9$) | SLT (< 9)

NEG ¢) | NOT (1)

regt | Array of typ *typ | TAt t r of attributes * typ

REG64| REG32| REG.16 | REG8 | REG.1

CASTUNSIGNED| CAST_SIGNED| CAST_HIGH | CAST_LOW

| CAST_FLOAT | CASTIINTEGER| CAST_RFLOAT | CAST_RINTEGER
var * typ

string

string

Table 2: Our IR Constructors

11

5.2 VInE Internal Representation (IR) 5 VINE FORMALISM
5.2.1 VinE Typechecking

All VInE IR statements are typechecked. Our typing contexis types are as follows:
Attributes « const| string

Types T = reglt|reg8t|regl6t | reg32t| reg64t
| string.t | addrt | void | 7 [2] | 7¢

Functions ¥ = | X,(X7; [P1i7T10ee0s PriThl)

Variables T = -|[xr

Labels L = -|L,xd

We use the following conventions:
Symbol Meaning

T Our variable typing context.

by Our function typing context.

Q Our current return type.

L Our current label context.

I(z) x is free in the variable context.
() x is free in the function context.
L(z) z is free in the label context.

FIT VCon T'is avalid variable context.
F > SCon ¥ is avalid function context.
L LCon Lis avalid label context.

Our function contex®: binds a function name to its type. Our variable contExbinds a variable
name to its declared type. The purpose of the function aridhlarcontext is to ensure consistency among
declarations, e.g., variables should be declared beferans variables should not be redeclared with a new
type.

The purpose of the label conte&tis to ensure that 1) all direct jumps are to well-defined IsR¢jumps
targets in the global space are only to global labels, eagymping to the middle of a function, and 3) that
jumps targets inside a function are to labels within the fiang e.g., no jumps outside the function. The
label contextC binds a label named to one of three states: defined but naenefed d, referenced but not
defined state r, or a referenced and defined state dr. While the

The purpose of the return type contékis to keep track of the current return type for a function.

A typing rule is of the form:

premise 1 premise 2... premise n
Context- Foo: Bar

and is read from bottom to top in the following wagontexttells usFoois of typeBar when premise land

premise 2and ... premise rare true. If any of the premises is not true, then we cannatlada anything,
and typechecking fails.

Auxiliary Predicates: We first define auxiliary predicates for type compatabi(ifyonpat (@, b)), integer

types (Tnt(7)), and valid types (Jaid(7)).

12

5 VINE FORMALISM 5.2 VInE Internal Representation (IR)

7 € {reglt, reg8t, regl6t, reg32t, regb4t, addrt} F Teompat (71, T2)
F Tim(T) H Tcompat (Tfll s 7_;2)
T is atype

}_ Tcompat (addl’_t, I’EQSZt) l_ Tcompat (7—, 7_) l_ Tva“d (7—)
We also define an auxiliary predicate that all labels refezdrare also defined:

VleeLl:LHL:r
= Lvaiid(£)

Expression Types In this step we typecheck expressions. For Name’s, werretid and extend the label
context. As we will see, when typechecking a function, waa@en empty label context, typecheck the
function body, then make sure all labels referenced aredg@fned. Similarly, we use a unique label context

for typechecking the global space.

Tint(7
F Constan(tr(, I)nt(x)) i T + Constantaddrt, Int(x)) : addrt
I'Fx:7
L; T F Constantstring.t, String(x)) : string.t L;TFLval(z): 7
L;TEty 7 Tim(r) o € unoptype
L;T FUnOp(o,tq) : 7 No rule for Unknown
LiTEti:m LiTkHty:m Tin(71) Teompat(71,72) o € arith.bops
L;T F BinOp(o, t1,t9) : T
LiT'Etiim LT Fty:m Tine(71) Teompat(71,72) o € rel_bops
L;T I BinOp(o, t1,t5) : reglt
F'blv:m LiT'kFer: T Teompat(T1,72) T'FIlv:m VCons LT lv:mikeg:T
L;TF Let(lv,er,e9) : 7
LiT'Fe:n LE(:d
L;T I Castct,,e) : 7 L;T + Namé/) : addrt

L-Values:

Tkx:T L;Tke:mn Tka:nlm)
LT+ Tempx,7): 7 L;TF Mem(z, 11[m2],e) : 1

Extensions to Contexts Statements may extend our context. Each extension mustdaied for consis-
tency, e.g., a variable is not redeclared with a new type@rsime scope. We do variables to be redeclared
in the same context (i.e., shadowed) as long as the type gthe. Functions cannot be redefined, but may
be redeclared any number of times. We define valid extensoosr context as follows:

NGNS [(z) F (x)
I'F- VCon F'ET,z:7 VCon T,z :7 VCon

13

5.2 VInE Internal Representation (IR) 5 VINE FORMALISM

SEE(f) Taid(re) Vi:TEpi:m
Y k- 5Con SEX(f;msreglt;pr T, p2 T2y ey Dyt Th) SCon

L LY LH1(:d
LE-LCon LEL ¢:dLCon LEL 0:dLCon
LF LY
LEL:rLCon Ll:dE L ¢:rdLCon

Statements Statements are valid if they have type void. In the follagvimiles, we use “decls::stmts” to
describe a list of declarations followed by a list of statatagwith list elements separated by a semi-colon
“” and “-” to denote the empty list.

3, Q, L;T I decls:: stmts: void I'ET,z:7 VCon X,Q,L;T,2: 7 decls:: stmts: void
3;Q; £; T + Block(decls:: stmtg : void 3:Q; L; T F x: 7;decls:: stmts: void

LT Es: o X,Q, I F stmts: void
X0, L;T - i s;stmts: void
L:T'Fe:addrt
2,0, L;T FJImpe) : void
I'Fe:reglt L;I'Fe:addet L;T F ey : addrt
;0 L,T F CImpe, e, e5) : void
'tl:m LiT'Fe:T Teompat(T1,72)
¥ 0; L, - Move(l, e) : void
L LY LEL:r
;0 L, T+ Label?) : void, £, ¢ : d LCon ¥:0; L, T F Label?) : void, £, ¢ : rd LCon
LiTkFax:T
¥ 0; L;T + Specialx) : void X;Q; £;T' - ExpStm{z) : void
50 LT Fx T Ybhx:(z:void, 7,79,..7,) VYn:L;Tke,:,
¥, Q; L;T F Attr(a, z) : void ¥;Q; L;T + Call(None z, e1, e, ..., e,) F void
Fkl:7 Ykax:(z:7, 71,72, Tn) Teompat(7,7) Vn:L;I'kFe,:7,
¥, Q; L;T + Call(Somél), x, ey, ea, ..., e,) F void
LiTkFe:T QF 7T Q + void
¥;Q; L;T F Retur(Somée)) Y;Q; £; T+ Returr(None)

Functions. Although functions are a type of statement, we only allowctions in the global scope. For
ease of writing, we have eliminated the scoping context frol@s, treating this as a side condition.

Typechecking function definitions may look complicated; lhopefully each step makes sense. We

1. As a side condition, verify we are in the global scope.
2. ExtendX with the function type (i.e., the definition is also a dediana).

14

6 WEAKEST PRE-CONDITION

ExtendI” with the formal parameters since they are local variables.
Create an empty label conte&t := -.

Create an empty return contéXt= -.

Typecheck the function body.

Check if the return type is the declared return type.

Check if all labels referenced are also definggd(L).

©ONOOA®

scope= 0; X F X, (z : 75 false;py : 71y ...y D2 = Ty) SCon
Vn:TFT,py: 71, VCon; L' := Labelse s;Q := 7,;Q, L, T F Block(s) : void; Lyaig(L")

¥, Q; L;T F Function(z, 7., p1 : T1,P2 & T2, ..., Pn © Tn, false, Block(s)) : void

Function declarations are much simplier: we just need tdwtre function type is well-formed. We
do this for both external (when the second-to-last paramst&ue), and for local functions (when the
second-to-last parameter is false).

Y EX, (x:mtrue;pr i Ty p2 i) SCon Yn:T HT,py 7, VCon scope=0
¥, Q; L;T F Functionz, 7, p1 : T1,P2 & T2, ..y P & Tn, true, None) : void

Y EX, (27 falsespy i iy ey p2 i) SCon ¥ :I'ET py i1, VCon scope= 0
2 L; T = Function(x, 7, p1 & 71,02 & T2, ..., Pn © Tn, false, None) : void

Typechecking a program To typecheck a program = stmt list, we

1. Initialize 3, T', 2, and L to the empty set

2. Build a label context for all defined labels in each scope. These rules are not shawessentially
each function will have its own label context, as well as tlobgl scope. The label contexts for the
global and each function scope are disjoint.

3. lterate over all statements and typecheck using the aiote®

In practice, the last two steps can be combined in the tymdaing implementation.

6 Weakest Pre-Condition

6.1 Background

Let P be a program, antfar(P) =< vy, v, ...,v; > be the set of program variables. In assembly, we
consider all registers including the instruction counted enemory locations program variables. ™iate
spaceof the program is the cross product of all variablesx vs x ... x vi. A predicate on the state space
is a function on state-space variables which returns either(true) or false (false).

Let @) be a predicate on the state spacéofThere are three thing that can happen when weRun

1. P can terminate in a state satisfyiny
2. P can terminate in a state satisfying).
3. P does not terminate.

The weakest pre-conditiomp(P, Q) characterizes the minimium requirements on the pre-sfates
which running® will terminate in a state satisfyin@. In other words, activatingP in a state satisfying
wp(P, Q) is gaurenteedo terminatein a state satisfying). wp(P, Q) is called the weakest pre-condition

15

6.2 The Guarded Command Language (GCL) 6 WEAKEST PRE-COINDNIT
because there may be stronger pre-conditi@@swhich also result in the program terminating in a state
satisyfingQ, i.e., P, — wp(P, Q). Thus, the set of states characterizedhyC wp(P, Q).

For example, to calculate whett®rwill always correctly terminate, we calculatey(P, true) because:

’(Up(P, Q) A ’(Up(P, _'Q) = wp(P7 Q A _'Q) = ’LUp(P, true)

Theweakest liberal pre-conditionlp(P, Q) characterizes the minimum requirements on the pre-states
for which runningP will terminate in a state satisfying@ if it terminates at allawip is more liberal because
it only guarentee® won't terminate in a wrong state: it does not gaurtee thenarogerminates.

We can therefore define 7 possible outcomes [4]:

1. Activation of P will establish@:
wp(P, Q) = wip(P, Q) Nwp(P, true)

2. Activation of P will establish—Q:
wp(P, ~Q) = wip(P, Q) A wp(P, true)

3. Activation will fail to lead to a terminating state:
wlp(P, false) = wip(P, Q) N wip(P, Q)

4. Activation will lead to a terminating state, but the iaitistate is insufficient to determine @ is
satisfied:
wp(P, true) A =(wlp(P, Q) A ~wlp(P, ~Q)

5. If activiation leads to a final state, then it will satigpy but the initial state does not determine whether
the activity will terminate:
wlp(P, Q) N —wp(P, true)

6. If activiation leads to a final state, then that state voli satisfy). However, the initial state does not
tell us whether we will terminate:
wlp(P,—Q) N ~wp(P, true)

7. The initial state does not determine whether or not wesallisfy) or terminate:
~(wlp(P, Q) V wip(P, Q) V wp(P, true))

The last four possibilities only exist for non-determiiishachines.

Two important final notes. First, weakest pre-conditiorssraonotonic: ifQ); — Q2 thenwp(P, Q1) —
wp(P,Q2). Secondwp(P, false) = false always (this is sometimes referred to as the principle of ex-
cluded miracle).

6.2 The Guarded Command Language (GCL)

The weakest pre-condition is calculated in a syntax-didechanner from thguarded command language
(GCL), which is shown in Tabl8. Later we will describe how we translate our assembly intd GC

An assertstatement asserts than an expression is true. If the eigmasdalse, the assert blocks and
the computation hagone wrongalong that path. If the asserted expression is true, theagbert block is
equivilant to a nop. For examplasser{false) can be used to indicate an infeasible path.

An assumestatement adds an assumption about the expression. Foplexassuméz > 5) would
restrictz to the values greater thann all subsequent computation.

16

6 WEAKEST PRE-CONDITION 6.3 Calculating the weakest predition
A, B, Se GCL stmt ::=asser{exp)
| assuméexp)

| Iv:=exp (lvis a valid |-value)
| A; B

|ACB

| skip

Table 3: The gaurded command language (left)

wpA, Q)1 _up(B,Q)|Q: wp(B, Q)| _
wp(ADB, Qi A Q2 (A B Qup(A.Qn)
wp(|V = e)|Q(lv/e) WP-ASG m WP-SKIP

wp(assumee, Q)\e = Q WP-ASSUME wp(asserte, Q)’€ /\Q WP-ASSERT

Table 4: Syntax-directed method for calculating the weigges-condition.

GCL also offers assignments, sequencédsK), skip which is equivilant to a nop, and the logical
constants.

The GCL statement[1B, pronounced Abar B, is a choice statement between eitkeor B. For
example, we can write an if-then-else statemiehte t hen A el se Bas(assune(e); A;) O
(—assune(e); B).

Note that at this time we do not have constructs for loops.r€heon is that calculating the weakest pre-
condition for a loop requires additional information abthe behavior of the loop that cannot be determined
syntatically (or necessarily statically). Therefore, fiow we focus on loopless programs.

6.3 Calculating the weakest pre-condition

The weakest pre-condition is calculated in a syntax-degechanner from the guarded command language
(GCL), as shown in Tabld. Each rule is of the forns|Q, which should be read as givef) we output
pre-condition@. For examplewp(sy; se; s3, Q) is computed asp(sy, wp(s2, wp(ss, Q))).

A(lv/e)|A1 B(lv/e)|Bs SUB-BOP A(lv/e)| Ay SUB-LOP
AbopB (lv/e)|A; bop B, uop A(lv/e)|uop A,
te TEMP v =t A(lv/e)|A; aliagmem|[A;],lv) = true
Hv/le SUB-TEMP MEMAI(lo/0)]c SUB-TALIAS
A(lv/e)|A1 aliagMEM[A;],lv) = false A(lv/e)|A; aliagMEM[A4],lv) =M
MEM[A](lv/e)|MEM [A]] SUB-FALIAS MEM[A](lv/e)|if Ay = lv then e elseMEM[A,] SUB-MALIAS

Table 5: Semantics for substitution on post-conditign

17

6.4 Efficient weakest pre-condition calculation 6 WEAKESHHECONDITION

When we encounter an assignment statemeriiLv := e, ()), we substitute all occurances lo¥ in @
for e. Substitution is writterQ)(¢/z) which means substitute all occurances:dbr ¢ in (). Substitution is
formally defined in Tablé. This captures the semantics of assignment in a logical.fdReplacing “all
occurances” requires some thought, however, when facdd mé&mory references. The central problem
with memory references is that two memory references mayidsed. For example, we may havem [x]
= MEM[y] whenz = y. However, we cannot determine statically when= y, e.g., if eitherz or y is
symbolic there may be some values where y and some where £ y.

Therefore, during substitution we rely on an auxilafias function which foral i as(x, y) returns
one of three values: true if andy mustbe aliased, false if: andy aredefinitely notaliased, andV if =
andy maybe aliased (but are not definitely aliased, e.g., may and dwsbt overlap). Note returiniyl is
always sound, and can be used in luei of real alias analysis.

Using the weakest pre-condition The weakest pre-conditiomp(P, Q) is also a binary predicate over the
state space of the program. Thus, if the state spacealisnensions, the weakest pre-condition will define
somen-dimensional sub-space.

In our project, we often want to find a binding of values to ahles which appear imp(P, Q), which
we callsolvingthe weakest pre-condition. Itis important to keep in mirat thie are using the term “solving”
loosely: we are simply finding a single point in the solutipase. We discuss how we find a solution later.

6.4 Efficient weakest pre-condition calculation

The weakest pre-condition computation algorithm aboveniadaption of traditional methods, dating back
to Dijkstra in 1976 [4]. The weakest pre-condition calcidatas presented may result in a pre-condition
that is exponential in the program size. For example, censid

r1 = g+ 2o
To = T1 + 21

T3 = To + o

Tp = Tp—1+ Tn—1

Post-conditions involving:,, will result in an exponentially sized pre-condition. Foaexle, ifQ = x3 <
5, then the resulting weakest pre-condition is:

(o + o) + (w0 + w0)) + ((z0 + 20) + (To + 20)) <5

To address the size issue, we can simply lusé-bindings for all assignments. The resulting pre-
condition will be linear in the size of the program. Again,Gf = z3 < 5, the weakest pre-condition
is:

letz; = 29 + 20 in
letzg = 21 + 2 in
let 3 = xo + x9N
T3 < b

18

REFERENCES 6.5 Other Notes
Note by usingl et bindings we have simply reduced the space for representiagnveakest pre-
condition: we have not necessarily reduced the complexigolving the formula (i.e., instantiating values
for variables such that the weakest pre-condition is true).
There will be more added here later.

6.5 Other Notes

The standard references for weakest-preconditions adié [2,

References

[1] 1A-32 Intel ArchitectureSoftwareDeveloper'sManual: Volume 1, BasicArchitecture, 2004.

[2] Edward CohenProgrammingn the 1990's. Springer-Verlag, 1990.

[3] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. MiehRilato. Version Control with Subversion.
O'Reilly, 2007.

[4] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.

[5] GNU Software Foundation. LIB BFD, the binary file destop library.
http://ww. gnu. or g/ sof t war e/ bi nutil s/ manual / bfd-2.9. 1/ bfd. htm .

[6] Christopher Kruegel, William Robertson, Fredrik Vateand Giovanni Vigna. Static disassembly of
obfuscated binaries. IRroceeding®f the 13thUSENIX SecuritySymposium, 2004.

[7] Brian Raiter. A whirlwind tutorial on creating really a@asy elf executables for linux.
htt p: // ww. nuppet | abs. conl ~br eadbox/ sof tware/ tiny/teensy. htni.

19

http://www.gnu.org/software/binutils/manual/bfd-2.9.1/bfd.html
http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

	Overview
	Administrative Details
	Subversion
	Code Branches

	Regression Tests
	Writing Code
	The Wiki and Bugs
	Creating a New Project

	x86 Overview
	Calling Conventions

	Disassembly
	Locating Code Segments
	Disassembling Each Code Segment
	Disassembly to IR
	Future Directions
	Notes

	VinE Formalism
	VinE Abstract Syntax
	VinE Internal Representation (IR)
	VinE Typechecking

	Weakest Pre-Condition
	Background
	The Guarded Command Language (GCL)
	Calculating the weakest pre-condition
	Efficient weakest pre-condition calculation
	Other Notes

