
VinE Project Documentation

David Brumley

Warning: This document is intended to give an overview of thelanguage. The exact semantics are
subject to change.

1 Overview

The VinE project is geared towards analyzing security properties of executables. Traditional software se-
curity research has been predicated on the availability of source code. Previous approach has focused on
ensuring software security via the software developer, e.g, their choice of safe/unsafe language, implemen-
tation methodology, compile-time checks, source-code analysis, etc.

Previous techniques implied that security is completely predicated on choices made by the developer.
This is insufficient for many reasons, including:

• Most users of software do not have source code. However, different users may have different security
needs. It is difficult for a developer to come up with a balanceof security vs. other factors that is
acceptable to all users.

• When time is of the essence, it may not be possible to involve adeveloper to address security measures.
If a zero-day exploit is released, it may be impractical to involve the developer in security-critical
revisions to the source code, compiler, etc.

Architecture Overview At a high level, the VinE architecture consists of:

• A front-end disassembler. The disassembler is responsiblefor translating a binary into assembly
instructions.

• Intermediate Representation(s) (IR). An IR is an abstraction geared at providing a unambiguous rep-
resentation of the binary. The IR is semantically equivilant to the program, meaning executing the IR
on a properly defined machine should result in the same behavior as executing the binary on a real
machine.

• Back-end analysis routines. Analysis is performed on the IR. Example analysis include dead-code
elimination, weakest pre-condition computation, etc.

• Applications. Applications use the above components to perform specific (research-oriented) tasks.

Last update Fri Apr 27 11:52:19 2007 David Brumley

1

2 ADMINISTRATIVE DETAILS
2 Administrative Details

There are many different projects using the VinE source code. This section describes how we organize our
code, how we write code, and how we create projects around thecode. There are a fewfundamentalrules
we all follow:

Fundamental Rules:

• Make API’s and do not break others API’s.

• Document your source code using ocamldoc-style comments for ocaml, or doxygen style-comments
for C/C++.

• Do not check into trunk unless make succeeds.

• Only check source code into trunk.

• Do not check into trunk unless the regression tests pass.

• Make a regression test for any API you care about not breaking. If you don’t write a regression test,
others may inadvertently break your code without knowing.

If you follow these basic rules, everyone should be happy.

2.1 Subversion

We use subversion to manage our code. Everyone should be familiar with the basics of subversion. A good
introductory (and free) book is available athttp://svnbook.red-bean.com/.

The main subversion repository for VinE is athttps://hayao.ece.cmu.edu/svn/vine. The
repository is currently organized as follows:

• trunk - the activate development source code branch. When you check into trunk, it is expected that
the top-level make succeeds.

– ocaml - the vine library. applications should not go in this directory.

– libasmir - the asmir library, used for translating from assembly to our IR.

– <project> - a project directory, e.g., an application.

• branches - source code branches. More on branches below.

• tags - tagged versions of the code. Tags correspond to releases or to major checkpoints. We generally
create a new tag version after every paper.

• results - this is where you put results for your project, including test cases, source code, or whatever
you think is relevant to your research project.

• regression - regression tests for vine.

2

http://svnbook.red-bean.com/
https://hayao.ece.cmu.edu/svn/vine

2 ADMINISTRATIVE DETAILS 2.2 Regression Tests
2.1.1 Code Branches

Everyone should keep their active code development in subversion. This is for your own protection: our
subversion machine is backed up regularly, while your localmachine may not be.

When you are working on changing code in a way that is incompatible or requires major changes over
multiple days to the main trunk, you should create a codebranch. A branch is an independent line of
development. Branches allow you to use subversion (thus notkeeping all your work on your local machine),
while still not breaking the fundamental rules.

The subversion book [3] has good documentation on how to makeand merge branches appropriately.

2.2 Regression Tests

For each project, there should be a set of regression tests. In general, we have two types of regression types:
micro-tests and macro-tests.

Micro-tests are tests in which you can specify the “right” answer. Micro-tests are typically written by
hand in the VinE IR. Micro-tests are intended to exercises a specific component in as many ways as you think
are appropriate. Micro-tests, since they are small, generally also allow us to more easily debug problems.

Macro-tests are generally real-life tests, e.g., test the scalability of your code. You should again generally
know the “right” answer, but it maybe harder to debug.

Each test should have a “test.sh” script which when executedreturns 0 (zero) for success and something
else for failure. We have a top-level test.sh, which is executed over all regression tests.

2.3 Writing Code

When you write code, please try and design a proper API and useothers API’s. If code doesn’t do what you
want it to do, ask the author, or design an API yourself. API’sshould be specified in “.mli” files for ocaml,
and in “.h” files for C/C++. Code should be documented. For API’s, you should include documentation for
all parameters, and what the API returns.

More particularly:

• When writing C code, use GNU ’indent’ to indent your code.https://hayao.ece.cmu.edu/vine/wiki/wiki/indent
has one recommended indent package.

• When writing C/C++ code, use doxygen-style comments.

• When writing ocaml code, using ocamldoc-style comments.

• When writing ocaml code, I recommend using emacs in tuareg-mode. In ubuntu, this can be installed
as ’tuareg-mode’.

• Keep lines under 80 characters long.

2.4 The Wiki and Bugs

We use a wiki to keep track of projects and bugs. The wiki has random relevant information. We primarily
use the wiki to keep track of information everyone should know about, and for its bug-tracking system.

You should create a bug report when something is broken and you don’t fix it yourself. When you create
a bug report, please be as specific as you can. A good bug reportalso includes a specific example, what is
broken about the example, and what the correct output shouldbe.

3

h

2.5 Creating a New Project 4 DISASSEMBLY
We also use the bug-reporting system to keep track of new features we want. For example, if during

your research project you find that some additional functionality would be great, but don’t have time to
implement it yourself, add a ticket as a “feature request”.

As a general rule, bugs should be actionable items — someone should end up fixing it. Feature requests
need not be actionable; they are there as a reminder.

2.5 Creating a New Project

When you want to create a new project, you should:

• Create a directory in the trunk directory to hold your sourcecode.

• Create a directory in the results directory to hold your examples.

• Create a set of regression tests, if appropriate.

• Create a sub-page off the wiki describing your project.

3 x86 Overview

3.1 Calling Conventions

• Chapter 6 of Volume 1 of the IA-32 Architecture Software Developer’s manual is devoted to calling
and returing [1].

4 Disassembly

Disassembly consists of two steps:

1. Parsing the file format and locating code segments.

2. Disassembling each code segment into a sequence of x86 instructions.

The relevant files for this step are contained inlibasmir/src/disasm. In particular,asm program.cpp
contains most of the high-level interfaces we use, while other files contain lower-level interfaces. Also, note
some of the code is taken fromobjdump.c in binutils, which is a good starting point for those interested
at more depth.

4.1 Locating Code Segments

We use the GNU BFD library [5] for reading in an executable. BFD supports object files, though our code
currently does not. I first give a high level description of ELF, then describe BFD sections. Although
Windows uses a different file format (PE — Portable Executable), at a high level the same discussion is
relevant.

4

4 DISASSEMBLY 4.1 Locating Code Segments
ELF Every ELF begins with an ELF header. The header contains information such as the architecture,
whether it is an executable or object file, the programs startaddress, aprogram header structureand a
section header table, etc. In addition, it contains the sections that make up the program. Almost everything
interesting is within the sections.

The section header table focuses on identifying the variousparts of the program are within the ELF file.
The program header describes where and how these parts are loaded into memory. The section header table
is for use by the compiler and linker, while the program header table is for use by the program loader. The
program header is optional for object files. The section header table is optional for an executable [7].

Each section is an Elf32Shdr structure. Important sections include:

• .bss Holds uninitialized data of the program. Initialized to allzero’s when the process starts up.

• .data & .data1 Hold initialized data.

• .dynamicHolds dynamic linking information.

• .hash Holds the symbol hash table.

• .rodata & .rodata2 Contain read-only data. GCC puts strings constants and constant floating
points here.

• .symtab Holds the symbol table, if present.

• .text The executable instructions of the program.

• .init Initialization functions. executed upon load.

• .fini Like .init.

BFD BFD provides an abstract interface to executables. BFD is also used by the linux programsreadelf
andobjdump. These programs are very useful when trying to untangle an executable, though often assume
an executable was produced by a compiler. An executable consists of header data, optional symbol table,
and zero or more sections.

Each section is marked with a type, and an optional name. The type may be used by the OS when
loading the file, e.g., aSEC DATA (data segment) may be marked read-only. Example section types include:

• SEC CODE The code segment, i.e., a segment marked as containing executable code. The.text
section is an example of aSEC CODE.

• SEC RELOC Relocable code. We do not process relocable code.

• SEC DATA A section containing read-only data.

• SEC NOFLAGSNo information is available.

5

4.2 Disassembling Each Code Segment 4 DISASSEMBLY
4.2 Disassembling Each Code Segment

Our disassembler is based upon Kruegelet. al.’s disassembler [6] operating in linear sweep mode. The
linear sweep algorithm is given in the following psuedo-code:

offset = 0;
while(offset < section_length)
inst = blob + offset;
offset = inst->length;

This loop is intended to simulate the instruction decode-execute loop that the processor uses when executing
the program (see wikipedia’s entry on “Von Neumann Architecture” for more information on this sort of
loop). However, we are performing this statically, while the processor does it dynamically and thus has
more information. For most executables, this loop works fine, though it is worth noting other algorithms
such as the recursive traversal algorithm can produce more accurate results [6].

At a high level, the input to disassembly is a section with symbol table, and the output is aasm program t,
which consists of anasm function t for each function disassembled. The instruction, along with its dis-
assembly, can be found inasm function t.

Symbol Tables Although you could disassemble arbitrary byte sequences, we expect to only be disassem-
bling functions. We currently identify functions via the symbol table. The symbol table, as produced by a
compiler, contains information about the executable. For example, the start address of functions (though not
the end address) is given in the symbol table.

Each symbol is marked with a type by BFD, hinting at what the symbol is used for, such as:

• BSF FUNCTION indicates a function entry point.BSF FUNCTION is used by ELF, and maybe oth-
ers.

• BSF GLOBAL a global symbol.

• BSF LOCAL a local symbol such as static in C.

We only disassembleBSF FUNCTION’s. Sometimes functions are not marked withBSF FUNCTION,
e.g., hand-generated assembly often omits this information. If you wish to create hand-generated assembly,
you must mark each function with a “.type” declaration. For example:

> cat hello.c
int main()
{
return 42;

}
> gcc -S hello.c /* The -S flag generates assembly and stop */
> cat hello.s
...
.globl main

.type main, @function
main:
...

6

4 DISASSEMBLY 4.3 Disassembly to IR
4.3 Disassembly to IR

The output of the disassembly phase is anasm program t, which consists primarily of a list ofasm function t’s
for each function in the executable.asm function t’s are sequentially processed and converted into the
IR, as discussed in the next section.

4.4 Future Directions

Our current disassembler has been well-tested for code generated by gcc. Our future direction is to allow
the user to plug in other disassemblers. The idea is:

• A disassembler disassembles the file and produces a set of instruction addresses and function en-
try/exit points.

• Optionally, self-decrypting binaries would require passing in the actual byte array to our infrastructure.
Seelibasmir/ir/ir program.cpp:asm insn to ir() for an example.

• The instruction addresses and entry/exit points are given to libasmir, along with the executable. The
output is againasm function t’s.

The outputasm function t’s are then used by the rest of the infrastructure, exactly aswith our current
infrastructure.

Note: There is currently (10/13/2006) a master’s student working on this interface with IDA pro.

4.5 Notes

• We currently have a hack to disassemble executables withouta symbol table by doing a linear dis-
assembly of the entire section and returning a singleasm function t for all instructions in the
section.

• Separating code from data has been shown to be reducible to the halting problem. Thus, disassembly
itself is reducible to the halting problem. Therefore, there will always be limitations to any disassem-
bler.

• It is quite common for a 1 line C program to be disassembly to betens of thousands of lines long. The
central reason is standard libraries for loading, dealing with possible errors, and dealing with global
definitions are quite large, and included in every executable. For example:

void main() return 42;

results in an executable about 4000 bytes long. SeeA Whirlwind Tutorial on CreatingReallyTeensy
ELF Executablesfor Linux [7] for more information on how to make such a program much smaller.

• We provide some interfaces for disassembling and converting to the IR instruction(s) named by an
instruction address (or address list) inir program.h. However, we do not provide an interface
for just disassembling instructions as named by an address list. A starting point would be to look at
ir program.cpp:asm insn to ir().

7

5 VINE FORMALISM
5 VinE Formalism

5.1 VinE Abstract Syntax

The VinE abstract syntax is shown in Table1. Items in bold are keywords in the VinE grammar. This
grammar is designed to make translation from assembly as easy as possible.

There are a couple of other things noteworthy about this grammar:

• The declarationvar x:t1[t2] declares a map which takes in at2 and returns at1. Maps are
used to model memory.

• We allow casting when the translationis strict variable is false. In this case, maps can be “cast” as
a different type by annotating it with the desired type. Thisis used to allow otherwise broken code,
such as:

var mem:reg8_t[reg32_t];
var x:reg32_t;
mem[2:reg8_t] = x;

This code will not typecheck by default. However, whenis strict is false, we will translate code based
upon a user annotation such as:

mem[2:reg8_t]:reg32_t[reg32_t] = x;

to

mem[2:reg8_t] = byte0(x);
mem[3:reg8_t] = byte1(x);
mem[4:reg8_t] = byte2(x);
mem[5:reg8_t] = byte3(x);

The annotation is only valid if it specifies a smaller value type (e.g., index types cannot be cast) of the
array.

• Theaddr t type denotes the memory address type on the host machine. Variables of typeaddr t
are used to implement calls to external functions.

• We have a couple of derived forms, i.e., they are syntatic sugar for more complicated expressions.

e1 e2

true 1:reg1t

false 0:reg1t

NULL 0:addr t
• We currently only support basic integer operations. In particular, we do not support floating point.
• All functions, even those “built-in”, must be explicitly declared. An example built-in function is
addr t alloc(reg32 t x), which allocatesx contiguous bytes of memory on the host machine.

As normal, some statements accepted by the abstract syntax are not well-formed. The job of typecheck-
ing in our context is to check, as much as possible, that statements are well formed, i.e., the types make
sense and that execution will not obviously “get stuck”.

8

5 VINE FORMALISM 5.1 VinE Abstract Syntax

program ::= [stmt]*

stmt ::= jmp(exp); | cjmp(exp, exp, exp); | special(string) ; | label id :

| simplestmt; | fundecl; | vardecl; | fundefn| block | ;

simplestmt ::= lval= exp | exp | return exp| return | lval = id (args)

fundefn ::= typ id(formals) block

fundecl ::= [extern]? typ id (formals);

formals ::= ǫ | id:typ [, id:typ]*

vardecl ::= var id [, id]* : typ

block ::= { [stmt]* }

lval ::= exp[exp] | (lval) | id | lval : typ

exp ::= (exp) | exp binop exp| unop exp| const| unknown string | name(id)

| lval | let lval = exp in exp | cast (exp) casttyp : typ

args ::= ǫ | exp [, exp]*

typ ::= basetyp attrs| typ attrs[typ attrs] | typ attrs*

basetyp ::= reg1 t | reg8 t | reg16 t | reg32 t | reg64 t | void | string t | addr t

casttyp ::= U | Unsigned| S | Signed| H | High | L | Low

attrs ::= ǫ | attr (id[,id]*)

binop ::= arithbops| rel bops

arith bops ::= PLUS (+) | MINUS (−) | TIMES (∗) | DIVIDE (/) | SDIVIDE (/$) | MOD (%)

| LSHIFT (≪) | RSHIFT (≫) | ARSHIFT (@ ≫) | AND (&) | OR (|) | XOR (ˆ)

rel bops ::= EQ(==) | NEQ (<>) | | LT (<) | SLE (<= $) | SLT (< $)

unop ::= NEG (−) | NOT (!)

const ::= [0-9][0-9]*: typ | string | true | false | NULL

string ::= “ [any char except quote and newline]*“

Table 1: VinE abstract syntax.

9

5.2 VinE Internal Representation (IR) 5 VINE FORMALISM
GCC Pre-processing We use gcc to pre-process VinE input programs written in the abstract syntax. This
allows users to use#include and#define.

5.2 VinE Internal Representation (IR)

Our IR is shown in Table2. Our IR consists of statements (stmt) and expressions (exp). Expressions are
pure, i.e., side-effect free. One thing to note is that both jumps (Jmp) and conditional jumps (CJmp) have
targets that are expressions, not necessarily labels. Thatis because the jump target may be indirect, i.e.,
calculated via an expression.1.

Statements in our language are:

• Jmp(exp) - Jmp is an unconditional jump.exp is the jump target. Ifexp is of typeName, then the
jump is to a known location, i.e., a direct jump. Ifexpis not of typeName, then the jump is indirect.

• CJmp(exp, true exp target, false exp target) - CJmp is a conditional jump.exp is evaluated, and if
true, control is transfered totrue exp target, else control is tranfered tofalse exp target. When con-
structing aCJmp, expshould evaluate to type bool, though we do not explicitly check. true exp target
andfalse exp targetare similar to the expression inJmp: if they are of typeName, then the jump tar-
get is known, else the jump target is indirect. Note that in binaries, usuallyfalse exp targetwill be a
fall-through address, thus a known location, thus aName.

• Move(lhs exp, rhs exp) - Move is our assignment statementlhs exp:= rhs exp. Move is used for both
load and store, i.e, iflhs expis aMem, then theMove is a store to memory, and iflhs expis aTemp,
then this is a load.

• Call(lvalue option, var, exp list) - calls the function named byid with argumentsexp list. The call
can optionally return a value. Functions with no return haveNone as thelvalue option, otherwise will
haveSome(x) where the statement can be read asx = id(arg1, arg2, ... ,argn).

• Function(var, typ, decl list, bool, stmt option) - if bool is false, this is an external function. Ifstmt
option = None, then this is a declaration. Ifstmt option= Some, then this is a function definition.
The function name isvar, with return typetyp, and formal arguments named bydecl list. We require
formals to have names and types, unlike C (which just requires the types).

• Special(string) - Special are for instructions that change the processor state, such as halt, inter-
rupts, etc. Thestring is the x86 instruction name.

• Label(exp) - A label is an abstract location in the program, e.g., the beginning of a basic block.
Labels serve as targets for jumps (bothJmp andCJmp). Direct jumps will haveexpbe a NAME,
while indirect jumps will have some arithmetic expression.Labels have no effect on execution.

• ExpStmt(exp) - An ExpStmt is a statement which executes an expression, then throws away the
result. ExpStmt is useful for anaysis: you will not see a direct translation of an x86 instruction to
ExpStmt.

• Comment(string) - A Comment is a user-written comment in the code. Comments may be inserted
by analysis, during translation, etc, and are used to make the code more readable. Comments have no
effect on execution.

1One may wonder why we haveLabel andName. Both name a location in the program. The reason we needName as an
expression is because jump targets should be expressions, i.e., they may be calculated, or they may be a known location given by
Name. However, we want program locations to be “higher level” than expressions, so we also haveLabel. Thus, we haveName
of Label, i.e., an expression containing a statement. This may seem weird, but sinceLabel has no side effects, it still is at least
consistent in some respect.

10

5 VINE FORMALISM 5.2 VinE Internal Representation (IR)

stmt ::= Jmp of exp | CJmp of exp * exp * exp

| Move of lvalue * exp| Special of string

| Label of label | Block of decl list * stmt list

| ExpStmt of exp | Comment of string

| Function of var * typ * decl list * bool * stmt option

| Call of lvalue option * var * exp list

| Attr of stmt * attribute

exp ::= BinOp of binop type * exp * exp| UnOp of unop type * exp

|Constant of typ * value | Name of label

| Cast of casttype * reg type * exp

| Unknown of string | Lval of lvalue

| Let of lvalue * exp * exp

lvalue ::= Temp of var * typ | Mem of var * typ * exp

binop type ::= arithbops| rel bops

arith bops ::= PLUS (+) | MINUS (−) | TIMES (∗) | DIVIDE (/) | SDIVIDE (/$) | MOD (%)

| LSHIFT (≪) | RSHIFT (≫) | ARSHIFT (@ ≫) | AND (&) | OR (|) | XOR (ˆ)

rel bops ::= EQ(==) | NEQ (<>) | | LT (<) | SLE (<= $) | SLT (< $)

unop type ::= NEG (−) | NOT (!)

typ ::= reg t | Array of typ * typ | TAttr of attributes * typ

reg t ::= REG 64 | REG 32 | REG 16 | REG 8 | REG 1

casttype ::= CASTUNSIGNED| CAST SIGNED| CAST HIGH | CAST LOW

| CAST FLOAT | CAST INTEGER| CAST RFLOAT | CAST RINTEGER

decl ::= var * typ

var ::= string

label ::= string

Table 2: Our IR Constructors

11

5.2 VinE Internal Representation (IR) 5 VINE FORMALISM
5.2.1 VinE Typechecking

All VinE IR statements are typechecked. Our typing contextsand types are as follows:

Attributes α ::= const| string

Types τ ::= reg1 t | reg8 t | reg16t | reg32t | reg64t

| string t | addr t | void | τ1 [τ2] | τα

Functions Σ ::= · | Σ,(x:τ ; [p1:τ1,...,pn:τn])

Variables Γ ::= · | Γ,x:τ

Labels L ::= · | L, x:d

We use the following conventions:

Symbol Meaning

Γ Our variable typing context.

Σ Our function typing context.

Ω Our current return type.

L Our current label context.

Γ̄(x) x is free in the variable contextΓ.

Σ̄(x) x is free in the function contextΣ.

L̄(x) x is free in the label contextL.

⊢ Γ VCon Γ is a valid variable context.

⊢ Σ SCon Σ is a valid function context.

⊢ L LCon L is a valid label context.

Our function contextΣ binds a function name to its type. Our variable contextΓ binds a variable
name to its declared type. The purpose of the function and variable context is to ensure consistency among
declarations, e.g., variables should be declared before use and variables should not be redeclared with a new
type.

The purpose of the label contextL is to ensure that 1) all direct jumps are to well-defined labels 2) jumps
targets in the global space are only to global labels, e.g., no jumping to the middle of a function, and 3) that
jumps targets inside a function are to labels within the function, e.g., no jumps outside the function. The
label contextL binds a label named to one of three states: defined but not referenced d, referenced but not
defined state r, or a referenced and defined state dr. While the

The purpose of the return type contextΩ is to keep track of the current return type for a function.
A typing rule is of the form:

premise 1 premise 2 ... premise n
Context⊢ Foo : Bar

and is read from bottom to top in the following way:Contexttells usFoo is of typeBar whenpremise 1and
premise 2and ... premise nare true. If any of the premises is not true, then we cannot conclude anything,
and typechecking fails.
Auxiliary Predicates: We first define auxiliary predicates for type compatability(Tcompat(a, b)), integer
types (Tint(τ)), and valid types (Tvalid(τ)).

12

5 VINE FORMALISM 5.2 VinE Internal Representation (IR)

τ ∈ {reg1 t, reg8 t, reg16t, reg32t, reg64t, addr t}

⊢ Tint(τ)

⊢ Tcompat(τ1, τ2)

⊢ Tcompat(τ
α1

1
, τα2

2
)

⊢ Tcompat(addr t, reg32t) ⊢ Tcompat(τ, τ)

τ is a type
⊢ Tvalid(τ)

We also define an auxiliary predicate that all labels referenced are also defined:

∀ℓ ∈ L : L 6⊢ ℓ : r

⊢ Lvalid(L)

Expression Types: In this step we typecheck expressions. For Name’s, we return void and extend the label
context. As we will see, when typechecking a function, we create an empty label context, typecheck the
function body, then make sure all labels referenced are alsodefined. Similarly, we use a unique label context
for typechecking the global space.

Tint(τ)

⊢ Constant(τ, Int(x)) : τ ⊢ Constant(addr t, Int(x)) : addr t

L; Γ ⊢ Constant(string t, String(x)) : string t
Γ ⊢ x : τ

L; Γ ⊢ Lval(x) : τ

L; Γ ⊢ t1 : τ Tint(τ) ◦ ∈ unop type

L; Γ ⊢ UnOp(◦, t1) : τ No rule for Unknown

L; Γ ⊢ t1 : τ1 L; Γ ⊢ t2 : τ2 Tint(τ1) Tcompat(τ1, τ2) ◦ ∈ arith bops

L; Γ ⊢ BinOp(◦, t1, t2) : τ

L; Γ ⊢ t1 : τ1 L; Γ ⊢ t2 : τ2 Tint(τ1) Tcompat(τ1, τ2) ◦ ∈ rel bops

L; Γ ⊢ BinOp(◦, t1, t2) : reg1 t

Γ ⊢ lv : τ1 L; Γ ⊢ e1 : τ2 Tcompat(τ1, τ2) Γ ⊢ Γ, lv : τ1 VCons L; Γ, lv : τ1 ⊢ e2 : τ

L; Γ ⊢ Let(lv, e1, e2) : τ

L; Γ ⊢ e : τ1

L; Γ ⊢ Cast(ct, τ, e) : τ
L ⊢ ℓ : d

L; Γ ⊢ Name(ℓ) : addr t

L-Values:

Γ ⊢ x : τ
L; Γ ⊢ Temp(x, τ) : τ

L; Γ ⊢ e : τ2 Γ ⊢ x : τ1[τ2]

L; Γ ⊢ Mem(x, τ1[τ2], e) : τ1

Extensions to Contexts: Statements may extend our context. Each extension must be checked for consis-
tency, e.g., a variable is not redeclared with a new type in the same scope. We do variables to be redeclared
in the same context (i.e., shadowed) as long as the type is thesame. Functions cannot be redefined, but may
be redeclared any number of times. We define valid extensionsto our context as follows:

Γ ⊢ · VCon

Γ(x) ⊢ τ

Γ ⊢ Γ, x : τ VCon

Γ(x) ⊢ Γ̄(x)

Γ ⊢ Γ, x : τ VCon

13

5.2 VinE Internal Representation (IR) 5 VINE FORMALISM

Σ ⊢ · SCon

Σ ⊢ Σ̄(f) Tvalid(τr) ∀i : Γ ⊢ pi : τi

Σ ⊢ Σ, (f ; τr; reg1 t; p1 : τ1, p2 : τ2, ..., pn : τn) SCon

L ⊢ · LCon

L ⊢ L̄(ℓ)

L ⊢ L, ℓ : d LCon

L ⊢ ℓ : d
L ⊢ L, ℓ : d LCon

L ⊢ L̄(ℓ)

L ⊢ L, ℓ : r LCon L, ℓ : d ⊢ L, ℓ : rd LCon

Statements: Statements are valid if they have type void. In the following rules, we use “decls::stmts” to
describe a list of declarations followed by a list of statements, with list elements separated by a semi-colon
“;”, and “·” to denote the empty list.

Σ,Ω,L; Γ ⊢ decls:: stmts: void
Σ;Ω;L; Γ ⊢ Block(decls:: stmts) : void

Γ ⊢ Γ, x : τ VCon Σ,Ω,L; Γ, x : τ ⊢ decls:: stmts: void
Σ;Ω;L; Γ ⊢ x : τ ; decls:: stmts: void

Σ;Ω;L,Γ ⊢ s : τ1 Σ,Ω,Γ ⊢ stmts: void
Σ;Ω;L; Γ ⊢ · :: s; stmts: void

L; Γ ⊢ e : addr t
Σ;Ω;L; Γ ⊢ Jmp(e) : void

Γ ⊢ e : reg1 t L; Γ ⊢ et : addr t L; Γ ⊢ ef : addr t

Σ;Ω;L,Γ ⊢ CJmp(e, et, ef) : void

Γ ⊢ l : τ1 L; Γ ⊢ e : τ2 Tcompat(τ1, τ2)

Σ;Ω;L,Γ ⊢ Move(l, e) : void

L ⊢ L̄(ℓ)

Σ;Ω;L,Γ ⊢ Label(ℓ) : void,L, ℓ : d LCon

L ⊢ ℓ : r
Σ;Ω;L,Γ ⊢ Label(ℓ) : void,L, ℓ : rd LCon

Σ;Ω;L; Γ ⊢ Special(x) : void
L; Γ ⊢ x : τ

Σ;Ω;L; Γ ⊢ ExpStmt(x) : void

Σ;Ω;L; Γ ⊢ x : τ

Σ;Ω;L; Γ ⊢ Attr(a, x) : void

Σ ⊢ x : (x : void, τ1, τ2, ...τn) ∀n : L; Γ ⊢ en : τn

Σ;Ω;L; Γ ⊢ Call(None, x, e1, e2, ..., en) ⊢ void

Γ ⊢ l : τ Σ ⊢ x : (x : τr, τ1, τ2, ...τn) Tcompat(τ, τr) ∀n : L; Γ ⊢ en : τn

Σ;Ω;L; Γ ⊢ Call(Some(l), x, e1, e2, ..., en) ⊢ void

L; Γ ⊢ e : τ Ω ⊢ τ

Σ;Ω;L; Γ ⊢ Return(Some(e))
Ω ⊢ void

Σ;Ω;L; Γ ⊢ Return(None)

Functions: Although functions are a type of statement, we only allow functions in the global scope. For
ease of writing, we have eliminated the scoping context fromrules, treating this as a side condition.

Typechecking function definitions may look complicated, but hopefully each step makes sense. We

1. As a side condition, verify we are in the global scope.
2. ExtendΣ with the function type (i.e., the definition is also a declaration).

14

6 WEAKEST PRE-CONDITION
3. ExtendΓ with the formal parameters since they are local variables.
4. Create an empty label contextL′ := ·.
5. Create an empty return contextΩ := ·.
6. Typecheck the function body.
7. Check if the return type is the declared return type.
8. Check if all labels referenced are also defined Lvalid(L).

scope= 0;Σ ⊢ Σ, (x : τr; false; p1 : τ1, ..., p2 : τn) SCon

∀n : Γ ⊢ Γ, p1 : τn VCon;L′ := Labels∈ s; Ω := τr; Ω,L′,Γ ⊢ Block(s) : void; Lvalid(L
′)

Σ;Ω;L; Γ ⊢ Function(x, τr, p1 : τ1, p2 : τ2, ..., pn : τn, false, Block(s)) : void

Function declarations are much simplier: we just need to verify the function type is well-formed. We
do this for both external (when the second-to-last parameter is true), and for local functions (when the
second-to-last parameter is false).

Σ ⊢ Σ, (x : τr; true; p1 : τ1, ..., p2 : τn) SCon ∀n : Γ ⊢ Γ, p1 : τn VCon scope= 0

Σ;Ω;L; Γ ⊢ Function(x, τr, p1 : τ1, p2 : τ2, ..., pn : τn, true, None) : void

Σ ⊢ Σ, (x : τr; false; p1 : τ1, ..., p2 : τn) SCon ∀n : Γ ⊢ Γ, p1 : τn VCon scope= 0

Σ;Ω;L; Γ ⊢ Function(x, τr, p1 : τ1, p2 : τ2, ..., pn : τn, false, None) : void

Typechecking a program: To typecheck a program = stmt list, we

1. InitializeΣ, Γ, Ω, andL to the empty set
2. Build a label contextL for all defined labels in each scope. These rules are not shown, but essentially

each function will have its own label context, as well as the global scope. The label contexts for the
global and each function scope are disjoint.

3. Iterate over all statements and typecheck using the aboverules.

In practice, the last two steps can be combined in the typechecking implementation.

6 Weakest Pre-Condition

6.1 Background

Let P be a program, andV ar(P) =< v1, v2, ..., vk > be the set of program variables. In assembly, we
consider all registers including the instruction counter and memory locations program variables. Thestate
spaceof the program is the cross product of all variables:v1 × v2 × ... × vk. A predicate on the state space
is a function on state-space variables which returns eithertrue (true) or false (false).

Let Q be a predicate on the state space ofP. There are three thing that can happen when we runP:

1. P can terminate in a state satisfyingQ

2. P can terminate in a state satisfying¬Q.

3. P does not terminate.

The weakest pre-conditionwp(P, Q) characterizes the minimium requirements on the pre-statesfor
which runningP will terminate in a state satisfyingQ. In other words, activatingP in a state satisfying
wp(P, Q) is gaurenteedto terminatein a state satisfyingQ. wp(P, Q) is called the weakest pre-condition

15

6.2 The Guarded Command Language (GCL) 6 WEAKEST PRE-CONDITION
because there may be stronger pre-conditionsQs which also result in the program terminating in a state
satisyfingQ, i.e.,Ps → wp(P, Q). Thus, the set of states characterized byPs ⊆ wp(P, Q).

For example, to calculate whetherP will always correctly terminate, we calculatewp(P, true) because:

wp(P, Q) ∧ wp(P,¬Q) ≡ wp(P, Q ∧ ¬Q) ≡ wp(P, true)

Theweakest liberal pre-conditionwlp(P, Q) characterizes the minimum requirements on the pre-states
for which runningP will terminate in a state satisfyingQ if it terminates at all.wlp is more liberal because
it only guarenteesP won’t terminate in a wrong state: it does not gaurtee the program terminates.

We can therefore define 7 possible outcomes [4]:

1. Activation ofP will establishQ:
wp(P, Q) = wlp(P, Q) ∧ wp(P, true)

2. Activation ofP will establish¬Q:
wp(P,¬Q) = wlp(P,¬Q) ∧ wp(P, true)

3. Activation will fail to lead to a terminating state:
wlp(P, false) = wlp(P, Q) ∧ wlp(P,¬Q)

4. Activation will lead to a terminating state, but the initial state is insufficient to determine ifQ is
satisfied:
wp(P, true) ∧ ¬(wlp(P, Q) ∧ ¬wlp(P,¬Q)

5. If activiation leads to a final state, then it will satisfyQ, but the initial state does not determine whether
the activity will terminate:
wlp(P, Q) ∧ ¬wp(P, true)

6. If activiation leads to a final state, then that state will not satisfyQ. However, the initial state does not
tell us whether we will terminate:
wlp(P,¬Q) ∧ ¬wp(P, true)

7. The initial state does not determine whether or not we willsatisfyQ or terminate:
¬(wlp(P, Q) ∨ wlp(P,¬Q) ∨ wp(P, true))

The last four possibilities only exist for non-deterministic machines.
Two important final notes. First, weakest pre-conditions are monotonic: ifQ1 → Q2 thenwp(P, Q1) →

wp(P, Q2). Second,wp(P, false) = false always (this is sometimes referred to as the principle of ex-
cluded miracle).

6.2 The Guarded Command Language (GCL)

The weakest pre-condition is calculated in a syntax-directed manner from theguarded command language
(GCL), which is shown in Table3. Later we will describe how we translate our assembly into GCL.

An assertstatement asserts than an expression is true. If the expression is false, the assert blocks and
the computation hasgone wrongalong that path. If the asserted expression is true, then theassert block is
equivilant to a nop. For example,assert(false) can be used to indicate an infeasible path.

An assumestatement adds an assumption about the expression. For example, assume(x > 5) would
restrictx to the values greater than5 in all subsequent computation.

16

6 WEAKEST PRE-CONDITION 6.3 Calculating the weakest pre-condition

A, B, S∈ GCL stmt ::=assert(exp)

| assume(exp)

| lv := exp (lv is a valid l-value)

| A; B

| A � B

| skip

Table 3: The gaurded command language (left)

wp(A,Q)|Q1 wp(B,Q)|Q2

wp(A�B,Q)|Q1 ∧ Q2

WP-BAR
wp(B,Q)|Q1

wp(A;B,Q)|wp(A,Q1)
WP-SEQ

wp(lv := e)|Q(lv/e)
WP-ASG

wp(skip, Q)|Q
WP-SKIP

wp(assumee, Q)|e ⇒ Q
WP-ASSUME

wp(asserte, Q)|e ∧ Q
WP-ASSERT

Table 4: Syntax-directed method for calculating the weakest pre-condition.

GCL also offers assignments, sequences (A;B), skip which is equivilant to a nop, and the logical
constants.

The GCL statementA�B, pronounced Abar B, is a choice statement between eitherA or B. For
example, we can write an if-then-else statementif e then A else B as(assume(e); A;) �

(¬assume(e);B).
Note that at this time we do not have constructs for loops. Thereason is that calculating the weakest pre-

condition for a loop requires additional information aboutthe behavior of the loop that cannot be determined
syntatically (or necessarily statically). Therefore, fornow we focus on loopless programs.

6.3 Calculating the weakest pre-condition

The weakest pre-condition is calculated in a syntax-directed manner from the guarded command language
(GCL), as shown in Table4. Each rule is of the formS|Q, which should be read as givenS, we output
pre-conditionQ. For example,wp(s1; s2; s3, Q) is computed aswp(s1, wp(s2, wp(s3, Q))).

A(lv/e)|A1 B(lv/e)|B2

A bopB (lv/e)|A1 bopB1

SUB-BOP
A(lv/e)|A1

uopA(lv/e)|uopA1

SUB-UOP

t ∈ TEMP lv = t
t(lv/e)|e

SUB-TEMP
A(lv/e)|A1 alias(mem[A1], lv) = true

MEM[A](lv/e)|e
SUB-TALIAS

A(lv/e)|A1 alias(MEM[A1], lv) = false

MEM[A](lv/e)|MEM [A1]
SUB-FALIAS

A(lv/e)|A1 alias(MEM [A1], lv) = M
MEM[A](lv/e)|if A1 = lv then e elseMEM[A1]

SUB-MALIAS

Table 5: Semantics for substitution on post-conditionQ.

17

6.4 Efficient weakest pre-condition calculation 6 WEAKEST PRE-CONDITION
When we encounter an assignment statementwp(lv := e, Q), we substitute all occurances oflv in Q

for e. Substitution is writtenQ(t/x) which means substitute all occurances ofx for t in Q. Substitution is
formally defined in Table5. This captures the semantics of assignment in a logical form. Replacing “all
occurances” requires some thought, however, when faced with memory references. The central problem
with memory references is that two memory references may be aliased. For example, we may haveMEM[x]
= MEM[y] whenx = y. However, we cannot determine statically whenx = y, e.g., if eitherx or y is
symbolic there may be some values wherex = y and some wherex 6= y.

Therefore, during substitution we rely on an auxilaryalias function which foralias(x,y) returns
one of three values: true ifx andy mustbe aliased, false ifx andy aredefinitely notaliased, andM if x
andy maybe aliased (but are not definitely aliased, e.g., may and mustdo not overlap). Note returingM is
always sound, and can be used in luei of real alias analysis.

Using the weakest pre-condition The weakest pre-conditionwp(P, Q) is also a binary predicate over the
state space of the program. Thus, if the state space isn-dimensions, the weakest pre-condition will define
somen-dimensional sub-space.

In our project, we often want to find a binding of values to variables which appear inwp(P, Q), which
we callsolvingthe weakest pre-condition. It is important to keep in mind that we are using the term “solving”
loosely: we are simply finding a single point in the solution space. We discuss how we find a solution later.

6.4 Efficient weakest pre-condition calculation

The weakest pre-condition computation algorithm above is an adaption of traditional methods, dating back
to Dijkstra in 1976 [4]. The weakest pre-condition calculation as presented may result in a pre-condition
that is exponential in the program size. For example, consider:

x1 = x0 + x0

x2 = x1 + x1

x3 = x2 + x2

...

xn = xn−1 + xn−1

Post-conditions involvingxn will result in an exponentially sized pre-condition. For example, ifQ = x3 <
5, then the resulting weakest pre-condition is:

((x0 + x0) + (x0 + x0)) + ((x0 + x0) + (x0 + x0)) < 5

To address the size issue, we can simply uselet-bindings for all assignments. The resulting pre-
condition will be linear in the size of the program. Again, ifQ = x3 < 5, the weakest pre-condition
is:

let x1 = x0 + x0 in
let x2 = x1 + x0 in

let x3 = x2 + x2 in
x3 < 5

18

REFERENCES 6.5 Other Notes
Note by usinglet bindings we have simply reduced the space for representing the weakest pre-

condition: we have not necessarily reduced the complexity of solving the formula (i.e., instantiating values
for variables such that the weakest pre-condition is true).

There will be more added here later.

6.5 Other Notes

The standard references for weakest-preconditions are [2,4].

References

[1] IA-32 Intel ArchitectureSoftwareDeveloper’sManual:Volume 1,BasicArchitecture, 2004.

[2] Edward Cohen.Programmingin the1990’s. Springer-Verlag, 1990.

[3] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. VersionControl with Subversion.
O’Reilly, 2007.

[4] E.W. Dijkstra. A Disciplineof Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.

[5] GNU Software Foundation. LIB BFD, the binary file descriptor library.
http://www.gnu.org/software/binutils/manual/bfd-2.9.1/bfd.html.

[6] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna. Static disassembly of
obfuscated binaries. InProceedingsof the13thUSENIX SecuritySymposium, 2004.

[7] Brian Raiter. A whirlwind tutorial on creating really teensy elf executables for linux.
http://www.muppetlabs.com/∼breadbox/software/tiny/teensy.html.

19

http://www.gnu.org/software/binutils/manual/bfd-2.9.1/bfd.html
http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

	Overview
	Administrative Details
	Subversion
	Code Branches

	Regression Tests
	Writing Code
	The Wiki and Bugs
	Creating a New Project

	x86 Overview
	Calling Conventions

	Disassembly
	Locating Code Segments
	Disassembling Each Code Segment
	Disassembly to IR
	Future Directions
	Notes

	VinE Formalism
	VinE Abstract Syntax
	VinE Internal Representation (IR)
	VinE Typechecking

	Weakest Pre-Condition
	Background
	The Guarded Command Language (GCL)
	Calculating the weakest pre-condition
	Efficient weakest pre-condition calculation
	Other Notes

